
ar
X

iv
:1

70
9.

01
58

8v
4

 [
cs

.P
L

]
 3

0
Ja

n
20

18

Trace-Based Run-Time Analysis of

Message-Passing Go Programs

Martin Sulzmann and Kai Stadtmüller

Faculty of Computer Science and Business Information Systems
Karlsruhe University of Applied Sciences

Moltkestrasse 30, 76133 Karlsruhe, Germany
martin.sulzmann@hs-karlsruhe.de

kai.stadtmueller@live.de

Abstract. We consider the task of analyzing message-passing programs
by observing their run-time behavior. We introduce a purely library-
based instrumentation method to trace communication events during
execution. A model of the dependencies among events can be constructed
to identify potential bugs. Compared to the vector clock method, our
approach is much simpler and has in general a significant lower run-
time overhead. A further advantage is that we also trace events that
could not commit. Thus, we can infer more alternative communications.
This provides the user with additional information to identify potential
bugs. We have fully implemented our approach in the Go programming
language and provide a number of examples to substantiate our claims.

1 Introduction

We consider run-time analysis of programs that employ message-passing. Specif-
ically, we consider the Go programming language [4] which integrates message-
passing in the style of Communicating Sequential Processes (CSP) [6] into a C
style language. We assume the program is instrumented to trace communication
events that took place during program execution. Our objective is to analyze
program traces to assist the user in identifying potential concurrency bugs.

Motivating Example In Listing 1.1 we find a Go program implementing a system
of newsreaders. The main function creates two synchronous channels, one for each
news agency. Go supports (a limited form of) type inference and therefore no
type annotations are required. Next, we create one thread per news agency via
the keyword go. Each news agency transmits news over its own channel. In Go,
we write ch <- "REUTERS" to send value "REUTERS" via channel ch. We write
<-ch to receive a value via channel ch. As we assume synchronous channels,
both operations block and only unblock once a sender finds a matching receiver.
We find two newsreader instances. Each newsreader creates two helper threads
that wait for news to arrive and transfer any news that has arrived to a common
channel. The intention is that the newsreader wishes to receive any news whether
it be from Reuters or Bloomberg. However, there is a subtle bug (to be explained
shortly).

http://arxiv.org/abs/1709.01588v4

func reuters (ch chan string) { ch <- "REUTERS" } // r!

func bloomberg (ch chan string) { ch <- "BLOOMBERG " } // b!

func newsReader (rCh chan string , bCh chan string) {

ch := make (chan string)

go func () { ch <- (<-rCh) }() // r?; ch!

go func () { ch <- (<-bCh) }() // b?; ch!

x := <-ch // ch?

}

func main () {

reutersCh := make (chan string)

bloombergCh := make (chan string)

go reuters (reutersCh)

go bloomberg (bloombergCh)

go newsReader (reutersCh , bloombergCh) // N1

newsReader (reutersCh , bloombergCh) // N2

}

Listing 1.1. Message passing in Go

Trace-Based Run-Time Verification We only consider finite program runs and
therefore each of the news agencies supplies only a finite number of news (exactly
one in our case) and then terminates. During program execution, we trace com-
munication events, e.g. send and receive, that took place. Due to concurrency, a
bug may not manifest itself because a certain ‘bad’ schedule is rarely taken in
practice.

Here is a possible trace resulting from a ‘good’ program run.

r!; N1.r?; N1.ch!; N1.ch?; b!; N2.b?; N2.ch!; N2.ch?

We write r! to denote that a send event via the Reuters channel took place.
As there are two instances of the newsReader function, we write N1.r? to de-
note that a receive event via the local channel took place in case of the first
newsReader call. From the trace we can conclude that the Reuters news was
consumed by the first newsreader and the Bloomberg news by the second news-
reader.

Here is a trace resulting from a bad program run.

r!; b!; N1.r?; N1.b?; N1.ch!; N1.ch?; DEADLOCK

The helper thread of the first newsreader receives the Reuters and the Bloomberg
news. However, only one of these messages will actually be read (consumed). This
is the bug! Hence, the second newsreader gets stuck and we encounter a deadlock.
The issue is that such a bad program run may rarely show up. So, the question is
how can we assist the user based on the trace information resulting from a good
program run? How can we infer that alternative schedules and communications
may exist?

2

Event Order via Vector Clock Method A well-established approach is to derive
a partial order among events. This is usually achieved via a vector of (logical)
clocks. The vector clock method was independently developed by Fidge [1] and
Mattern [8]. For the above good program run, we obtain the following partial
order among events.

r! < N1.r? b! < N2.b?

N1.r? < N1.ch! N2.b? < N2.ch! (1)

N1.ch! < N1.ch? N2.ch! < N2.ch? (2)

For example, (1) arises because N2.ch! happens (sequentially) after N2.b? For
synchronous send/receive, we assume that receive happens after send. See (2).
Based on the partial order, we can conclude that alternative schedules are pos-
sible. For example, b! could take place before r!. However, it is not clear how
to infer alternative communications. Recall that the issue is that one of the
newsreaders may consume both news messages. Our proposed method is able
to clearly identify this issue and has the advantage to require a much simpler
instrumentation We discuss these points shortly. First, we take a closer look at
the details of instrumentation for the vector clock method.

Vector clocks are a refinement of Lamport’s time stamps [7]. Each thread
maintains a vector of (logical) clocks of all participating partner threads. For
each communication step, we advance and synchronize clocks. In pseudo code,
the vector clock instrumentation for event sndR.

vc[reutersThread]++

ch <- ("REUTERS", vc , vcCh)

vc’ := max(vc , <-vcCh)

We assume that vc holds the vector clock. The clock of the Reuters thread is
incremented. Besides the original value, we transmit the sender’s vector clock
and a helper channel vcCh. For convenience, we use tuple notation. The sender’s
vector clock is updated by building the maximum among all entries of its own
vector clock and the vector clock of the receiving party. The same vector clock
update is carried out on the receiver side.

Our Method We propose a much simpler instrumentation and tracing method
to obtain a partial order among events. Instead of a vector clock, each thread
traces the events that might happen and have happened. We refer to them as
pre and post events. In pseudo code, our instrumentation for sndR looks like
follows.

pre(hash(ch), "!")

ch <- ("REUTERS", threadId)

post(hash(ch), "!")

The bang symbol (‘!’) indicates a send operation. Function hash builds a hash
index of channel names. The sender transmits its thread id number to the re-
ceiver. This is the only intra-thread overhead. No extra communication link is
necessary.

3

Here are the traces for individual threads resulting from the above good
program run.

R: pre(r!); post(r!)

N1_helper1: pre(r?); post(R#r?); pre(ch1!); post(ch1!)

N1_helper2: pre(b?)

N1: pre(ch1?); post(N1_helper1#ch1?)

B: pre(b!); post(b!)

N2_helper1: pre(r?)

N2_helper2: pre(b?); post(B#b?); pre(ch2!); post(ch2!)

N2: pre(ch2?); post(N2_helper2#ch2?)

We write pre(r!) to indicate that a send via the Reuters channel might happen.
We write post(R#r?) to indicate that a receive has happened via thread R. The
partial order among events is obtained by a simple post-processing phase where
we linearly scan through traces. For example, within a trace there is a strict
order and therefore

N2_helper2: pre(b?); post(B#b?); pre(ch2!); post(ch2!)

implies N2.b? < N2.ch!. Across threads we check for matching pre/post events.
Hence,

R: pre(r!); post(r!)

N1_helper1: pre(r?); post(R#r?); ...

implies r! < N1.r?. So, we obtain the same (partial order) information as the
vector clock approach but with less overhead.

The reduction in terms of tracing overhead compared to the vector clock
method is rather drastic assuming a library-based tracing scheme with no access
to the Go run-time system. For each communication event we must exchange
vector clocks, i.e. n additional (time stamp) values need to be transmitted where
n is the number of threads. Besides extra data to be transmitted, we also require
an extra communication link because the sender requires the receivers vector
clock. In contrast, our method incurs a constant tracing overhead. Each sender
transmits in addition its thread id. No extra communication link is necessary.
This results in much less run-time overhead as we will see later.

The vector clock tracing method can be improved assuming we extend the
Go run-time system. For example, by maintaining a per-thread vector clock
and having the run-time system carrying out the exchange of vector clocks for
each send/receive communication. There is still the O(n) space overhead. Our
method does not require any extension of the Go run-time system to be efficient
and therefore is also applicable to other languages that offer similar features as
found in Go.

A further advantage of our method is that we also trace (via pre) events that
could not commit (post is missing). Thus, we can easily infer alternative com-
munications. For example, for R: pre(r!); ... there is the alternative match

4

N2_helper1: pre(r?). Hence, instead of r! < N1.r? also r! < N2.r? is pos-
sible. This indicates that one newsreader may consume both news message. The
vector clock method, only traces events that could commit, post events in our
notation. Hence, the above alternative communication could not be derived.

Contributions Compared to earlier works based on the vector clock method, we
propose a much more light-weight and more informative instrumentation and
tracing scheme. Specifically, we make the following contributions:

– We give a precise account of our run-time tracing method (Section 3) for
message-passing as found in the Go programming language (Section 2) where
for space reasons we only formalize the case of synchronous channels and
selective communications.

– A simple analysis of the resulting traces allows us to detect alternative sched-
ules and communications (Section 4). For efficiency reasons, we employ a di-
rected dependency graph to represent happens-before relations (Section 4.1).

– We show that vector clocks can be easily recovered based on our tracing
method (Section 5). We also discuss the pros and cons of both methods for
analysis purposes.

– Our tracing method can be implemented efficiently as a library. We have fully
implemented the approach supporting all Go language features dealing with
message-passing such as buffered channels, select with default or timeout
and closing of channels (Section 6).

– We provide experimental results measuring the often significantly lower over-
head of our method compared to the vector clock method assuming based
methods are implemented as libraries (Section 6.2).

The online version of this paper contains an appendix with further details.1

2 Message-Passing Go

Syntax For brevity, we consider a much simplified fragment of the Go program-
ming language. We only cover straight-line code, i.e. omitting procedures, if-then-
else etc. This is not an onerous restriction as we only consider finite program
runs. Hence, any (finite) program run can be represented as a program consisting
of straight-line code only.

Definition 1 (Program Syntax).

x, y, . . . Variables, Channel Names
i, j, . . . Integers
b ::= x | i | hash(x) | head(b) | last(b) | bs | tid Expressions
bs ::= [] | b : bs
e, f ::= x← b | y :=← x Transmit/Receive
c ::= y := b | y := makeChan | go p | select [ei ⇒ pi]i∈I Commands
p, q, r ::= [] | c : p Program
1 https://arxiv.org/abs/1709.01588

5

https://arxiv.org/abs/1709.01588

For our purposes, values are integers or lists (slices in Go terminology). For
lists we follow Haskell style notation and write b : bs to refer to a list with head
element b and tail bs. We can access the head and last element in a list via
primitives head and last. We often write [b1, . . . , bn] as a shorthand b1 : · · · : [].
Primitive tid yields the thread id number of the current thread. We assume that
the main thread always has thread id number 1 and new thread id numbers are
generated in increasing order. Primitive hash() yields a unique hash index for
each variable name. Both primitives show up in our instrumentation.

A program is a sequence of commands where commands are stored in a list.
Primitive makeChan creates a new synchronous channel. Primitive go creates a
new go routine (thread). For send and receive over a channel we follow Go nota-
tion. We assume that a receive is always tied to an assignment. For assignment
we use symbol := to avoid confusion with the mathematical equality symbol =.
In Go, symbol := declares a new variable with some initial value. We also use
:= to overwrite the value of existing variables. As a message passing command
we only support selective communication via select. Thus, we can fix the bug in
our newsreader example.

func newsReaderFixed(rCh chan string, bCh chan string) {

ch := make(chan string)

select {

case x := <-rCh:

case x := <-bCh:

}

}

The select statement guarantees that at most one news message will be consumed
and blocks if no news are available. In our simplified language, we assume that
the x← b command is a shorthand for select [x← b⇒ []]. For space reasons, we
omit buffered channels, select paired with a default/timeout case and closing of
channels. All three features are fully supported by our implementation.

Trace-Based Semantics The semantics of programs is defined via a small-step
operational semantics. The semantics keeps track of the trace of channel-based
communications that took place. This allows us to relate the traces obtained by
our instrumentation with the actual run-time traces.

We support multi-threading via a reduction relation

(S, [i1♯p1, . . . , in♯pn])
T
=⇒ (S′, [j1♯q1, . . . , jn♯qn]).

We write i♯p to denote a program p that runs in its own thread with thread id i.
We use lists to store the set of program threads. The state of program variables,
before and after execution, is recorded in S and S′. We assume that threads
share the same state. Program trace T records the sequence of communications
that took place during execution. We write x! to denote a send operation on
channel x and x? to denote a receiver operation on channel x. The semantics
of expressions is defined in terms a big-step semantics. We employ a reduction

6

relation (i, S) ⊢ b ⇓ v where S is the current state, b the expression and v the
result of evaluating b. The formal details follow.

Definition 2 (State).

v ::= x | i | [] | vs Values
vs ::= [] | v : vs
s ::= v | Chan Storables
S ::= () | (x 7→ s) | S ⊳ S State

A state S is either empty, a mapping, or an override of two states. Each state
maps variables to storables. A storable is either a plain value or a channel. Vari-
able names may appear as values. In an actual implementation, we would identify
the variable name by a unique hash index. We assume that mappings in the right
operand of the map override operator ⊳ take precedence. They overwrite any
mappings in the left operand. That is, (x 7→ v1)⊳ (x 7→ v2) = (x 7→ v2).

Definition 3 (Expression Semantics (i, S) ⊢ b ⇓ v).

S(x) = v

(i, S) ⊢ x ⇓ v
(i, S) ⊢ j ⇓ j (i, S) ⊢ [] ⇓ []

(i, S) ⊢ b ⇓ v (i, S) ⊢ bs ⇓ vs

(i, S) ⊢ b : bs ⇓ v : vs

(i, S) ⊢ b ⇓ v : vs

(i, S) ⊢ head(b) ⇓ v

(i, S) ⊢ b ⇓ [v1, . . . , vn]

(i, S) ⊢ last(b) ⇓ vn
(i, S) ⊢ tid ⇓ i (i, S) ⊢ hash(x) ⇓ x

Definition 4 (Program Execution (S, P)
T
=⇒ (S′, Q)).

i♯p Single program thread
P,Q ::= [] | i♯p : P Program threads
t := i♯x! | i← j♯x? Send and receive event
T ::= [] | t : T Trace

We write (S, P) =⇒ (S′, Q) as a shorthand for (S, P)
[]
=⇒ (S′, Q).

Definition 5 (Single Step).

(Terminate) (S, i♯[] : P) =⇒ (S, P)

(Assign)
(i, S) ⊢ b ⇓ v S′ = S ⊳ (y 7→ v)

(S, i♯(y := b : p) : P) =⇒ (S′, i♯p : P)

(MakeChan)
S′ = S ⊳ (y 7→ Chan

(S, i♯(y := makeChan : p) : P) =⇒ (S′, i♯p : P)

7

Definition 6 (Multi-Threading and Synchronous Message-Passing).

(Go)
i 6∈ {i1, . . . , in}

(S, i1♯(go p : p1) : P) =⇒ (S, i♯p : i1♯p1 : P)

(Sync)

∃l ∈ J,m ∈ K.el = x← b fm = y :=← x S(x) = Chan

(i1, S) ⊢ b ⇓ v S′ = S ⊳ (y 7→ v)

(S, i1♯(select [ej ⇒ qj]j∈J : p1) : i2♯(select [fk ⇒ rk]k∈K : p2) : P)
[i1♯x!,i2←i1♯x?]
==========⇒

(S′, i1♯(ql ++ p1) : i2♯(rm ++ p2) : P)

Definition 7 (Scheduling).

(Schedule)
π permutation on {1, . . . , n}

(S, [i1♯p1, . . . , in♯pn]) =⇒ (S, [π(i1)♯pπ(1), . . . , π(in)♯pπ(n)])

(Closure)
(S, P)

T
=⇒ (S′, P ′) (S′, P ′)

T ′

=⇒ (S′′, P ′′)

(S, P)
T ++ T ′

=====⇒ (S′′, P ′′)

3 Instrumentation and Run-Time Tracing

For each message passing primitive (send/receive) we log two events. In case
of send, (1) a pre event to indicate the message is about to be sent, and (2) a
post event to indicate the message has been sent. The treatment is analogous for
receive. In our instrumentation, we write x! to denote a single send event and
x? to denote a single receive event. These notations are shorthands and can be
expressed in terms of the language described so far. We use ≡ to define short-
forms and their encodings. We define x! ≡ [hash(x), 1] and x? ≡ [hash(x), 0].
That is, send is represented by the number 1 and receive by the number 0.

As we support non-deterministic selection, we employ a list of pre events
to indicate that one of several events may be chosen For example, pre([x!, y?])
indicates that there is the choice among sending over channel x and receiving over
channel y. This is again a shorthand notation where we assume pre([b1, . . . , bn]) ≡
[0, b1, . . . , bn].

A post event is always singleton as at most one of the possible communica-
tions is chosen. As we also trace communication partners, we assume that the
sending party transmits its identity, the thread id, to the receiving party. We
write post(i♯x?) to denote reception via channel x where the sender has thread
id i. In case of a post send event, we simply write post(x!). The above are yet
again shorthands where i♯x? ≡ [hash(x), 0, i] and post(b) ≡ [1, b].

Pre and post events are written in a fresh thread local variable, denoted by
xtid where tid refers to the thread’s id number. At the start of the thread the
variable is initialized by xtid := []. Instrumentation ensures that pre and post

8

events are appropriately logged. As we keep track of communication partners, we
must also inject and project messages with additional information (the sender’s
thread id).

We consider instrumentation of select [x ← 1 ⇒ [], y :=← x ⇒ [z ← y]]. We
assume the above program text is part of a thread with id number 1. We non-
deterministically choose between a send an receive operation. In case of receive,
the received value is further transmitted. Instrumentation yields the following.

[x1 := x1 ++ pre([x!, x?]),
select [x← [tid, 1]⇒ [x1 := x1 ++ post(x!)],

y′ :=← x⇒ [x1 := x1 ++ post(head(y′)♯x?), y := last(y′),
z ← [tid, y]]]

We first store the pre events, either a read or send via channel x. The send is
instrumented by additionally transmitting the senders thread id. The post event
for this case simply logs that a send took place. Instrumentation of receive is
slightly more involved. As senders supply their thread id, we introduce a fresh
variable y′. Via head(y′) we extract the senders thread id to properly record
the communication partner in the post event. The actual value transmitted is
accessed via last(y′).

Definition 8 (Instrumentation of Programs). We write instr(p) = q to
denote the instrumentation of program p where q is the result of instrumentation.
Function instr(·) is defined by structural induction on a program. We assume a
similar instrumentation function for commands.

instr([]) = []
instr(c : p) = instr(c) : instr(p)

instr(y := b) = [y := b]
instr(y := makeChan) = [y := makeChan]
instr(go p) = [go ([xtid := [] ++ instr(p)])]
instr(select [ei ⇒ pi]i∈{1,...,n}) = [xtid := xtid ++ [pre([retr(e1), . . . , retr(en)])],

select [instr(ei ⇒ pi)]i∈{1,...,n}]
instr(x← b⇒ p) = x← [tid, b]⇒ (xtid := xtid ++ [post(x!)]) ++ instr(p)
instr(y :=← x⇒ p) = y′ :=← x⇒ [xtid := xtid ++ [post(head(y′)♯x?)],

y := last(y′)] ++ instr(p)

retr(x← b) = x! retr(y =← x) = x?

Run-time tracing proceeds as follows. We simply run the instrumented pro-
gram and extract the local traces connected to variables xtid. We assume that
thread id numbers are created during program execution and can be enumerated
by 1 . . . n for some n > 0 where thread id number 1 belongs to the main thread.

Definition 9 (Run-Time Tracing). Let p and q be programs such that instr(p) =

q. We consider a specific instrumented program run where ((), [1♯[x1 := []] ++ q])
T
=⇒

9

(S, 1♯[] : P) for some S, T and P . Then, we refer to T as p’s actual run-time
trace. We refer to the list [1♯S(x1), . . . , n♯S(xn)] as the local traces obtained via
the instrumentation of p.

Command x1 := [] is added to the instrumented program to initialize the trace
of the main thread. Recall that main has thread id number 1. This extra step
is necessary because our instrumentation only initializes local traces of threads
generated via go. The final configuration (S, 1♯[] : P) indicates that the main
thread has run to full completion. This is a realistic assumption as we assume
that programs exhibit no obvious bug during execution. There might still be
some pending threads, in case P differs from the empty list.

4 Trace Analysis

We assume that the program has been instrumented and after some program
run we obtain a list of local traces. We show that the actual run-time trace
can be recovered and we are able to point out alternative behaviors that could
have taken place. Alternative behaviors are either due alternative schedules or
different choices among communication partners.

We consider the list of local traces [1♯S(x1), . . . , n♯S(xn)]. Their shape can
be characterized as follows.

Definition 10 (Local Traces).

U, V ::= [] | i♯L : U
L ::= [] | pre(as) : M
as ::= [] | x! : as | x? : as
M ::= [] | post(x!) : L | post(i♯x?) : L

We refer to U = [1♯L1, . . . , n♯Ln] as a residual list of local traces if for each
Li either Li = [] or Li = [pre(. . .)].

To recover the communications that took place we check for matching pre and
post events recorded in the list of local traces. For this purpose, we introduce a

relation U
T
=⇒ V to denote that ‘replaying’ of U leads to V where communications

T took place. Valid replays are defined via the following rules.

10

Definition 11 (Replay U
T
=⇒ V).

(Sync)

L1 = pre([. . . , x!, . . .]) : post(x!) : L′1
L2 = pre([. . . , x?, . . .]) : post(i1♯x?) : L

′
2

i1♯L1 : i2♯L2 : U
[i1♯x!,i2←i1♯x?]
==========⇒ i1♯L

′
1 : i2♯L

′
2 : U

(Schedule)
π permutation on {1, . . . , n}

[i1♯L1, . . . , in♯Ln]
[]
=⇒ [iπ(1)♯Lπ(1), . . . , iπ(n)♯Lπ(n)]

(Closure)
U

T
=⇒ U ′ U ′

T ′

=⇒ U ′′

U
T ++ T ′

=====⇒ U ′′

Rule (Sync) checks for matching communication partners. In each trace, we must
find complementary pre events and the post events must match as well. Recall
that in the instrumentation the sender transmits its thread id to the receiver.
Rule (Schedule) shuffles the local traces as rule (Sync) only considers the two
leading local traces. Via rule (Closure) we perform repeated replay steps.

We can state that the actual run-time trace can be obtained via the replay re-

lation U
T
=⇒ V but further run-time traces are possible. This is due to alternative

schedules.

Proposition 1 (Replay Yields Run-Time Traces). Let p be a program
and q its instrumentation where for a specific program run we observe the ac-
tual behavior T and the list [1♯L1, . . . , n♯Ln] of local traces. Let T = {T ′ |

[1♯L1, . . . , n♯Ln]
T ′

=⇒ 1♯[] : U for some residual U}. Then, we find that T ∈ T

and for each T ′ ∈ T we have that ((), p)
T ′

=⇒ (S, 1♯[] : P) for some S and P .

Definition 12 (Alternative Schedules). We say [1♯L1, . . . , n♯Ln] contains

alternative schedules iff the cardinality of the set {T ′ | [1♯L1, . . . , n♯Ln]
T ′

=⇒ 1♯[] :
U for some residual U} is greater than one.

We can also check if even further run-time traces might have been possible
by testing for alternative communications.

Definition 13 (Alternative Communications).We say [1♯L1, . . . , n♯Ln] con-
tains alternative matches iff for some i, j, x, L, L′ we have that (1) Li = pre([. . . , x!, . . .]) :
L, (2) Lj = pre([. . . , x?, . . .]) : L′, and (3) if L = post(x!) : L′′ for some L′′

then L′ 6= post(j♯x?) : L′′′ for any L′′′.
We say U = [1♯L1, . . . , n♯Ln] contains alternative communications iff U

contains alternative matches or there exists T and V such that U
T
=⇒ V and V

contains alternative matches.

The alternative match condition states that a sender could synchronize with
a receiver (see (1) and (2)) but this synchronization did not take place (see (3)).
For an alternative match to result in an alternative communication, the match
must be along a possible run-time trace.

11

[x := makeChan, y := makeChan,

go [z := (← y)6], go [(y ← 1)4, (x← 1)5], go [(x← 1)3],
x := (← x)1, x := (← x)2]

[4♯[pre((y?)6), post(3♯(y?)6)],
3♯[pre((y!)4), post((y!)4), pre((x!)5), post((x!)5)],
2♯[pre((x!)3), post((x!)3)],
1♯[pre((x?)1), post(2♯(x?)1), pre((x?)2), post(4♯(x?)3)]]

x!|3 x?|1

x?|2

x!|5

y!|4

y?|6

Fig. 1: Dependency Graph among Events

4.1 Dependency Graph for Efficient Trace Analysis

Instead of replaying traces to check for alternative schedules and communica-
tions, we build a dependency graph where the graph captures the partial order
among events. It is much more efficient to carry out the analysis on the graph
than replaying traces. Figure 1 shows a simple example.

We find a program that makes use of two channels and four threads. For
reference, send/receive events are annotated (as subscript) with unique numbers.
We omit the details of instrumentation and assume that for a specific program
run we find the list of given traces on the left. Pre events consist of singleton lists
as there is no select. Hence, we write pre((y?)6) as a shorthand for pre([(y?)6]).
Replay of the trace shows that the following locations synchronize with each
other: (4, 6), (3, 1) and (5, 2). This information as well as the order among events
can be captured by a dependency graph. Nodes are obtained by a linear scan
through the list of traces. To derive edges, we require another scan for each
element in a trace as we need to find pre/post pairs belonging to matching
synchronizations. This results overall in O(m ∗ m) for the construction of the
graph where m is the number of elements found in each trace. To avoid special
treatment of dangling pre events (with not subsequent post event), we assume
that some dummy post events are added to the trace.

Definition 14 (Construction of Dependency Graph). Each node corre-
sponds to a send or a receive operation in the program text. Edges are constructed
by observing events recorded in the list of traces. We draw a (directed) edge among
nodes if either

– the pre and post events of one node precede the pre and post events of another
node in the trace, or

– the pre and post events belonging to both nodes can be synchronized. See rule
(Sync) in Definition 11. We assume that the edge starts from the node with
the send operation.

Applied to our example, this results in the graph on the right. See Figure 1.
For example, x!|3 denotes a send communication over channel x at program

12

location 3. As send precedes receive we find an edge from x!|3 to x?|1. In general,
there may be several initial nodes. By construction, each node has at most one
outgoing edge but may have multiple incoming edges.

The trace analysis can be carried out directly on the dependency graph.
To check if one event happens-before another event we seek for a path from
one event to the other. This can be done via a depth-first search and takes
time O(v + e) where v is the number of nodes and e the number of edges. Two
events are concurrent if neither happens-before the other. To check for alternative
communications, we check for matching nodes that are concurrent to each other.
By matching we mean that one of the nodes is a send and the other is a receive
over the same channel. For our example, we find that x!|5 and x?|1 represents an
alternative communication as both nodes are matching and concurrent to each
other.

To derive (all) alternative schedules, we perform a backward traversal of the
graph. Backward in the sense that we traverse the graph by moving from children
to parent node. We start with some final node (no outgoing edge). Each node
visited is marked. We proceed to the parent if all children are marked. Thus,
we guarantee that the happens-before relation is respected. For our example,
suppose we visit first y?6. We cannot visit its parent y!4 until we have visited x?2
and x!5. Via a (backward) breadth-first search we can ‘accumulate’ all schedules.

5 Comparison to Vector Clock Method

Via a simple adaptation of the Replay Definition 11 we can attach vector clocks
to each send and receive event. Hence, our tracing method strictly subsumes the
vector clock method as we are also able to trace events that could not commit.

Definition 15 (Vector Clock).

cs ::= [] | n : cs

For convenience, we represent a vector clock as a list of clocks where the first
position belongs to thread 1 etc. We write cs[i] to retrieve the i-th component
in cs. We write inc(i, cs) to denote the vector clock obtained from cs where
all elements are the same but at index i the element is incremented by one.
We write max(cs1, cs2) to denote the vector clock where we per-index take the
greater element. We write ics to denote thread i with vector clock cs. We write
i♯x!cs to denote a send over channel x in thread i with vector clock cs. We write
i ← j♯x?cs to denote a receive over channel x in thread i from thread j with
vector clock cs.

Definition 16 (From Trace Replay to Vector Clocks).

(Sync)

L1 = pre([. . . , x!, . . .]) : post(x!) : L′1
L2 = pre([. . . , x?, . . .]) : post(i1♯x?) : L

′
2

cs = max(inc(i1, cs1), inc(i2, cs2))

ics11 ♯L1 : ics22 ♯L2 : U
[i1♯x!

cs,i2←i1♯x?
cs]

=============⇒ ics1 ♯L′1 : ics2 ♯L′2 : U

13

Like the construction of the dependency graph, the (re)construction of vector
clocks takes time O(m ∗m) where m is the number of elements found in each
trace.

To check for an alternative communication, the vector clock method seeks
for matching events. This incurs the same (quadratic in the size of the trace)
cost as for our method. However, the check that these two events are concurrent
to each other can be performed more efficiently via vector clocks. Comparison
of vector clocks takes time O(n) where n is the number of threads. Recall that
our graph-based method requires time O(v + e) where v is the number of nodes
and e the number of edges. The number n is smaller than v + e.

However, our dependency graph representation is more efficient in case of
exploring alternative schedules. In case of the vector clock method, we need to
continuously compare vector clocks whereas we only require a (backward) traver-
sal of the graph. We believe that the dependency graph has further advantages
in case of user interaction and visualization as it is more intuitive to navigate
through the graph. This is something we intend to investigate in future work.

6 Implementation

We have fully integrated the approach laid out in the earlier sections into the
Go programming language and have built a prototype tool. We give an overview
of our implementation which can be found here [5]. A detailed treatment of all
of Go’s message-passing features can be found in the extended version of this
paper.

6.1 Library-Based Instrumentation and Tracing

We use a pre-processor to carry out the instrumentation as described in Section 3.
In our implementation, each thread maintains an entry in a lock-free hashmap
where each entry represents a thread (trace). The hashmap is written to file
either at the end of the program or when a deadlock occurs. We currently do
not deal with the case that the program crashes as we focus on the detection of
potential bugs in programs that do not show any abnormal behavior.

6.2 Measurement of Run-Time Overhead Library-Based Tracing

We measure the run-time overhead of our method against the vector clock
method. Both methods are implemented as libraries assuming no access to the
Go run-time system. For experimentation we use three programs where each pro-
gram exercises some of the factors that have an impact on tracing. For example,
dynamic versus static number of threads and channels. Low versus high amount
of communication among threads.

The Add-Pipe (AP) example uses n threads where the first n− 1 threads
receive on an input channel, add one to the received value and then send the

14

3ms

243msPS100

476ms

8ms

1475msPS250

6229ms

3ms

44msC1000

1191ms

0ms 7500ms

6ms

107msC2000

5901ms

7ms

910msAP21

909ms

17ms

2141msAP51

3825ms

Default

Pre-Post

VC

0ms 7500ms

Fig. 2: Performance overhead using Pre/Post vs Vector clocks(VC) in ms.

new value on their output channel to the next thread. The first thread sends the
initial value and receives the result from the last thread.

In the Primesieve (PS) example, the communication among threads is sim-
ilar to the Add-Pipe example. The difference is that threads and channels are
dynamically generated to calculate the first n prime numbers. For each found
prime number a ‘filter’ thread is created. Each thread has an input channel to
receive new possible prime numbers v and an output channel to report each num-
ber for which v mod prime 6= 0 where prime is the prime number associated
with this filter thread. The filter threads are run in a chain where the first thread
stores the prime number 2.

The Collector (C) example creates n threads that produce a number which
is then sent to the main thread for collection. This example has much fewer
communications compared to the other examples but uses a high number of
threads.

Figure 2 summarizes our results. Results are carried out on some commodity
hardware (Intel i7-6600U with 12 GB RAM, a SSD and Go 1.8.3 running on
Windows 10 was used for the tests). Our results show that a library-based imple-
mentation of the vector clock method does not scale well for examples with a dy-
namic number of threads and/or a high amount communication among threads.
See examples Primesieve and Add-Pipe. None of the vector clock optimiza-
tions [3] apply here because of the dynamic number of threads and channels. Our
method performs much better. This is no surprise as we require less (tracing)
data and no extra communication links. We believe that the overhead can still be
further reduced as access to the thread id in Go is currently rather cumbersome
and expensive.

7 Conclusion

One of the challenges of run-time verification in the concurrent setting is to
establish a partial order among recorded events. Thus, we can identify potential
bugs due to bad schedules that are possible but did not take place in some specific
program run. Vector clocks are the predominant method to achieve this task. For

15

example, see work by Vo [11] in the MPI setting and work by Tasharofi [10] in
the actor setting. There are several works that employ vector clocks in the shared
memory setting For example, see Pozniansky’s and Schuster’s work [9] on data
race detection. Some follow-up work by Flanagan and Freund [2] employs some
optimizations to reduce the tracing overhead by recording only a single clock
instead of the entire vector. We leave to future work to investigate whether
such optimizations are applicable in the message-passing setting and how they
compare to existing optimizations such as [3].

We have introduced a novel tracing method that has much less overhead
compared to the vector clock method. Our method can deal with all of Go’s
message-passing language features and can be implemented efficiently as a library.
We have built a prototype that can automatically identify alternative schedules
and communications. In future work we plan to conduct some case studies and
integrate heuristics for specific scenarios, e.g. reporting a send operation on a
closed channel etc.

Acknowledgments

We thank some HVC’17 reviewers for their constructive feedback on an earlier
version of this paper.

References

1. C. J. Fidge. Timestamps in message-passing systems that preserve the partial
ordering. 10(1):56–66, 1987.

2. C. Flanagan and S. N. Freund. Fasttrack: Efficient and precise dynamic race
detection. In Proc. of PLDI ’09, pages 121–133. ACM, 2009.

3. V. K. Garg, C. Skawratananond, and N. Mittal. Timestamping messages and events
in a distributed system using synchronous communication. Distributed Computing,
19(5-6):387–402, 2007.

4. The Go programming language. https://golang.org/.
5. Trace-based run-time analysis of message-passing Go programs.

https://github.com/KaiSta/gopherlyzer-GoScout.
6. C. A. R. Hoare. Communicating sequential processes. Commun. ACM, 21(8):666–

677, Aug. 1978.
7. L. Lamport. Time, clocks, and the ordering of events in a distributed system.

Communications of the ACM, 21(7):558–565, 1978.
8. F. Mattern. Virtual time and global states of distributed systems. In Parallel and

Distributed Algorithms, pages 215–226. North-Holland, 1989.
9. E. Pozniansky and A. Schuster. Multirace: efficient on-the-fly data race detection

in multithreaded C++ programs. Concurrency and Computation: Practice and

Experience, 19(3):327–340, 2007.
10. S. Tasharofi. Efficient testing of actor programs with non-deterministic behaviors.

PhD thesis, University of Illinois at Urbana-Champaign, 2013.
11. A. Vo. Scalable Formal Dynamic Verification of Mpi Programs Through Distributed

Causality Tracking. PhD thesis, University of Utah, 2011. AAI3454168.

16

func A(x chan int) {

x <- 1 // A1

}

func bufferedChan () {

x := make (chan int ,1)

go A(x)

x <- 1 // A2

<-x

}

func closedChan () {

x := make (chan int)

go A(x)

go B(x)

close(x)

}

func B(x chan int) {

<-x

}

func selDefault () {

x := make (chan int)

go A(x)

select {

case <-x: // A3

fmt.Println ("received from x")

default:

fmt.Println ("default ")

}

}

Fig. 3: Further Go Features

A Further Go Message-Passing Features

A.1 Overview

Besides selective synchronous message-passing, Go supports some further mes-
sage passing features that can be easily dealt with by our approach and are fully
supported by our implementation. Figure 3 shows such examples where we put
the program text in two columns.

Buffered Channels Go also supports buffered channels where send is asynchronous
assuming sufficient buffer space exists. See function buffered in Figure 3. De-
pending on the program run, our analysis reports that either A1 or A2 are
alternative matches for the receive operation.

In terms of the instrumentation and tracing, we treat each asynchronous
send as if the send is executed in its own thread. This may lead to some slight
inaccuracies. Consider the following variant.

func buffered2() {

x := make(chan int ,1)

x <- 1 // B1

go A(x) // B2

<-x // B3

}

Our analysis reports that B2 and B3 form an alternative match. However, in the
Go semantics, buffered messages are queued. Hence, for every program run the
only possibility is that B1 synchronizes with B3. B3 never takes place! As our

17

main objective is bug finding, we argue that this loss of accuracy is justifiable.
How to eliminate such false positives is subject of future work.

Select with default/timeout Another feature in Go is to include a default/timeout
case to select. See selDefault in Figure 3. The purpose is to avoid (indefinite)
blocking if none of the other cases are available. For the user it is useful to find
out if other alternatives are available in case the default case is selected. The
default case applies for most program runs. Our analysis reports that A1 and
A3 are an alternative match.

To deal with default/timeout we introduce a new post event post(select).
To carry out the analysis in terms of the dependency graph, each subtrace
. . . , pre([. . . , select , . . .]), post(select), . . . creates a new node. Construction of
edges remains unchanged.

Closing of Channels Another feature in Go is the ability to close a channel. See
closedChan in Figure 3. Once a channel is closed, each send on a closed channel
leads to failure (the program crashes). On the other hand, each receive on a
closed channel is always successful, as we receive a dummy value. A run of is
successful if the close operation of the main thread happens after the send in
thread A. As the close and send operations happen concurrently, our analysis
reports that the send A1 may take place after close.

For instrumentation/tracing, we introduce event close(x). It is easy to iden-
tify a receive on a closed channel, as we receive a dummy thread id. So, for
each subtrace [. . . , pre([. . . , x?, . . .]), post(i♯x?), . . .] where i is a dummy value
we draw an edge from close(x) to x?.

Here are the details of how to include buffered channels, select and closing
of channels.

A.2 Buffered Channels

Consider the following Go program.

x := make(chan , 2)

x <- 1 // E1

x <- 1 // E2

<- x // E3

<- x // E4

We create a buffer of size 2. The two send operations will then be carried out
asynchronously and the subsequent receive operations will pick up the buffered
values. We need to take special care of buffered send operations. If we would
treat them like synchronous send operations, their respective pre and post events
would be recorded in the same trace as the pre and post events of the receive
operations. This would have the consequence that our trace analysis does not
find out that events E1 and E2 happen before E3 and E4.

Our solution to this issue is to treat each send operation on a buffered channel
as if the send operation is carried out in its own thread. Thus, our trace analysis

18

is able to detect that E1 and E2 take place before E3 and E4. This is achieved by
marking each send on a buffered channel in the instrumentation. After tracing,
pre and post events will then be moved to their own trace. From the viewpoint
of our trace analysis, a buffered channel then appears as having infinite buffer
space. Of course, when running the program a send operation may still block if
all buffer space is occupied.

Here are the details of the necessary adjustments to our method. During in-
strumentation/tracing, we simply record if a buffered send operation took place.
The only affected case in the instrumentation of commands (Definition 8) is
x← b⇒ p. We assume a predicate isBuffered(·) to check if a channel is buffered
or not. In terms of the actual implementation this is straightforward to imple-
ment. We write postB(x, n) to indicate a buffered send operation via x where n

is a fresh thread id. We create fresh thread id numbers via tidB.

Definition 17 (Instrumentation of Buffered Channels). Let x be a buffered
channel.

instr(x← b⇒ p)
| isBuffered(x) = x← [n, b]⇒ (xtid := xtid ++ [postB(x!n,])) ++ instr(p)

where n = tidB

| otherwise = x← [tid, b]⇒ (xtid := xtid ++ [post(x!)]) ++ instr(p)

The treatment of buffered channels has no overhead on the instrumentation
and tracing. However, we require a post-processing phase where marked events
will be then moved to their own trace. This can be achieved via a linear scan
through each trace. Hence, requires time complexity O(k) where k is the overall
size of all (initially recorded) traces. For the sake of completeness, we give below
a declarative description of post-processing in terms of relation U ⇒ V .

Definition 18 (Post-Processing for Buffered Channels U ⇒ V).

(MovePostB)
L = pre(as) : postB(x!, n) : L′

i♯L : U ⇒ i♯L′ : n♯[pre(as), postB(x!, n)] : U

(Shift)

L = pre(as) : post(a) : L′

(a = x! ∨ a = j♯x?)

i♯L′ : U ⇒ i♯L′′ : U ′

i♯L : U ⇒ i♯pre(as) : post(a) : L′′ : U ′

(Schedule)
π permutation on {1, . . . , n}

[i1♯L1, . . . , in♯Ln]⇒ [iπ(1)♯Lπ(1), . . . , iπ(n)♯Lπ(n)]

(Closure)
U ⇒ U ′ U ′ ⇒ U ′′

U ⇒ U ′′

19

Subsequent analysis steps will be carried out on the list of traces obtained
via post-processing.

There is some space for improvement. Consider the following program text.

func A(x chan int) {

x <- 1 // A1

}

func buffered2() {

x := make(chan int ,1)

x <- 1 // B1

go A(x) // B2

<-x // B3

}

Our analysis (for some program run) reports that B2 and B3 is an alternative
match. However, in the Go semantics, buffered messages are queued. Hence, for
every program run the only possibility is that B1 synchronizes with B3. B3 never
takes place. As our main objective is bug finding, we can live with this inaccuracy.
We will investigate in future work how to eliminate this false positive.

B Select with default/timeout

In terms of the instrumentation/tracing, we introduce a new special post event
post(select). For the trace analysis (Definition 11), we require a new rule.

(Default/Timeout) i♯pre([. . .]) : post(select) : L : U
[i♯select]
=====⇒ i♯L : U

This guarantees that in case default or timeout is chosen, select acts as if asyn-
chronous.

The dependency graph construction easily takes care of this new feature. For
each default/timeout case we introduce a node. Construction of edges remains
unchanged.

C Closing of Channels

For instrumentation/tracing of the close(x) operation on channel x, we introduce
a special pre and post event. Our trace analysis keeps track of closed channels. As
a receive on a closed channel yields some dummy values, it is easy to distinguish
this case from the regular (Sync). Here are the necessary adjustments to our
replay relation from Definition 11.

C ::= [] | i♯close(x) : C

20

(Close) (i♯pre(close(x)) : post(close(x)) : L : U | C)
[]
=⇒ (i♯L : U | i♯close(x) : C)

(RcvClosed)
Q = j♯close(x) : Q′

(i♯pre([. . . , x?, . . .]) : post(j′♯x?) : L : U | Q)
[j♯close(x),i←j♯x?]
============⇒ (i♯L : U | Q)

For the construction of the dependency graph, we create a node for each close
statement. For each receive on a closed channel x at program location l, we draw
an edge from close(x) to x?|l.

D Codes used for the Experimental results

Add-Pipe

func add1(in chan int) chan int {

out := make(chan int)

go func() {

for {

n := <-in

out <- n + 1

}

}()

return out

}

func main() {

in := make(chan int)

c1 := add1(in)

for i := 0; i < 19; i++ {

c1 = add1(c1)

}

for n := 1; n < 1000; n++ {

in <- n

<-c1

}

}

Primesieve

func generate(ch chan int) {

for i := 2; ; i++ {

ch <- i

21

}

}

func filter(in chan int , out chan int , prime int) {

for {

tmp := <-in

if tmp%prime != 0 {

out <- tmp

}

}

}

func main() {

ch := make(chan int)

go generate(ch)

for i := 0; i < 100; i++ {

prime := <-ch

ch1 := make(chan int)

go filter(ch, ch1 , prime)

ch = ch1

}

}

Collector

func collect(x chan int , v int) {

x <- v

}

func main() {

x := make(chan int)

for i := 0; i < 1000; i++ {

go collect(x, i)

}

for i := 0; i < 1000; i++ {

<-x

}

}

22

x!|2 x?|4 x?|3x!|4’

x!|2

x!|2’

x?|4

x?|4’’

x?|3x!|4’

	Trace-Based Run-Time Analysis of Message-Passing Go Programs

