Skip to main content

Tuning Hyperparameters for Gene Interaction Models in Genome-Wide Association Studies

  • Conference paper
  • First Online:
Neural Information Processing (ICONIP 2017)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10638))

Included in the following conference series:

Abstract

In genetic epidemiology, epistasis has been the subject of several researchers to understand the underlying causes of complex diseases. Identifying gene-gene and/or gene-environmental interactions are becoming more challenging due to multiple genetic and environmental factors acting together or independently. The limitations of current computational approaches motivated the development of a deep learning method in our recent study. The approach trained a multilayered feedforward neural network to discover interacting genes associated with complex diseases. The models are evaluated under various simulated scenarios and compared with the previous methods. The results showed significant improvements in predicting gene interactions over the traditional machine learning techniques. This study is further extended to maximize the predictive performance of the method by tuning the hyperparameters using Cartesian grid and random grid searching. Several experiments are conducted on real datasets to identify higher-order interacting genes responsible for diseases. The findings demonstrated randomly chosen trials are more efficient than trials chosen by grid search for optimizing hyperparameters. The optimal configuration of hyperparameter values improved the model performance without overfitting. The results illustrate top 30 gene interactions responsible for sporadic breast cancer and hypertension.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Padyukov, L.: Between the Lines of Genetic Code: Genetic Interactions in Understanding Disease and Complex Phenotypes. Academic Press, Cambridge (2013)

    Google Scholar 

  2. Gusareva, E.S., et al.: Genome-wide association interaction analysis for Alzheimer’s disease. Neurobiol. Aging 35(11), 2436–2443 (2014)

    Article  Google Scholar 

  3. Cordell, H.J.: Detecting gene-gene interactions that underlie human diseases. Nat. Rev. Genet. 10(6), 392–404 (2009)

    Article  Google Scholar 

  4. Uppu, S., Krishna, A., Gopalan, R.: A review on methods for detecting SNP interactions in high-dimensional genomic data. IEEE/ACM Trans. Comput. Biol. Bioinf. PP(99) (2016). doi:10.1109/TCBB.2016.2635125

  5. Ritchie, M.D., et al.: Multifactor-dimensionality reduction reveals high-order interactions among estrogen-metabolism genes in sporadic breast cancer. Am. J. Hum. Genet. 69(1), 138–147 (2001)

    Article  Google Scholar 

  6. Calle, M.L., et al.: MB-MDR: model-based multifactor dimensionality reduction for detecting interactions in high-dimensional genomic data. Stat. Med. 27(30), 6532–6546 (2008)

    Article  MathSciNet  Google Scholar 

  7. Schwarz, D.F., König, I.R., Ziegler, A.: On safari to random jungle: a fast implementation of random forests for high-dimensional data. Bioinformatics 26(14), 1752–1758 (2010)

    Article  Google Scholar 

  8. Yang, C., et al.: SNPHarvester: a filtering-based approach for detecting epistatic interactions in genome-wide association studies. Bioinformatics 25(4), 504–511 (2009)

    Article  Google Scholar 

  9. Wan, X., et al.: BOOST: a fast approach to detecting gene-gene interactions in genome-wide case-control studies. Am. J. Hum. Genet. 87(3), 325–340 (2010)

    Article  Google Scholar 

  10. Purcell, S., et al.: PLINK: a tool set for whole-genome association and population-based linkage analyses. Am. J. Hum. Genet. 81(3), 559–575 (2007)

    Article  MathSciNet  Google Scholar 

  11. Schwender, H., Ickstadt, K.: Identification of SNP interactions using logic regression. Biostatistics 9(1), 187–198 (2008)

    Article  MATH  Google Scholar 

  12. Zhang, Y., Liu, J.S.: Bayesian inference of epistatic interactions in case-control studies. Nat. Genet. 39(9), 1167–1173 (2007)

    Article  Google Scholar 

  13. Marvel, S., Motsinger-Reif, A.: Grammatical evolution support vector machines for predicting human genetic disease association. In: Proceedings of the 14th annual conference companion on Genetic and evolutionary computation. ACM (2012)

    Google Scholar 

  14. Motsinger, A.A., et al.: GPNN: Power studies and applications of a neural network method for detecting gene-gene interactions in studies of human disease. BMC Bioinformatics 7(1), 39 (2006)

    Article  Google Scholar 

  15. Bengio, Y., Goodfellow, I.J., Courville, A.: Deep Learning. An MIT Press book in preparation. Draft chapters available at http://www.iro.umontreal.ca/∼bengioy/dlbook (2015)

  16. LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521(7553), 436–444 (2015)

    Article  Google Scholar 

  17. Uppu, S., Krishna, A.: Improving strategy for discovering interacting genetic variants in association studies. In: Hirose, A., Ozawa, S., Doya, K., Ikeda, K., Lee, M., Liu, D. (eds.) ICONIP 2016. LNCS, vol. 9947, pp. 461–469. Springer, Cham (2016). doi:10.1007/978-3-319-46687-3_51

    Chapter  Google Scholar 

  18. Uppu, S., Krishna, A., Raj, P.G.: A deep learning approach to detect SNP interactions. J. Softw. 11(10), 960–975 (2016)

    Article  Google Scholar 

  19. Bergstra, J., Bengio, Y.: Random search for hyper-parameter optimization. J. Mach. Learn. Res. 13, 281–305 (2012)

    MathSciNet  MATH  Google Scholar 

  20. Chiang, F.-T., et al.: Molecular variant M235T of the angiotensinogen gene is associated with essential hypertension in Taiwanese. J. Hypertens. 15(6), 607–611 (1997)

    Article  Google Scholar 

  21. Wu, S.-J., et al.: Three single-nucleotide polymorphisms of the angiotensinogen gene and susceptibility to hypertension: single locus genotype vs. haplotype analysis. Physiol. Genomics 17(2), 79–86 (2004)

    Article  Google Scholar 

  22. Aiello, S., Kraljevic, T., Maj, P.: h2o: R Interface for H2O. R package version, vol. 3 (2016)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suneetha Uppu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Uppu, S., Krishna, A. (2017). Tuning Hyperparameters for Gene Interaction Models in Genome-Wide Association Studies. In: Liu, D., Xie, S., Li, Y., Zhao, D., El-Alfy, ES. (eds) Neural Information Processing. ICONIP 2017. Lecture Notes in Computer Science(), vol 10638. Springer, Cham. https://doi.org/10.1007/978-3-319-70139-4_80

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-70139-4_80

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-70138-7

  • Online ISBN: 978-3-319-70139-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics