Skip to main content

Marked Mix-Nets

  • Conference paper
  • First Online:
Book cover Financial Cryptography and Data Security (FC 2017)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 10323))

Included in the following conference series:

Abstract

We propose a variant mix-net method, which we call a “marked mix-net”. Marked mix-nets avoid the extra cost associated with verifiability (producing a proof of correct mixing operation), while offering additional assurances about the privacy of the messages, compared to a non-verifiable mix-net.

With a marked mix-net, each mix-server adds an extra secret mark in each ciphertext, and the input ciphertexts are made non-malleable but still re-randomizable (RCCA).

Marked mix-nets appear to be a good fit for the mix-net requirements of voting systems that need a mix-net for anonymity but where correctness is guaranteed through independent mechanisms. Our work investigates applications to STAR-Vote, but other applications could be explored, e.g., in Prêt-à-Voter, Selene or Wombat.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abe, M., Kiltz, E., Okamoto, T.: Chosen ciphertext security with optimal ciphertext overhead. In: Pieprzyk, J. (ed.) ASIACRYPT 2008. LNCS, vol. 5350, pp. 355–371. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-89255-7_22

    Chapter  Google Scholar 

  2. Adida, B.: Advances in cryptographic voting systems. Ph.D. thesis. MIT (2006)

    Google Scholar 

  3. Aumann, Y., Lindell, Y.: Security against covert adversaries: efficient protocols for realistic adversaries. In: Vadhan, S.P. (ed.) TCC 2007. LNCS, vol. 4392, pp. 137–156. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-70936-7_8

    Chapter  Google Scholar 

  4. Bayer, S., Groth, J.: Efficient zero-knowledge argument for correctness of a shuffle. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 263–280. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-29011-4_17

    Chapter  Google Scholar 

  5. Bell, S., Benaloh, J., Byrne, M.D., DeBeauvoir, D., Eakin, B., Fisher, G., Kortum, P., McBurnett, N., Montoya, J., Parker, M., Pereira, O., Stark, P.B., Wallach, D.S., Winn, M.: STAR-vote: a secure, transparent, auditable, and reliable voting system. USENIX J. Election Technol. Syst. (JETS) 1(1), 8 (2013)

    Google Scholar 

  6. Ben-Nun, J., Fahri, N., Llewellyn, M., Riva, B., Rosen, A., Ta-Shma, A., Wikström, D.: A new implementation of a dual (paper and cryptographic) voting system. In: E-VOTE (2012)

    Google Scholar 

  7. Benaloh, J., Jones, D., Lazarus, E.L., Lindeman, M., Stark, P.B.: Soba: secrecy-preserving observable ballot-level audit. In: EVT-WOTE 2011. USENIX (2011)

    Google Scholar 

  8. Boneh, D.: The decision Diffie-Hellman problem. In: Buhler, J.P. (ed.) ANTS 1998. LNCS, vol. 1423, pp. 48–63. Springer, Heidelberg (1998). https://doi.org/10.1007/BFb0054851

    Chapter  Google Scholar 

  9. Bulens, P., Giry, D., Pereira, O.: Running mixnet-based elections with helios. In: Shacham, H., Teague, V. (eds.) Electronic Voting Technology Workshop/Workshop on Trustworthy Elections. USENIX (2011)

    Google Scholar 

  10. Canetti, R., Krawczyk, H., Nielsen, J.B.: Relaxing chosen-ciphertext security. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 565–582. Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-45146-4_33

    Chapter  Google Scholar 

  11. Chase, M., Kohlweiss, M., Lysyanskaya, A., Meiklejohn, S.: Verifiable elections that scale for free. In: Kurosawa, K., Hanaoka, G. (eds.) PKC 2013. LNCS, vol. 7778, pp. 479–496. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-36362-7_29

    Chapter  Google Scholar 

  12. Chaum, D.: Untracable electronic mail, return addresses, and digital pseudonyms. Commun. ACM 24(2), 84–90 (1981)

    Article  Google Scholar 

  13. Chaum, D.: The dining cryptographers problem: unconditional sender and recipient untraceability. J. Cryptol. 1(1), 65–75 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  14. Culnane, C., Ryan, P.Y.A., Schneider, S., Teague, V.: vVote: a verifiable voting system. ACM Trans. Inf. Syst. Secur. 18(1), 3:1–3:30 (2015)

    Google Scholar 

  15. ElGamal, T.: A public key cryptosystem and a signature scheme based on discrete logarithms. IEEE Trans. Inform. Theory IT 31(4), 469–472 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  16. Lundin, D., Ryan, P.Y.A.: Human readable paper verification of prêt à voter. In: Jajodia, S., Lopez, J. (eds.) ESORICS 2008. LNCS, vol. 5283, pp. 379–395. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-88313-5_25

    Chapter  Google Scholar 

  17. Okamoto, T., Pointcheval, D.: The gap-problems: a new class of problems for the security of cryptographic schemes. In: Kim, K. (ed.) PKC 2001. LNCS, vol. 1992, pp. 104–118. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44586-2_8

    Chapter  Google Scholar 

  18. Pedersen, T.P.: A threshold cryptosystem without a trusted party. In: Davies, D.W. (ed.) EUROCRYPT 1991. LNCS, vol. 547, pp. 522–526. Springer, Heidelberg (1991). https://doi.org/10.1007/3-540-46416-6_47

    Google Scholar 

  19. Phan, D.H., Pointcheval, D.: OAEP 3-round:a generic and secure asymmetric encryption padding. In: Lee, P.J. (ed.) ASIACRYPT 2004. LNCS, vol. 3329, pp. 63–77. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-30539-2_5

    Chapter  Google Scholar 

  20. Popoveniuc, S., Stanton, J.: Undervote and pattern voting: vulnerability and a mitigation technique. In: Preproceedings of the 2007 IAVoSS Workshop on Trustworthy Elections (WOTE 2007) (2007)

    Google Scholar 

  21. Ren, J., Wu, J.: Survey on anonymous communications in computer networks. Comput. Commun. 33(4), 420–431 (2010)

    Article  Google Scholar 

  22. Ryan, P.Y.A., Rønne, P.B., Iovino, V.: Selene: voting with transparent verifiability and coercion-mitigation. In: Clark, J., Meiklejohn, S., Ryan, P.Y.A., Wallach, D., Brenner, M., Rohloff, K. (eds.) FC 2016. LNCS, vol. 9604, pp. 176–192. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53357-4_12

    Chapter  Google Scholar 

  23. Sako, K., Kilian, J.: Receipt-free mix-type voting scheme. In: Guillou, L.C., Quisquater, J.-J. (eds.) EUROCRYPT 1995. LNCS, vol. 921, pp. 393–403. Springer, Heidelberg (1995). https://doi.org/10.1007/3-540-49264-X_32

    Google Scholar 

  24. Sampigethaya, K., Poovendran, R.: A survey on mix networks and their secure applications. In: Proceedings of IEEE, vol. 94, no. 12, pp. 2142–2181 (2006)

    Google Scholar 

  25. Shamir, A.: How to share a secret. CACM 22(11), 612–613 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  26. Terelius, B., Wikström, D.: Proofs of restricted shuffles. In: Bernstein, D.J., Lange, T. (eds.) AFRICACRYPT 2010. LNCS, vol. 6055, pp. 100–113. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-12678-9_7

    Chapter  Google Scholar 

  27. Tsoukalas, G., Papadimitriou, K., Louridas, P., Tsanakas, P.: From helios to zeus. USENIX J. Election Technol. Syst. 1(1), 1–17 (2013)

    Google Scholar 

  28. Verificatum (2015). http://www.verificatum.org/

  29. Verificatum: complexity analysis of the verificatum mix-net vmn version 3.0.2 (July 2016). http://www.verificatum.com/files/complexity-3.0.2.pdf

  30. Wikström, D.: Simplified submission of inputs to protocols. In: Ostrovsky, R., De Prisco, R., Visconti, I. (eds.) SCN 2008. LNCS, vol. 5229, pp. 293–308. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-85855-3_20

    Chapter  Google Scholar 

  31. Wikström, D.: Electronic election schemes and mix-nets (2015). http://www.csc.kth.se/~dog/esearch/

Download references

Acknowledgement

We thank the anonymous reviewers for their helpful comments and suggestions.

The first author is grateful to the Belgian Fund for Scientific Research (F.R.S.-FNRS) for its financial support provided through the the SeVoTe project. The second author gratefully acknowledges support for his work on this project received from the Center for Science of Information (CSoI), an NSF Science and Technology Center, under grant agreement CCF-0939370, and from the Department of Statistics, University of California, Berkeley, which hosted his sabbatical visit during this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olivier Pereira .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 International Financial Cryptography Association

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Pereira, O., Rivest, R.L. (2017). Marked Mix-Nets. In: Brenner, M., et al. Financial Cryptography and Data Security. FC 2017. Lecture Notes in Computer Science(), vol 10323. Springer, Cham. https://doi.org/10.1007/978-3-319-70278-0_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-70278-0_22

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-70277-3

  • Online ISBN: 978-3-319-70278-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics