Skip to main content

Polymer Waveguide-Based Reservoir Computing

  • Conference paper
  • First Online:
Neural Information Processing (ICONIP 2017)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10639))

Included in the following conference series:

Abstract

Polymer waveguide optical interconnect technology, in which VCSEL and photodiode chip arrays are flip-mounted on an organic carrier to fabricate optical multi-chip modules, has been intensively developed over the last 15 years for data transfer applications in high performance computers. In that application, multiple-channel data signals transmitted to and from CPU and memory components in a system are converted into optical signals for short range, high density, high speed, low power and low cost digital communication. In this work we explore how these efforts could be leveraged to fabricate a compact, fully integrated photonic reservoir computing module with several devices potentially operating in parallel. We present experimental results of low optical loss in a crossing structure as well as good performance simulated with realistic parameters of a time-multiplexed reservoir performing a signal recovery task.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Merolla, P.A., et al.: A million spiking-neuron integrated circuit with a scalable communication network and interface. Science 345, 668–673 (2014)

    Article  Google Scholar 

  2. Furber, S., Galluppi, F., Temple, S., Plana, L.: The spinnaker project. Proc. IEEE 102, 652–665 (2014)

    Article  Google Scholar 

  3. Prucnal, P.R., Shastri, B.J., de Lima, T.F., Nahmias, M.A., Tait, A.N.: Recent progress in semiconductor excitable lasers for photonic spike processing. Adv. Optics Photonics 8, 228–299 (2016)

    Article  Google Scholar 

  4. Jaeger, H.: The ‘echo state’ approach to analyzing and training recurrent neural networks - with an erratum note, Technical report GMD Report Number 148, Fraunhofer Institute for Autonomous Intelligent Systems (2011)

    Google Scholar 

  5. Appeltant, L., Soriano, M.C., Van der Sande, G., Danckaert, J., Massar, S., Dambre, J., Schrauwen, B., Mirasso, C.R., Fischer, I.: Information processing using a single dynamical node as complex system. Nat. Commun. 2, 468 (2011)

    Article  Google Scholar 

  6. Duport, F., Schneider, B., Smerieri, A., Haelterman, M., Massar, S.: All-optical reservoir computing. Opt. Express 20, 22783–22795 (2012)

    Article  Google Scholar 

  7. Brunner, D., Soriano, M.C., Mirasso, C.R., Fischer, I.: Parallel photonic information processing at gigabyte per second data rates using transient states. Nat. Commun. 4, 1364 (2013)

    Article  Google Scholar 

  8. Dejonckheere, A., Duport, F., Smerieri, A., Fang, L., Oudar, J.-L., Haelterman, M., Massar, S.: All-optical reservoir computer based on saturation of absorption. Opt. Express 22, 10868–10881 (2014)

    Article  Google Scholar 

  9. Larger, L., Baylon-Fuentes, A., Martinenghi, R., Udaltsov, V.S., Chembo, Y.K., Jacquot, M.: High-speed photonic reservoir computing using a time-delay-based architecture: million words per second classification. Phys. Rev. X 7, 011015 (2017)

    Google Scholar 

  10. Vandoorne, K., Mechet, P., Van Vaerenbergh, T., Fiers, M., Morthier, G., Verstraeten, D., Schrauwen, B., Dambre, J., Bienstman, P.: Experimental demonstration of reservoir computing on a silicon photonics chip. Nat. Commun. 5, 3541 (2014)

    Article  Google Scholar 

  11. Nahmias, M.A., Tait, A.N., Tolias, L., Chang, M.P., de Lima, T.F., Shastri, B.J., Prucnal, P.R.: An integrated analog O/E/O link for multi-channel laser neurons. Appl. Phys. Lett. 108, 151106 (2016)

    Article  Google Scholar 

  12. Chen, J., He, Z.S., Lengyel, T., Szczerba, K., Westbergh, P., Gustavsson, J.S., Zirath, H., Larsson, A.: An energy efficient 56 Gbps PAM-4 VCSEL transmitter enabled by a 100 Gbps driver in 0.25 um InP DHBT technology. J. Lightwave Technol. 34, 4954–4964 (2016)

    Article  Google Scholar 

  13. Tokunari, M., Hsu, H.H., Nakagawa, S.: Assembly and demonstration of high bandwidth-density optical MCM. In: 2015 IEEE 65th Electronic Components and Technology Conference, pp. 799–803. IEEE (2015)

    Google Scholar 

  14. Tokunari, M., Hsu, H.H., Masuda, K., Nakagawa, S., Assembly optimization for low power optical MCM link. In: Proc. IEEE CPMT Symposium Japan (ICSJ), Kyoto, 5 November 2015 (2015)

    Google Scholar 

  15. Tokunari, M., Hsu, H.H., Toriyama, K., Noma, H., Nakagawa, S.: High-bandwidth density and low-power optical MCM using waveguide-integrated organic substrate. J. Lightwave Technol. 32, 1207–1212 (2014)

    Article  Google Scholar 

  16. Heroux, J.B., Kise, T., Funabashi, M., Aoki, T., Schow, C.L., Rylyakov, A.V., Nakagawa, S.: Energy-efficient 1060-nm optical link operating up to 28 Gb/s. J. Lightwave Technol. 33, 733–740 (2015)

    Article  Google Scholar 

  17. Ishigure, T., Shitanda, K., Kudo, T., Takayama, S., Mori, T., Moriya, K., Choki, K., Low-loss design and fabrication of multimode polymer optical waveguide circuit with crossings for high-density optical PCB. In: 2013 IEEE 63rd Electronic Components and Technology Conference, pp. 297–304. IEEE (2013)

    Google Scholar 

  18. Jaeger, H., Haas, H.: Harnessing nonlinearity: predicting chaotic systems and saving energy in wireless communication. Science 304, 78–80 (2004)

    Article  Google Scholar 

  19. Tanaka, G., Nakane, R., Yamane, T., Nakano, D., Takeda, S., Nakagawa, S., Hirose, A.: Exploiting heterogeneous units for reservoir computing with simple architecture. In: Hirose, A., Ozawa, S., Doya, K., Ikeda, K., Lee, M., Liu, D. (eds.) ICONIP 2016. LNCS, vol. 9947, pp. 187–194. Springer, Cham (2016). doi:10.1007/978-3-319-46687-3_20

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean Benoit Héroux .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Héroux, J.B., Numata, H., Nakano, D. (2017). Polymer Waveguide-Based Reservoir Computing. In: Liu, D., Xie, S., Li, Y., Zhao, D., El-Alfy, ES. (eds) Neural Information Processing. ICONIP 2017. Lecture Notes in Computer Science(), vol 10639. Springer, Cham. https://doi.org/10.1007/978-3-319-70136-3_89

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-70136-3_89

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-70135-6

  • Online ISBN: 978-3-319-70136-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics