Skip to main content

Anomaly Detection for Categorical Observations Using Latent Gaussian Process

  • Conference paper
  • First Online:
  • 4681 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10638))

Abstract

Anomaly detection is an important problem in many applications, ranging from medical informatics to network security. Various distribution-based techniques have been proposed to tackle this issue, which try to learn the probabilistic distribution of conventional behaviors and consider the observations with low densities as anomalies. For categorical observations, multinomial or dirichlet compound multinomial distributions were adopted as effective statistical models for conventional samples. However, when faced with small-scale data set containing multivariate categorical samples, these models will suffer from the curse of dimensionality and fail to capture the statistical properties of conventional behavior, since only a small proportion of possible categorical configurations will exist in the training data. As an effective bayesian non-parametric technique, categorical latent Gaussian process is able to model small-scale categorical data through learning a continuous latent space for multivariate categorical samples with Gaussian process. Therefore, on the basis of categorical latent Gaussian process, we propose an anomaly detection technique for multivariate categorical observations. In our method, categorical latent Gaussian process is adopted to capture the probabilistic distributions of conventional categorical samples. Experimental results on categorical data set show that our method can effectively detect anomalous categorical observations and achieve better detection performance compared with other anomaly detection techniques.

This is a preview of subscription content, log in via an institution.

References

  1. Abolhasanzadeh, B.: Gaussian process latent variable model for dimensionality reduction in intrusion detection. In: Electrical Engineering (2015)

    Google Scholar 

  2. Agarwal, D.: Detecting anomalies in cross-classified streams: a Bayesian approach. Knowl. Inf. Syst. 11(1), 29–44 (2007)

    Article  Google Scholar 

  3. Aggarwal, C.C., Yu, P.S.: Outlier detection for high dimensional data. In: ACM Sigmod Record, vol. 30, pp. 37–46. ACM (2001)

    Google Scholar 

  4. Anscombe, F.J.: Rejection of outliers. Technometrics 2(2), 123–146 (1960)

    Article  MathSciNet  MATH  Google Scholar 

  5. Beal, M.J.: Variational algorithms for approximate Bayesian inference. University of London United Kingdom (2003)

    Google Scholar 

  6. Butun, I., Morgera, S.D., Sankar, R.: A survey of intrusion detection systems in wireless sensor networks. IEEE Commun. Surv. Tutor. 16(1), 266–282 (2014)

    Article  Google Scholar 

  7. Chandola, V., Banerjee, A., Kumar, V.: Anomaly detection: a survey. ACM Comput. Surv. (CSUR) 41(3), 15 (2009)

    Article  Google Scholar 

  8. D’Alconzo, A., Coluccia, A., Ricciato, F., Romirer-Maierhofer, P.: A distribution-based approach to anomaly detection and application to 3G mobile traffic. In: GLOBECOM, pp. 1–8 (2009)

    Google Scholar 

  9. Damianou, A.C., Titsias, M.K., Lawrence, N.D.: Variational inference for latent variables and uncertain inputs in Gaussian processes. J. Mach. Learn. Res. 17(1), 1425–1486 (2016)

    MathSciNet  MATH  Google Scholar 

  10. Gal, Y., Chen, Y., Ghahramani, Z.: Latent Gaussian processes for distribution estimation of multivariate categorical data. In: Proceedings of the 32nd International Conference on Machine Learning, ICML2015, pp. 645–654 (2015)

    Google Scholar 

  11. Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A., Bengio, Y.: Generative adversarial nets. In: Advances in Neural Information Processing Systems, pp. 2672–2680 (2014)

    Google Scholar 

  12. Kingma, D.P., Welling, M.: Auto-encoding variational bayes. arXiv preprint arXiv:1312.6114 (2013)

  13. Kudo, D., Waizumi, Y., Nemoto, Y.: Network traffic anomaly detection using multinomial distribution model according to service. Gastroenterology 148(4), S-500–S-501 (2015)

    Google Scholar 

  14. Laxhammar, R., Falkman, G., Sviestins, E.: Anomaly detection in sea traffic - a comparison of the Gaussian mixture model and the kernel density estimator. In: International Conference on Information Fusion, pp. 756–763. IEEE Computer Society (2009)

    Google Scholar 

  15. Oliveira, H., Caeiro, J.J., Correia, P.L.: Improved road crack detection based on one-class parzen density estimation and entropy reduction. In: 2010 17th IEEE International Conference on Image Processing (ICIP), pp. 2201–2204 (2010)

    Google Scholar 

  16. Orbanz, P., Teh, Y.W.: Bayesian nonparametric models. In: Sammut, C., Webb, G.I. (eds.) Encyclopedia of Machine Learning, pp. 81–89. Springer, Boston (2011)

    Google Scholar 

  17. Ranganathan, A.: PLISS: detecting and labeling places using online change-point detection. Auton. Robots 32(4), 351–368 (2010)

    Article  Google Scholar 

  18. Shewhart, W.A.: Economic Control of Quality of Manufactured Product. Van Nostrand, New York City (1931)

    Google Scholar 

  19. Swarnkar, M., Hubballi, N.: OCPAD: one class Naive Bayes classifier for payload based anomaly detection. Expert Syst. Appl. 64, 330–339 (2016)

    Article  Google Scholar 

  20. Titsias, M.K.: Variational learning of inducing variables in sparse Gaussian processes. In: AISTATS, vol. 5, pp. 567–574 (2009)

    Google Scholar 

  21. Van Vlasselaer, V., Bravo, C., Caelen, O., Eliassi-Rad, T., Akoglu, L., Snoeck, M., Baesens, B.: APATE: a novel approach for automated credit card transaction fraud detection using network-based extensions. Decis. Support Syst. 75, 38–48 (2015)

    Article  Google Scholar 

  22. Wang, W., Zhang, B., Wang, D., Jiang, Y., Qin, S., Xue, L.: Anomaly detection based on probability density function with Kullback-Leibler divergence. Sig. Process. 126, 12–17 (2016)

    Article  Google Scholar 

Download references

Acknowledgments

This paper is supported by the National Natural Science Foundation of China under grant No. 61572109, No. 11461006 and No. 61402080. The authors would like to thank the anonymous reviewers for their helpful and constructive comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jinzhao Wu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Lv, F., Yang, G., Wu, J., Liu, C., Yang, Y. (2017). Anomaly Detection for Categorical Observations Using Latent Gaussian Process. In: Liu, D., Xie, S., Li, Y., Zhao, D., El-Alfy, ES. (eds) Neural Information Processing. ICONIP 2017. Lecture Notes in Computer Science(), vol 10638. Springer, Cham. https://doi.org/10.1007/978-3-319-70139-4_29

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-70139-4_29

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-70138-7

  • Online ISBN: 978-3-319-70139-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics