
An Efficient Hardware Architecture for
Multilayer Spiking Neural Networks

Yuling Luo1, Lei Wan1, Junxiu Liu1
�, Jinlei Zhang1, and Yi Cao2

1 Guangxi Key Lab of Multi-source Information Mining & Security,
Faculty of Electronic Engineering, Guangxi Normal University, Guilin, China, 541004

2 Department of Business Transformation and Sustainable Enterprise,
Surrey Business School, University of Surrey, Surrey, UK, GU2 7XH

liujunxiu@mailbox.gxnu.edu.cn

Abstract. Spiking Neural Network (SNN) is the most recent computa-
tional model that can emulate the behaviors of biological neuron system.
This paper highlights and discusses an efficient hardware architecture for
the hardware SNNs, which includes a layer-level tile architecture (LTA)
for the neurons and synapses, and a novel routing architecture (NRA)
for the interconnections between the neuron nodes. In addition, a visu-
alization performance monitoring platform is designed, which is used as
functional verification and performance monitoring for the SNN hard-
ware system. Experimental results demonstrate that the proposed archi-
tecture is feasible and capable of scaling to large hardware multilayer
SNNs.
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1 Introduction

Recently, Spiking Neural Network (SNN) is being studied due to its compu-
tational capabilities for solving problems. The researchers attempt to mimic
this efficiency and build artificial neural systems in hardware device. However,
one main challenge is that it is the computational complexity, area demand-
ing, nonlinear operators and highly dense interconnection schemes, which limit
the system scalability. For example, a SNN system normally includes a sig-
nificant number of neurons and synapses and the complexity of inter-neuron
connectivity increases significantly with the number of neurons and synapses.
Recently, FPGA-based architectures are popular for the SNN implementations.
For instance, a FPGA-based approach was proposed in [1] to provide biologi-
cally compatible neural networks and can simulate up to 100 neurons. Another
20×20 topology that used simplified Hodgkin-Huxley neuron model was pro-
posed in [2]. Reducing the precision of the data helps to minimize the consumed
hardware area, e.g. the approach of [3] can accommodate 64K neurons. Its mem-
brane potential value is updated by a synaptic weight with a 5-bit width. For
the inter-neuron connections, the networks-on-chip (NoC) has been mostly used
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as an efficient SNN interconnect strategy. For example, a routing architecture
based on two-dimensional (2D) mesh topology was proposed in the approach
of [4]. The FACETS in the approach of [5] was based on a 2D torus which
provided the connections of several FACETS wafers. A state-of-the-art hierar-
chical NoC architecture for SNN was proposed in the approach of [6], which
combined the mesh and star topologies for different layers of the SNNs. Similar
to the aforementioned approaches, most of current SNN hardware systems use
the topologies with limited degree (e.g. mesh, torus etc.) to connect the neu-
rons together, however these topologies do not meet the fan-in/out requirement
of layer-based SNN structures [7]. Therefore, it is necessary to explore a new
hardware architecture to address these challenges.

This paper presents a FPGA-based LTA architecture for the SNN neurons
and synapses. The LTA employs a two-level sharing mechanism of computing
components at the synapse and neuron levels and achieves a trade-off between
computational complexity and hardware resource costs. For the connection prob-
lem between neurons, a compact and efficient routing architecture is proposed.
It employs a traffic status weight-based arbitration and a traffic congestion-
avoidance mechanism to provide traffic balance for the information transmission
of multiple neurons. Further, a visualization performance monitoring platform
is designed for the functional verification and performance monitoring of the
hardware SNN.

2 SNN Hardware Architecture

The network topologies of the artificial neural networks can be divided into two
categories, namely feed-forward and recurrent networks [8]. The feed-forward
topology is mostly used and usually includes an input/output layer and one
(or several) hidden layers. All the information is passed forward in one direc-
tion only. For example, a typical multilayer feed-forward network is shown in
Fig. 1(a). Note that each neuron in a layer is connected to all neurons in the
next layer by a weighted connection. The proposed LTA is illustrated in Fig. 1(b).
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Fig. 1. An N-layer SNN and the overview of the SNN system using LTAs and NRA.



An Efficient Hardware Architecture for Multilayer SNNs 3

Each LTA corresponds to a layer in the SNN system in Fig. 1(a), i.e., it is pro-
grammed to realize a layer-level function of the SNNs. Inside the LTA, multiple
neurons and synapses share computing components to provide a trade-off be-
tween computational complexity and the required hardware resources. For the
LTAs in different layers, a novel routing architecture (NRA) is used as their com-
munication infrastructure. The proposed LTA and NRA are presented in details
in the following sections.

2.1 Compact Neuron Node

The micro-architecture of the proposed LTA is shown in Fig. 2. Based on the
dynamic synapses model from the approach of [9], a digital synapse with suf-
ficient resolution is developed and synthesized to an IP core as illustrated in
the I/O block diagram of Fig. 2(a). It includes spike and configuration infor-
mation inputs for the synapses (i.e., Spike In and Config In), the presynap-
tic and postsynaptic currents (i.e., I In and I Out), the variables (i.e., x, y,
z Excit Inhib In/Out, Use In/Out) and the handshaking signals (i.e., hs In and
hs Out). It uses floating-point data precision for the membrane potential value,
weight etc. The digital synapse is used for synaptic computation and is shared
by multiple synapses within a neuron cell. Using the digital synapse as the core
component, the neuron architecture based on a typical Leaky Integrate-and-
Fire (LIF) neuron model [10] is designed to model each neuron cell as shown in
Fig. 2(b). The main components of a neuron (e.g., the soma, axon and synapse)
are modularized, e.g. the Neuron Computing Core, the Cell Controller and the
Communication Interface module implement the functions of the synapses, soma
and axon, respectively. When packets are received from the Communication In-
terface, the Packet Decoder decodes them. For example, if the received data is
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intended for configuration, then the parameters (e.g., the weight, decay, thresh-
old value, lookup table and topology definitions) are saved in RAM for the
synaptic computing and spike generation. When the spike packets arrive, the
parameters and the initial membrane potential value are read from the Param-
eter RAM. Then, the NCC calculates the excitatory or inhibitory postsynaptic
potentials of each synapse. The Cell Controller is used to manage the compu-
tation process. After completing all synapse computations, the Spike Generator
Controller generates spike packets according to the communication parameters
from the Topology Configuration RAM. In the final, it outputs the spike packets
to the Communication Interface for the transmissions.

In this approach, in addition to the shared mechanism inside the neuron
cell, neurons within the same layer (i.e., a single LTA) also share the computing
component of one neuron (CCON) to further extend the efficiency of the design.
Fig. 2(c) shows the proposed LTA diagram. The sharing mechanism of the LTA
at the neuron level is similar to the sharing achieved the single neuron cell in
Fig. 2(b). The CCON is the core module. The different neurons within an LTA
share a single CCON. The RAM module is used to store the variables of different
neurons. The Layer Controller manages the working flow of the LTA at the layer
level. The Layer Packet Generator module is used to manage the data generation
of different neurons.

2.2 Efficient Routing Architecture for the Inter-neuron Connection

In this work, an efficient interconnection architecture, i.e. NRA, is proposed,
which can efficiently forward the spike events for the communications of multi-
layer SNNs. An example of interconnection between the NRA and LTA neuron
nodes is introduced in Fig. 3(a). The NRA is based on an all-to-all connec-
tion that takes the paired input and output nodes of multilayer SNNs as the
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source and destination. A novel multicast-based NoC router is developed as the
fundamental work unit of NRA and its structure is shown by Fig. 3(b). Each
router has n input channels that receive the outputs from previous layer. And it
fully connects to all the routes of the next layer. The traffic status information
(e.g. busy or congested) are transmitted through the red line between different
routers. After the LTA generates spike packets, the associated router forwards
these packets to the routers in next layer. Considering that the NRA applies to
multiple similar routers, only the structure and functionality of a single router
are presented in details in the following content.

The single router diagram in Fig. 4(a) includes FIFO, Scheduler, Input con-
troller, Output controller. Fig. 4(b) illustrates the hardware structure of the
Scheduler. The structure of one traffic status weight computing unit is shown in
Fig. 4(c). Five traffic status weight generators calculate the corresponding traffic
status weights in real-time according to the input channel traffic status, which
can be achieved by reading the statuses of corresponding FIFOs and grant infor-
mation. The five traffic status weight signals including Present (wp), Busy (wb),
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Congested (wc), Grant (wg) and Wait (ww) are connected to the scheduler to aid
making effective arbitration decisions and are calculated based on the following
dynamic traffic status weight mechanism. If a channel has a data present, then
the associated weight wp is 3. Similarly, the weights for busy, congested, granted
and waiting status are set to be 1, 2, -1 and 1, respectively. After all the traffic
status weight values are generated, the total traffic status weight, wsum, for each
port i in each group, is calculated by wsum[i] = wp[i]+wb[i]+wc[i]+wg[i]+ww[i]
in real-time. The port with the largest traffic status weight in each group is se-
lected to be granted by the round-robin arbiter. It can be noticed that the traffic
status weight of each port is calculated in real-time. This allows the priorities of
all ports are updated in real-time to access to the output channel [4].

2.3 A Visualization Performance Monitoring Platform for SNNs

Functional verification and performance monitoring of SNN hardware structure
are challenges due to the SNN system complexity and large logic size. In this
work, a visualization performance monitoring platform is designed. Fig. 5 illus-
trates the structure of this platform. The monitoring target is the Xilinx Zynq
7000 device. Its internal structure is divided into two parts of processor system
(PS) and programmable logic (PL), i.e. a single chip integrates FPGA devices
and dual-core ARM Cortex-A9 processing system. The high-speed AXI bus is
used as the intercommunication between ARM and FPGA. The SNN hardware
system is implemented in the FPGA device (Fig. 5 shows a typical network based
on a 2D mesh topology). Considering the system lightweight design requirement,
the monitoring platform uses the ARM processor to manage the workflow of the
entire platform, signal statistics and communication. It connects to a computer
via the high speed Ethernet communication. Only a compact signal collection
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unit is required for the PL side, which minimizes the resource overhead of the
monitoring platform.

