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Abstract. We consider a prediction market in which all aspects are con-
trolled by market forces, in particular the correct outcomes of events are
decided by the market itself rather than by trusted arbiters. This kind
of a decentralized prediction market can sustain betting on events whose
outcome may remain unresolved for a long or even unlimited time pe-
riod, and can facilitate trades among participants who are spread across
diverse geographical locations, may wish to remain anonymous and/or
avoid burdensome identification procedures, and are distrustful of each
other. We describe how a cryptocurrency such as Bitcoin can be enhanced
to accommodate a truly decentralized prediction market, by employing
an innovative variant of the Colored Coins concept. We examine the
game-theoretic properties of our design, and offer extensions that enable
other financial instruments as well as real-time exchange.

1 Introduction

A prediction market (PM) enables its participants to continuously place bets on
the outcome of uncertain future events. As the PM is transparent and provides
price discovery, each participant can take into consideration the current market
price for outcomes of events, and attempt to make informed decisions regarding
whether to buy or sell shares in such outcomes. Another use of PMs is in hedging
positions. An individual may buy a prediction not because she believes that the
event will happen, but because it would have a negative effect on her. She thus
reduces her risk by betting on the event, anticorrelating with her current position.
Further, PMs function as a useful forecasting tool even for non-participants,
because predictions that are made when traders risk their own money have
proven to be more accurate than polls and other methods [2].

The decentralized structure of the Bitcoin [17] network implies that its sound-
ness does not require reliance on trusted parties, and that its participants can
operate anonymously [13–16] if they take appropriate precautions. By utilizing
Colored Coins [20] protocols, a decentralized stock exchange and other finan-
cial services can be integrated with Bitcoin. Similarly, “meta”-protocols such
as the Counterparty [11] and Omni [18] layers4 can provide more advanced fi-
nancial services. Thus, one may regard it to be of interest to explore whether a
decentralized PM can also be deployed on top of Bitcoin.

At first glance, it may seem that a decentralized exchange of assets poses
less of a challenge than a decentralized PM. This is because the relevant aspects

4 Each of them reached a market cap greater than $20 million in 2014, see http:

//coinmarketcap.com/.

ar
X

iv
:1

70
1.

08
42

1v
3 

 [
cs

.C
R

] 
 7

 M
ar

 2
01

7

http://coinmarketcap.com/
http://coinmarketcap.com/


when trading an asset are just whether the issuer of the specific asset is reputable,
and whether the trading platform is secure. Some assets may not require any
reliance on reputation, e.g. an asset that gives ownership rights over a digital art
item (including the right to present it at a gallery), which can then be traded
in an atomic fashion. By contrast, even though a PM only deals with digital
information, a fully decentralized PM requires a broad agreement regarding the
outcomes of events.

Indeed, the work of [7] constructs a PM via a cryptocurrency of the Bitcoin
mold, but it relies on trusted arbiters to decide the correct outcome of events. An
alternative presented in [7] is to let the “miners” who perform the Proof of Work
computations register their votes on the outcomes of events in the blocks that
they solve. However, this alternative raises significant concerns, which stem from
the fact that miners in a decentralized cryptocurrency can operate anonymously.
Consider, for example, an obscure event that is relevant only to a small village.
Some faction of this village can try to bribe miners to vote for their preferred
outcome. Ideally, miners would be disincentivized from voting incorrectly as it
entails the risk of losing the block reward in case their solved block is rejected
by honest miners. For this to happen, honest miners would need to parse every
obscure event description and keep up with the real-world outcomes of such
events, which is impractical. Hence, choosing a trusted entity as arbiter in accord
with hierarchical certification (cf. [7, Section 5.3]) is probably a better option
for a PM of this kind.

One may ask why it is of value to decentralize all the aspects of a PM. Some
of the possible reasons are as follows:

– For arbiters, credibility is inversely correlated with susceptibility. An anony-
mous arbiter is probably untrustworthy, while a well-known arbiter can be
pressured by hostile elements to not resolve an event correctly.

– Eliminating the need for arbiters makes it easier to bet on events that extend
over a very long time period (e.g., “Texas will secede from the U.S. before
the year 2030”), or even events with unbounded time (e.g., “The State of
Jefferson will be created out of California and Oregon before Texas secedes
from the U.S.”). It is desirable to let the market assign probabilities to such
outcomes in a continuous fashion while relevant occurrences in the world
unfold, without running the risk that a designated arbiter will not be alive
or no longer be (the only one) in possession of her secret signing key at the
time when the outcome is resolved.

– Anonymous traders may make predictions on interesting events that a tra-
ditional PM does not tend to accommodate. For example, “Street gang #1
will win the turf war in which they swore to expel street gang #2 from region
x before the year 2018”. Market participants might not be able to agree in
advance on a trustworthy arbiter for this event, even though the outcome
can be agreed upon by impartial observers and hence suitable to be decided
by a decentralized PM.

– Reputable arbiters may expect to be compensated for the service that they
provide, in part because they need to take precautions to secure their secret
signing key. This implies that market participants will need to pay fees that
go to the trusted arbiters, on top of the fees that are paid to the miners.



– In case the designated arbiter makes the wrong call for an event resolution,
her decision becomes irreversible according to the protocol rules of a semi-
decentralized PM [7]. Thus, shares of the winning outcome that are still in
circulation are unfortunately worthless. This stands in contrast to a fully
decentralized PM, in which market forces will re-adjust the value of the
shares as the mistaken outcome becomes known.5

These reasons add to the obvious observation that designated arbiters may be
malicious or willing to be bribed. For instance, a corrupt arbiter may stonewall
and refuse to sign the correct resolution of an event until she receives extra
money on the side. The corrupt arbiter may also stock up on cheap shares of an
unlikely outcome, then rule in favor of that outcome and in effect steal money
from other traders.

In Section 3 we discuss the conditions under which our fully decentralized
PM scheme is likely to work well, and conditions under which a PM with trusted
arbiters may be more appropriate.

1.1 Prediction markets with anonymous participants

An anonymous marketplace with or without trusted arbiters can facilitate insider
trading and other kinds of fraud that are less probable in non-anonymous setting.

E.g., a goalkeeper can secretly buy shares that predict that her team will lose
a soccer game, then concede goals on purpose and profit. Still, even in a non-
anonymous PM the goalkeeper may ask someone else to buy the shares and later
divvy up the profits between them, hence the issue boils down to the observation
that an anonymous marketplace allows fraudsters to operate with less friction.

Therefore, it is safer to bet on events whose significance is likely greater than
their trade volume, particularly in the case of a PM with anonymous participants.

See for example [9] for further discussion and analysis of outside incentives.

1.2 Related work

The work of [7] presents a cryptocurrency protocol for a PM that is decentralized
in the sense that anyone can inject liquidity for betting on new or existing events,
but centralized in the sense that it depends on trusted arbiters to decide the
outcomes of events. Moreover, [7] presents a decentralized matching platform for
PM trading directly on the cryptocurrency network. In Appendix A we outline
how it is also possible to construct a trading platform that is suitable for real-
time trades.

The Truthcoin [22] and Augur [19] projects attempt to build a different vari-
ant of a decentralized PM, where holders of tradeable “reputation” cryptocur-
rency take over the role of trusted arbiters in deciding outcomes of events. This
is done via quite intricate voting methods in which all holders of these reputa-
tion coins may cast their votes for each event resolution, voters who agree with
the majority earn fees, and voters who end up in the minority may suffer a loss.
One aspect that neither Truthcoin nor Augur try to decentralize is the initial

5 An example of a mistaken ruling is the 2012 Iowa caucus incident at https://en.

wikipedia.org/wiki/Intrade#Disputes.
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issuance of reputation coins by means of an auction or an IPO (cf. [6, Section 4]
and [8, Section V.B]). By contrast, in our PM protocol the outcomes of events
are decided by market forces rather than by votes, hence there is no need for an
IPO that would potentially enrich the parties that initiate the PM system.

2 Mechanism

The Colored Coins concept [20] allows Bitcoin to support non-fungible assets
rather than only fungible coins. This means that “tagged” or “colored” coins
can be sent and received on the Bitcoin network. Thus, if Alice has a portfolio
of {(5, red), (6, blue)} coins, she can send (1.9, red) coins to Bob’s address and
have {(3.1, red), (6, blue)} coins remaining.

The PM system that we hereby construct is based on Bitcoin, with all assets
colored according to the fixed form (amount, bet, history). Initially, the system
has uncolored assets (amount,⊥, ∅), that can be used in exactly the same way as
ordinary bitcoins. For example, if Bob has (9,⊥, ∅) coins, he can send (1.2,⊥, ∅)
coins to Alice’s address and have (7.8,⊥, ∅) coins left.

To allow everyone to participate in the PM in a fully decentralized fashion,
we define three types of special transactions, as follows.

Creating a prediction pair. Anyone can execute a special outcome-split
transaction that transforms her (amount,⊥, history) asset to

{(amount, Yes:eid, history), (amount, No:eid, history)},

where eid is some particular event-id that is derived via

eid = hash(“Textual description of an event”).

We assume that hash() is a cryptographic hash function. These split Yes/No
shares can now be transferred as is the case with colored coins. E.g., Alice may
split (m,⊥, ∅) using event-id eid0, then send (2/3 ·m, Yes:eid0, ∅) shares to Bob,
and remain with {(1/3·m, Yes:eid0, ∅), (m, No:eid0, ∅)} shares in her possession.

Redeeming a prediction pair. Anyone in possession of (amount, Yes:eid, h1)
shares and (amount, No:eid, h2) shares is allowed to execute a special outcome-
combine transaction that transforms these shares to (amount,⊥, h1 ∪ h2).

Hence, no matter what are the current market value of (amount, Yes:eid, ∅)
and (amount, No:eid, ∅) separately, their combination is always worth (amount,⊥, ∅)
ordinary coins.

Forcing an encumbered history. Anyone can execute a special outcome-
force transaction that transforms her (amount, Yes:eid, history) asset to
(amount,⊥, history ∪ {Yes:eid}).

Likewise, anyone can transform her (amount, No:eid, history) asset to
(amount,⊥, history ∪ {No:eid}).

Let us elaborate on these mechanisms by providing several examples. See the
accompanying Figure 1 for an illustration.



Example of outcome-combine transaction:

(5000,Yes :Obama2012, ∅)
market value ≈ 5000B (e.g., 4995B)

(5000,No :Obama2012, ∅)
market value � 5000B (e.g., 5B)

(5000,⊥, ∅)

Example of outcome-force transaction:

(5000,Yes :Obama2012, history)

market value 6≈ 5000B

(5000,⊥, history ∪ {Yes :Obama2012})

Fig. 1. Special transactions for event resolution.

Exemplary scenario 1. During 2011, Alice believes that President Obama
will win the 2012 presidential election. She computes Obama2012=hash(“Barack
Obama will win re-election in 2012”) and executes output-split to transform
(5000,⊥, ∅) ordinary coins that she possesses to

{(5000, Yes:Obama2012, ∅), (5000, No:Obama2012, ∅)}.

Suppose that the market believes that President Obama has 70% probability to
win re-election. Alice trades her (5000, No:Obama2012, ∅) shares for (1500,⊥, ∅)
ordinary coins, since 30/100 · 5000 = 1500. After President Obama wins re-
election, the market price of No:Obama2012 plummets to 0.001 coins per share.
Hence, Alice buys (5000, No:Obama2012, ∅) shares for 5 coins, and then uses the
(5000, Yes:Obama2012, ∅) shares that she kept to execute outcome-combine and
earn 5000 coins back. Alice’s total gain is 1500− 5 = 1495 coins.

Exemplary scenario 2. During 2011, Alice wishes to risk her entire wealth
of 5000 coins by betting in favor of President Obama’s re-election. The market
assigns 70% probability to this event. Alice trades her (5000,⊥, ∅) coins for
(7142.8, Yes:Obama2012, ∅) shares on the market, since 7142.8 · 70/100 ≈ 5000.
After President Obama wins re-election, the market price of Yes:Obama2012

rises to 0.999 coins per share, hence Alice sells her (7142.8, Yes:Obama2012, ∅)
shares for (7135.7,⊥, ∅) coins. Alice’s total gain is 7135.7− 5000 = 2135.7 coins.

The difference between scenarios 1 and 2 demonstrates that traders who
provide the initial liquidity to the market need to commit more funds than the
traders who join later, thus it can be reasonable for early traders to expect a
small premium over the market price. This premium can be materialized in the
form of a slightly wider bid-ask spread.



Exemplary scenario 3. During 2011, Alice wishes to bet in favor of Presi-
dent Obama’s re-election, and executes output-split to transform her (1000,⊥, ∅)
coins to (1000, Yes:Obama2012, ∅) shares and (1000, No:Obama2012, ∅) shares.
The market believes that the price of a No:Obama2012 share is 30/100 coins. Hence,
Alice sells her (1000, No:Obama2012, ∅) shares for (300,⊥, ∅) coins. After Presi-
dent Obama wins re-election, Alice wishes to buy (1000, No:Obama2012, ∅) shares
in order to execute outcome-combine, but traders who hold these shares demand
an unreasonable high price of 20/100 coins per No:Obama2012 share. Alice declines
to pay such an excessive price, and instead executes an outcome-force transaction
to transform her (1000, Yes:Obama2012, ∅) shares to (1000,⊥, {Yes:Obama2012})
coins with encumbered history. Thus, Alice presumes that since all reasonable
people should agree that President Obama won in 2012, she will be able to pay
with these encumbered coins at the grocery store, etc. For instance, a store may
accept Alice’s payment of (803,⊥, {Yes:Obama2012}) for an item that normally
costs 800 coins.

As scenario 3 alludes to, the intuitive reason for supporting an outcome-force
operation is that it serves as a deterrent against traders who would demand an
excessive price for their losing shares, by offering an alternative that removes
the dependence on such misbehaving traders. The game-theoretic implications
of outcome-force are examined with more details in Section 3. Let us note that
misbehaving traders can pose problems even with a trusted arbiter who may not
decide the outcome until a future date, which implies that unless the traders
who hold the losing shares act reasonably, the winning shares would be neither
interest-baring nor spendable for a possibly long time period (cf. [7, Section 4.2]).

It is likely that traders will prefer to buy the losing shares for cheap and ex-
ecute outcome-combine to obtain coins with a clean history, rather than execute
outcome-force and encumber the history of their coins, because nobody wants to
run the risk of having unrecognized coins that get declined when they attempt
to make payments. Still, some users of the currency might wish to resort to
reputable oracles to fetch and thereby recognize widely agreed upon versions of
encumbered history. This can be helped via protocol support for hashing event-
ids into a single set-id according to a canonical order, so that a set-id can be
re-hashed into a larger set when its preimage (that consists of event-ids) is given.