The computer software interface provides basic signal and data observation
and control interfaces for each sub-module. It is divided into: (a) configuration
module; (b) waveform display module; (c) frequency display module and (d)
data display and storage module, which are shown by Fig. 6.

3 Experimental Results

3.1 Functional Evaluation

The XOR problem is used as a benchmark of functional evaluation in this exper-
iment because it is a standard benchmark for verifying and evaluating artificially
intelligent systems. A 2-layer feed-forward SNN consisting of 3 neurons (2 inputs
and 1 output) was created to solve the XOR (see Fig. 7(a)). In this system, only
2 LTAs are required, one is used to model two neurons and four synapses in the

(b) (d)

(a)

(c)

Fig. 6. The software interactive interface.

(a) SNN-based XOR structure (b) Partial enlargement of waveform

(c) Hardware system results of XOR
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Fig. 7. Simulation results of XOR using the proposed LTA and NRA.



8 Yuling Luo, Lei Wan, Junxiu Liu et al.

first layer network, another is used for one neuron and two synapses in the sec-
ond layer. They are interconnected by the proposed routing architecture NRA.
All the LTAs use the packets to transmit the information [4]. The rate encoding
scheme is used in this paper, and the SNN can be trained using the learning
algorithm in previous work [11]. The Xilinx Zynq-7000 development board (with
a XC7Z020-CLG484 FPGA device) is used as the hardware platform. The re-
sults are shown in Fig. 7(c). The logical values ‘1’ and ‘0’ are encoded as spikes
of 60 and 15 Hz, respectively. As expected, the output is ‘1’ (i.e., 60 Hz) when
both inputs are different and ‘0’ (i.e., 15 Hz) when the inputs are the same. The
membrane potential for neuron #3 is also shown in Fig. 7(b).

For large size networks, the IRIS and Wisconsin breast cancer (WBC) classi-
fication tasks can be used to analyse the scalability. The former is a 16:208:3 (i.e.
16 input, 208 hidden, and 3 output neurons) three-layer network, and the latter
is 9:90:2 [6]. The IRIS or WBC requires only three LTAs and NRAs as each LTA
can contain multiple neurons and a single NRA can provide communications for
multiple LTAs. This demonstrates the scalability of the proposed architectures
in this paper.

3.2 Performance analysis

Table 1 summarizes the recent approaches in terms of the network size, precision
etc. The approaches in [3,8] used simplified LIF and SRM models and simplified
routing architecture, which require relatively low hardware resources (e.g. the
approach in [3] used only adders and subtractors for the synaptic computation
and simplified 2D mesh-based NoC router for communication). Therefore, they
can accommodate more neurons and synapses. The GPU-based approach [12]
can simulate Izhikevich models by accelerating the computing process; however,
it has the drawback of high power consumption. Our work can accommodate a

Table 1. Performance comparison with other approaches.

Approach Network size Precision Power Architecture Device

[3]
64 K neurons

1.5 M synapses
5 bit N/A Modular neural tile

Virtex-6
200 MHz

[8]
50 neurons

1000 synapses
16-bit FXP N/A

Mixed serial-
parallel

Spartan3
69 MHz

[12] 55,000 neurons 32-bit FLP ∼7.35 W Parallel
GPU

30 cores

[2] 400 neurons 32-bit FLP N/A
20×20

topology
Virtex-4
100 MHz

[1] 100 neurons 32-bit FLP N/A
Multiplexed

neuron module
Virtex-6
100 MHz

This Work
1,728 neurons

43,200 synapses
32-bit FLP 56.3 mW

Two-level
sharing mechanism

XC7Z020
200 MHz
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Table 2. Hardware overhead for the performance monitoring platform

Logic Available Used Utilization(%)

Slice LUTs 53,200 1,550 2.91%
Slice registers 106,400 1,109 1.04%

larger number of neurons and synapses while keeping power consumption rela-
tively low (∼56.3 mW), which is an improvement over the approaches of [1, 2]
under similar conditions. The current high-performance FPGA is much larger
than the one used in this work; therefore, using the proposed approach can
accommodate more neurons and synapses.

For the proposed monitoring platform, the hardware overhead is an impor-
tant metric of platform performance due to that the FPGA device hardware
resources are limited. In this platform, only a signal collection module is needed
in the FPGA device. The hardware resources used by the monitoring logic is
shown in Table 2, which include 1,550 Slice LUTs and 1,109 Slice registers, re-
spectively, i.e. only 2.91% and 1.04% of the resources of the FPGA devices in
the Xilinx Zynq-7000 device.

4 Conclusions

This paper proposes a compact layer-tile architecture for the neurons, and an
efficient routing architecture for the interconnections between the neurons. The
proposed architecture offers an efficient solution to address the problems of area
demanding and dense interconnected requirements of the hardware SNNs. It has
the capability of scaling to large scale hardware multilayer SNNs. In addition, the
performance monitoring mechanism provides an auxiliary functional verification
and performance analysis for the SNNs.
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