Therefore, when the PM functions properly (as in scenarios 1 and 2), the
price of an (1, Yes:eid, ∅) share can be interpreted as the probability that the
market assigns to the event, since the cost of a losing share will be close to 0.

Another question is why it is needed to execute outcome-force instead of
simply keeping the winning shares and using them as currency. The reason is
that such shares would have to be transacted separately rather than joined with
the ordinary coins that the user holds, which entails extra complexity and is
not scalable. Also, such shares cannot be used to place bets on a new event,
unless they first get converted to a usable format via either outcome-force or
outcome-combine.

Finally, let us note that this PM system relies on a softfork (or hardfork if
desired) of the Bitcoin protocol, due to two reasons. First, when colored coins
are implemented as an optional layer on top of Bitcoin, miners are oblivious
to it, and hence there may not be widespread agreement regarding the coloring
rules. Additionally, in optional colored coins layers it is typically the case that
one can always “uncolor” a colored coin, which implies that colored coins that
exist in the Bitcoin system are always worth at least as much as their uncolored



amount. In any case, a protocol fork is needed for a more efficient tagging-based
colored coins support (cf. [5,20]), and our reference colored coins implementation
with split/combine/encumber operations demonstrates that the overhead for a
decentralized PM is minor [10].

3 Analysis

We are interested in analyzing what will be the prediction share price when each
type of share is traded in the open market. We assume that a pair of “+” share
and “–” share can always be exchanged for 1 BTC. In this abstract model, we
further assume that due to agreement about which prediction was correct, a “+”
share will be worth p BTC even if it is never combined with a “–” share, while
a “–” share will be worthless without the possibility to combine it.

The parameter p can be regarded as the probability that the Bitcoin min-
ers and full nodes will form a new consensus rule (by means of a softfork) that
cleanses the encumbered coins corresponding to the prediction, thus transform-
ing them into unencumbered coins. For example, the majority of miners will
probably agree that it is reasonable to cleanse the aforementioned Obama2012

event if many such encumbered coins are in circulation. However, in case the
miners are unreasonable an wish to regard another candidate as the winner of
the 2012 elections (contrary to what the rest of the population thinks), our anal-
ysis will unfortunately reflect that by assigning the higher value to what ought
to have been “–” shares. Notice that if the event description has some ambiguity,
then even reasonable actors may fail to reach consensus. For example, an unam-
biguous event description for the U.S. presidential election in 2000 could have
been “Al Gore will be inaugurated as the 43rd President of the United States”.

Let us note that there exists a significant difference between letting miners
have the power to vote on outcomes of all events in the blocks that they solve,
and the above possibility of miners reaching consensus to cleanse the shares of
an old event that are still in circulation. The problematic nature of the first
method is discussed in Section 1. By contrast, the second method is a deliberate
process that can be done in phases where in an initial phase the miners express
willingness to support the supposedly benign fork, and in a latter phase the fork
becomes operational. This method of deliberation to reach consensus has already
been deployed in Bitcoin several times, in particular for the benevolent P2SH [1]
and CLTV [23] forks. Therefore, in the case of well-known events for which there
is wide agreement on the outcome among the general population, the decision
to cleanse “+” shares can be a suitable candidate for a protocol fork.

It can also be appropriate to regard the probability p as corresponding to
other conditions that are easier to meet, for example that a quorum of reputable
oracles (that payment processors can utilize as in Section 2) consider “+” shares
to be indistinguishable from unencumbered coins. The downside of such a con-
dition is that it relies on a system with some centralized elements, rather than
a fully decentralized system.

Other possibilities include deciding the outcome via an algorithm that was
not yet known at the time when the prediction was made, or via measurements
that rely on physical data and thus cannot be scripted in the cryptocurrency.

Let us stress that the most basic condition is that a user simply consults with
herself before accepting an encumbered coin as payment, since popular event



descriptions (e.g., “Barack Obama will win re-election in 2012”) can be easy
enough to consider. Therefore, p > 0 should hold even without reliance on extra
mechanisms such a miners’ fork or reputable oracles, though such mechanisms
can help in making p larger.

Generally, the parameter p can thus be considered to be the expected price of
a “+” share, where the expectation is taken over all the events that can influence
the worth of the “+” shares.

Hence, this is essentially a situation known in game theory as the “glove
game” [3]. A common method of analyzing cooperative games like this is the
Shapley value [3, 21], which essentially gives a stable evaluation of each partici-
pant’s assets. A coalition of k players with a “+” share and ` players with a “–”
share has a total value of pk + (1 − p) min(k, `); so if there are m “+” players
and n “–” players, the Shapley value of a “–” player is given by:

v− =
1− p

(m + n)!

m+n∑

i=1

bi/2c−1∑

j=0

(m + n− i)!(i− 1)!

(
n− 1

j

)(
m

i− j − 1

)
.

And the shapley value of a “+” player is

v+ =
mp− nv− + (1− p) min(m,n)

m
.

For example, if p = 1/10, m = 30 and n = 25, then v− = 0.670012 and v+ =
0.329988. As we see in this case, “–” shares actually have the higher value,
because the oversupply of “+” shares implies that the holders of those shares
have less bargaining power, and p = 1/10 is too small to compensate for that. By
contrast, p = 3/4,m = 30, n = 25 result in v− = 0.186114 and v+ = 0.813886.

There is an economics phenomenon of destroying assets (often food) in order
to increase the price of the stock that was kept. While counterintuitive, there
are market conditions in which this can actually increase the overall profit. It is
interesting to consider whether a similar phenomenon can happen here. Let us
note that with Bitcoin and similar cryptocurrencies, players can indeed destroy
assets that they control in a publicly verifiable way, by sending an unspent output
to a script that always returns False.

In normal circumstances this should not happen. If a player chooses to “burn”
some of her coins, this will increase the Shapley value of her remaining coins –
but not so much that her total value will increase. This is because the Shapley
value, in a way, considers all possible negotiation tactics of the different players,
and if there was a way to gain from burning coins, it should already be accounted
for in the original Shapley value.

But this can happen in the case of incomplete information and erroneous
assumptions by the players. For example, assume there are 100 “+” shares and
100 “–” shares, with p = 0. Most players assume that there are 200 players
with 1 share each; they base their trading activity on this assumption, and this
results in a market value equal to the Shapley value for this game. However,
unbeknownst to them, there is actually a single player in possession of all 100
“+” shares. If she decides to visibly burn some shares and keep only m, and the
market reacts naively by calculating the Shapley value for a new game with a
reduced number of players, her total value as a function of the coins she keeps
is given in Figure 2.
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Fig. 2. Total value after the destruction of shares.

We can see that as this player starts burning shares, the rise in the value of
each is steep enough to increase her total value. She will get the optimal value
of 70.5882 if she keeps only 84 shares. Thus, in case this player had less than 84
shares to begin with, it would be disadvantageous for her to burn shares.

Notice that the benefit in burning “+” shares depends on the parameter
p. This can be seen by noting that the value of each “+” share is given by
v+ = p · 1 + (1− p) · s+, where s+ is the Shapley value for a “+” share in a game
with p = 0. To see that the equality holds, consider the event

E+ = {a player with “+” completes a pair in a random permutation of the players}.
According to the definition of the Shapley value (see also Figure 3), we have

s+ = Pr(E+)

v+ = Pr(E+) · 1 + (1− Pr(E+)) · p = p · 1 + (1− p) · s+.
Therefore, destroying all but x shares implies a revenue of x·(p·1+(1−p)·s+(x)),
i.e., with s+ as a function of x. We can thus see that as p tends towards 1, the
destruction of “+” shares becomes counterproductive.

“+” “+” “–” “+” “–”

0 0 1 1 2

“+” “+” “–” “+” “+”

p 2p 1 + p 1 + 2p 1 + 3p

Fig. 3. Incremental value of coalitions in glove games with p = 0 and p > 0.



On the other hand, the decision to burn “–” shares is unaffected by p. The
reason for this is that each “–” share is worth v− = p · 0 + (1 − p) · s−, with
s− being the Shapley value for “–” in a game with p = 0. The rationale for this
equality is the same as in the case of v+ above. As we can thus see, burning all
but x of the “–” shares implies a revenue of x · (1− p) · s−(x), and the maximum
of this expression does not depend on p.

Figure 4 demonstrates the total value that a player with m shares can obtain
by not revealing that she possesses the entire supply of the “+” shares. Thus,
as in the previous example we assume that there are m individual players who
possess one “–” share each, and a single player with all of the m ”+” shares. In
this figure,

m = 100 corresponds to m(p + s+(m)(1− p))=100(p +
1

2
(1− p)=50(1 + p),

p = 0 corresponds to Figure 2,

p = 1 corresponds to m(p + s+(m)(1− p)) = m,

and all other values in the range p ∈ [0, 1],m ∈ [0, 100] are plotted.

Fig. 4. Total value as a function of p and the m.
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Fig. 5. Announcement of ownership vis-a-vis burning of shares.

One may ask whether burning fungible coins (e.g., ordinary bitcoins) could
also be profitable for an individual player. Since the value function in this case
is different than in the the glove game, the answer is always no. To see this,
assume that there are n coins in total that are worth C/n each. Consider a player
who possesses m coins, hence her total value is m ·C/n. In case this player burns
x coins, each coin would now be worth (at most) C

n−x , and the total value of

this player would be m−x
n−x ·C. Since m < n⇒ m−x

n−x < m
n , it follows that burning

ordinary coins is always unprofitable.

It is also appropriate to consider whether a player who possesses a large
amount of “+” shares can gain an advantage by simply announcing that she
controls this entire amount, instead of burning some of her shares. From the
technical aspect, such an announcement can be done in Bitcoin and other cryp-
tocurrencies: the player who possesses this amount of “+” shares can publish
one common message that is signed with all of the secret keys that control these
“+” shares, and thereby prove that these shares have a common owner.

However, due to the fact that the Shapley value takes into account all the
possible strategies of the players, such an announcement would in fact have a
detrimental effect from the point of view of this player.

To demonstrate, let us consider the same setting that Figure 2 describes.
Thus, we assume that p = 0, that a single player named Alice has all of the 100
“+” shares, and that the 100 “–” shares are held by 100 individual players. Alice
will earn the value of s+(100) · 100 = 50 if she trades her shares on the open
market. For a comparison between announcement of ownership and burning of
shares, we first note that the diagram in Figure 5 is commutative, i.e., the state
D can be reached from the initial state A by traversing through either state B
or state C. That is to say, Alice can first burn some amount of shares and then
announce ownership over the remaining shares, or announce ownership over all
of her 100 shares and then burn that same amount of shares, and both cases
will result in the same state. This holds because Alice and the other 100 players
will have the exact same information after Alice carries out these two actions,
hence the resulting Shapley value of “+” and ”–” shares will be the same. Next,



note that the transition from state A to state B does not affect Alice’s Shapley
value, because the symmetric glove game with a single player who has all the
“+” shares also gives the values s+ = s− = 1/2. This can be seen for example by
viewing the game as a combination of 100 games where Alice plays against only
one player with a single “–” share in each of these 100 games. In these games,
Alice’s Shapley value is 1/2, and due to linearity of the Shapley value, it follows
that in the original game Alice’s Shapley value is 100 · 1/2 = 50. In state A,
Alice’s Shapley value is also 50, which follows from the definition of the Shapley
value and symmetry. On the other hand, as we have seen in Figure 2, by first
burning shares (i.e., traversing from state A to state C), Alice can increase her
Shapley value to an optimum of 70.58. Moreover, we note that the edge B →
D only decreases Alice’s Shapley value. This is because the strategies that the
Shapley value takes into account already include the action of burning shares:
if Alice does not settle for the Shapley value and instead defects by burning
shares or performing any other action, then her resulting Shapley value will only
decrease. In summary, the announcement of the A → B edge is ineffective, and
the announcement of the C → D edge is detrimental.

Hence, this reasoning serves as an indication that in our anonymous and de-
centralized PM setting, burning shares (by a player with a large enough amount)
is the only action that can potentially be preferable to bargaining in accordance
with the Shapley value.

Let us note that there are also other concepts in analysing cooperative games
with side payments, such as the core [12]. However, the Shapley value represents
an evaluation that is reached from repeated bargaining among the players, as is
indeed the case in an open marketplace, and hence its use is reasonable to in the
context of our analysis.

It is desired that the decentralized PM will operate in a way that is advanta-
geous towards players who made the correct prediction. Given the above analysis,
this becomes more probable in accord with either of the following properties:

1. The parameter p is larger (the closer that p is to 1, the better).
2. The distribution of players who hold “–” shares is more decentralized.

The second property refers to a condition in which there are many players with
a relatively small portion of all the “–” shares, while no single player holds a
relatively very large portion of the “–” shares.

We can thus conclude that betting on popular events such as presidential
elections is more likely to work well in a fully decentralized PM, in comparison
to betting on obscure events. It may be preferable to use a semi-decentralized
PM with trusted arbiters when betting on events with less popularity, though
Section 1.1 should then be taken into account.

4 Extensions

We present here add-ons that complement the core PM mechanism of Section 2.



4.1 Continuous outcomes

An event description can specify a non-discrete outcome, for instance e1 =
hash(“The percentage of votes in favor of staying in the European Union in
the referendum in country x on January 1, 2018”). After say 45% voted in favor
in this referendum, the Yes:e1 and No:e1 shares should have a market price of
45
100 and 55

100 coins per share, respectively.
However, if one opts to encumber e.g. 10 shares of Yes:e1 to pay for groceries,

then the merchant would need to recognize that this 10 amount is worth 4.5
unencumbered coins, which requires payment processors of higher complexity.

4.2 Non-binary outcomes

Section 4.1 can be generalized to a non-binary fixed amount of outcomes, by
extending the protocol to support an outcome-split(N) transaction that utilizes
the extra parameter N to transforms (amount,⊥, history) to

{(amount, 1:eid, history), . . . , (amount, N:eid, history)}.

For instance, Alice can compute e2 = hash(“Percentages for top 24 contes-
tants in American Idol season 99: 1=band, 2=girl, 3=boy, 4=other”), and invoke
outcome-split(4) to transform her (60,⊥, ∅) coins to

{(60, 1:e2, ∅), (60, 2:e2, ∅), (60, 3:e2, ∅), (60, 4:e2, ∅)}.

Suppose that the market believes that the top 24 will be divided equally between
bands, girls, and boys, and Alice believes that the percentage of bands will be
much greater than 33%. Alice sells on the market (60, 2:e2, ∅) and (60, 3:e2, ∅)
for 1/3 · 60 = 20 coins each. If it later turns out that 50% in the top 24 were
bands, 25% were girls, and 25% were boys, then Alice buys 60 shares of 2:e2
and 3:e2 on the market for 1/4 · 60 = 15 coins each, and executes outcome-
combine(4) together with the (60.1:e2, ∅) and (60, 4:e2, ∅) shares that she kept.
Alice’s profit is 2(20− 15) = 10 coins.

Suppose instead that no boy has reached the top 24, but holders of 3:e2
shares demand a price significantly greater than 0 for their supposedly worth-
less assets. Alice thus buys (60, 2:e2, ∅) shares, and executes outcome-force to
transform {(60, 1:e2, ∅), (60, 2:e2, ∅), (60, 4:e2, ∅)} to the encumbered coins
(60,⊥, {(1:e2, 2:e2, 4:e2)}), which can be regarded to have the same meaning
as in Section 2.

4.3 Capped contracts for difference

A contract for difference (CFD) is used for betting on the future value of an asset.
In decentralized setting, if a certain stock is currently valued at say $200, Alice
places a bet that its value in one year will be $290, and the rest of the market
places bets that predict (on average) that its value in one year will be $210, then
Alice should profit in case the stock’s value in a year will be greater than $250,



as 210+ 290−210
2 = 250. This can be thought of as a generalization of Section 4.2

in which traders place bets on multiple outcomes {. . . , 199, 200, 201, . . .}, but it
is infeasible to use the mechanisms of Section 4.2 because the range of possible
outcomes is continuous and large.

When we consider some CFD of an asset x where x is traded for example on
NYSE, it may make sense to employ the services of NYSE as a trusted arbiter.
However, the centralized nature of this approach carries the same implications
as described in Section 1. Consider, for example, a CFD for the BTC/USD
exchange rate according to one or several predefined Bitcoin exchanges. These
exchanges may collapse, or their secret signing keys may leak due to carelessness
or malice, etc. By contrast, a decentralized PM can accommodate a CFD for
the fair market price of BTC/USD in a way that is resilient to such potential
hazards.

The basic prediction mechanism of Section 2 is already enough to support
a simple capped CFD variant. To demonstrate this, let us use the following
event-id for a capped CFD of an asset x whose price on January 1, 2016 is $30:
e3=hash(“Starting from January 1, 2016, the price of asset x will reach $40
before reaching $20”).

As in the Black-Scholes model [4], by assuming as an approximation that
market movements are caused by a large number of traders which are indepen-
dent and indistinguishable from random, we have that this CFD instrument
behaves locally like Brownian motion and thus its price is linear. That is, the
price that market participants would assign to Yes:e3 shares is c/20− 1, and the
price assigned to No:e3 shares is 2− c/20, where 20 < c < 40 is the current price
of the asset x. See Figure 6 for an illustration.

Let us note that it is possible to define capped variants of other financial
instruments in a similar fashion, e.g., put and call options. In decentralized
setting, all such instruments are inherently capped because one cannot earn
more than the coins that were used to create an asset (see also Section 4.4). By
contrast, standard CFDs and put/call options are uncapped.

A significant drawback of capped CFDs of this form is that holders of shares
corresponding to event-id e3 cannot use shares of say e4=hash(“Starting from
January 1, 2016, the price of asset x will reach $50 before reaching $10”) for
outcome-combine operations, which implies that such CFDs will probably not
enjoy a market with high liquidity.

4.4 Vector CFDs

We now define and explore vector CFDs, which can potentially increase the
available market liquidity.

Vector CFDs utilize colored coins of the form (amount, eid, V, J, history),

such that V = (b1, w1, b2, w2, . . . , bk, wk) with
∑k

i=1 wi = 1, and J ∈ {1, 2, . . . , k}.
The eid, V, J, fields generalize the i:eid field of Section 4.2. The event-id
should conform with a format of the type eid = hash(baseline asset x), where x
specifies the identity of an asset such that the market participants wish to place
bets on the future price of x.
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Fig. 6. Capped CFD price function.

Variants of the special transactions of the PM system of Section 2 are also
used for vector CFDs, as follows.

Injecting liquidity. The special transaction outcome-split allows m ordinary
coins (m,⊥,⊥,⊥, h) to be transformed into k assets {zj = (m, eid, v, j, h)}kj=1,

where v = (b1, w1, b2, w2, . . . , bk, wk) and the constraint
∑k

i=1 wi = 1 holds.

Soaking liquidity. The special transaction outcome-combine allows the assets
{(m, eid, vi = (bi,1, wi,1, bi,2, wi,2, . . . , bi,ki

, wi,ki
), ji, hi)}ti=1 to be transformed

to ordinary coins (m,⊥,⊥,⊥,∪ti=1{hi}), if the constraints s1 = s2 = · · · = st
and

∑t
i=1 wi,jibi,ji = s1 hold, where si ,

∑ki

q=1 wi,qbi,q.

Forcing an encumbered history. This can be supported as in Section 4.2,
i.e., by having weights whose sum is close to 1 and V, J fields that define a sum∑t

i=1 wi,jibi,ji that is close to the market value of x. However, forcing of this
kind would require eid = hash(baseline asset x at date y), with y specifying a
future date for the target price of x.

The formula for assessing the current market price of an asset z = (m, eid, v, j, ∅)
can be given as

price(z) = m · 1

k − 1
· (1− dj

s
),

where eid = hash(baseline asset x), c is the current market value of x, v =

(b1, w1, b2, w2, . . . , bk, wk), di = wi · |bi − c|, and s =
∑k

i=1 di.



Notice that after an initial outcome-split of m ordinary coins, it holds that∑k
i=1 price(zi) = m, as it should.
Also note that with this price formula, a fully accurate prediction bi = c

implies earnings of m
k−1 ordinary coins.

Using the same denotations, an alternative price formula can be given as

price′(z) = max(0,m · (1− (k − 1)
di
s

))

.
Here

∑k
i=1 price′(zi) = m only when ∀i : 1 − (k − 1)di

s ≥ 0, because this
formula does not allow the price of an individual share to be negative. This
means that someone who holds a share with 1− (k − 1)di

s < 0 has made a very
poor bet, but this share is not completely worthless and should be sold on the
market for a low price, as it can facilitate an outcome-combine transaction.

The upside of the price′ formula is that it amplifies the rewards for accurate
predictions. In particular, a fully accurate prediction bi = c results in a maximal
earnings of m ordinary coins. This also serves as a demonstration that vector
CFDs are capped, as it is impossible to earn more than the initial m coins that
were used to create the asset.

In fact, there are infinitely many possible price formulas, since the price is
driven by the market, as opposed to being enforced at the protocol level. Thus,
it is up to the market participants to pick their preferred price as they see fit,
in accordance with the law of supply and demand.

As an example, suppose that Alice transforms 500 coins to {zj = (500, e5, v, j, ∅)}3j=1

with e5 = hash(baseline asset x) and v = (75, 1/3, 100, 1/3, 125, 1/3). Let us as-
sume that x is currently valued at $200. Bob predicts that the value of x will
fall dramatically, and buys z1 from Alice for price(z1) = 145.8333 coins. Later,
x falls to $110. Bob sells z1 to Alice for price(z1) = 104.1666 coins. Alice now
executes outcome-combine to recover her 500 coins. Hence, Alice collected Bob’s
loss of 145.8333− 104.1666 = 41.666 coins. If x fell further so that its value was
closer to $75 than $125, Bob would have profited.

Now, in case Carol transforms for example 400 coins to {z′j = (400, e5, v
′, j, ∅)}4j=1

with v′ = (150, 1/2, 40, 1/4, 50, 1/8, 70, 1/8), these shares can take part in the same
market with Alice and Bob. For instance, if z1 is divided into (100, e5, v, 1, ∅)
and (400, e5, v, 1, ∅), then the latter can be combined with z′1 to produce 400
ordinary coins.

5 Conclusion

The trust that participants need to extend to different forms of financial services
is a spectrum. For a decentralized currency system such as Bitcoin, one can
argue that little or no trust is needed. Since the financial instruments that are
traded in a prediction market represent only digital information, we motivated
and presented a construction for a decentralized prediction market that requires



essentially the same level of trust as that of Bitcoin. While our construction
readily generalizes to additional financial instruments such as CFDs, other kinds
of financial services may require a higher degree of trust.
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A Real-time semi-decentralized order book

In [7], a fully decentralized order book mechanism is presented. As discussed
in [7, Section 6.1], this kind of a decentralized trading platform can work well by
letting miners keep the surplus of the spread. However, it is inherently the case
that decentralized platforms cannot achieve instant trades when responsiveness
to real-time price fluctuations is desired, and that dishonest and self-interested
participants can manipulate the market by placing orders and then reneging
instead of fulfilling them. Therefore, in the case of a highly liquid PM, a fully
decentralized order book might not be the best option for traders.

To complement the construction of [7], we outline an order book mechanism
that is semi-decentralized in the sense that traders rely on a supposedly reputable
trusted third party (TTP) to execute in real-time the orders that they place, and
in case the TTP becomes corrupt they will regain their original assets. That is
to say that a corrupt TTP can prevent trades from taking place, but cannot
steal the traded assets and disappear.

The basic idea is to let traders deposit assets into a multisignature script
that can be spent either by both the trader and the TTP, or by the trader alone
but only after a specified time (cf. [23]). Trades are executed off-chain so that
the TTP co-signs every transaction and can thus disallow double-spending by
malicious traders. Each traded output uses a multisignature script of the above
form, so traders are ultimately in control of their assets. From time to time, the
TTP publishes the state to the decentralized Bitcoin network, in order to make
the off-chain history irreversible.
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