
Designing Fully Secure Protocols for
Secure Two-Party Computation
of Constant-Domain Functions

Vanesa Daza and Nikolaos Makriyannis

Abstract. In a sense, a two-party protocol achieves fairness if the out-
put from the computation is obtained simultaneously by both parties. A
seminal result by Cleve (STOC 1986) states that fairness is impossible,
in general. Surprisingly, Gordon et al. (JACM 2011) showed that there
exist interesting functions that are computable with fairness. The two
results give rise to a distinction between fair functions and unfair ones.
The question of characterizing these functions has been studied in a se-
quence of works leading to the complete characterization of (symmetric)
Boolean functions by Asharov et al. (TCC 2015). In this paper, we pro-
pose a generic construction of a fully secure (fair) protocol, starting with
a constant-round protocol satisfying limited security requirements. Our
results introduce new conceptual tools for the analysis of fairness and
they apply to arbitrary (constant-domain) functions. As a case study,
we consider asymmetric Boolean functions. While the characterization
remains open, we believe that our results lay the foundation for a deeper
understanding of fairness.

Keywords: Fairness, Secure Two-Party Computation, Malicious Ad-
versaries, Cryptographic Protocols

1 Introduction

A popular definition of two-party computation is that it enables two mutually
distrusting parties to compute a joint function of their inputs while only revealing
what the output suggests. However, the popular definition does not capture all
the security requirements one may expect from such a computation. Among these
requirements is fairness, which states that either both parties receive output or
none of them do. It is a natural security requirement for many real-world tasks.
For example, when two parties are signing a contract, the contents of which may
be legally binding, it is imperative that one party signs the contract if and only
if the second party signs as well.

The study of two-party computation started with the work of Yao [13] in
1982. Secure computation was expanded to the multiparty case by Goldreich,
Micali, and Wigderson [9] in 1987. Flagship results from the theory of secure
computation state that, when an absolute majority of honest parties can be
guaranteed, every task can be realized with full security, i.e. the relevant pro-
tocols provide correctness, privacy, independence of inputs, as well as fairness.

However, when the honest parties are in the minority, as it happens in the impor-
tant two-party case, classic protocols satisfy a weaker notion of security known
as security-with-abort, which captures all the aforementioned security require-
ments, except for fairness. This relaxation is often attributed to an inherent
limitation that was shown by Cleve [7].

Cleve showed that fairness is impossible to achieve in general when one of
the parties behaves dishonestly. Specifically, Cleve proved that the coin-tossing
functionality, i.e the inputless functionality that returns the same uniform ran-
dom bit to the parties, is not computable with fairness. His proof exploits the
fact that interactive computation involves exchanging messages back and forth,
and thus at some point one party may break fairness by aborting prematurely. It
goes without saying that any function that implies coin-tossing is not computable
with fairness either, as is the case with the XOR function.

Amazingly, for more than two decades, Cleve’s result led to the mistaken
conclusion that interesting functions are not computable with fairness in the two-
party setting, or the multi-party setting with dishonest majority. Only in 2008
was this interpretation proven false by Gordon, Hazay, Katz and Lindell [10],
who showed that Cleve’s impossibility does not apply to all non-trivial functions,
and there are many interesting functions that are inherently fair. The remarkable
work of Gordon et al. begins by making a distinction between XOR-embedded1

and non XOR-embedded functions. Functions of the latter type, which includes
OR and the greater-than function, are shown to be fair. Yet XOR-embedded
functions are not necessarily excluded from fully secure computation. Gordon
et al. propose a specific protocol, referred to as GHKL throughout the present
paper, that computes many XOR-embedded functions with full security. The
authors also show that fair computation of XOR-embedded functions requires
super-logarithmic round complexity.

In this paper, we focus on the fundamental question raised by Gordon, Hazay,
Katz and Lindell; the characterization of functions with respect to fairness. In
particular, we propose a methodology for designing fully secure protocols.

1.1 Previous Works

The problem of characterizing fairness is equivalent to identifying a necessary
and sufficient condition for a given two-party function to be fair. As such, there
are two complementary ways to engage with the problem. The first one at-
tempts to identify necessary conditions for fairness by means of impossibil-
ity results [1, 4, 7, 12]. The second one attempts to identify sufficient condi-
tions by means of feasibility results, i.e. by proving fairness for explicit proto-
cols [2,3,10,12]. We mention that most of these works focus on fair computation
of Boolean functions that are symmetric – the function returns the same output
to both parties, deterministic – the output is fully determined by the inputs,

1 A function is XOR-embedded if restricting the function to a subset of inputs yields
the XOR function.

2

and constant-domain – the function is independent of the security parameter.
By abusing terminology, we refer to such functions simply as Boolean functions.

Necessary conditions can be traced back to Cleve’s seminal work [7]. In [1],
Agrawal and Prabhakaran generalized the impossibility of coin-tossing to non-
trivial sampling functionalities, that is, inputless functionalities that return sta-
tistically correlated outputs are not computable with fairness. Asharov, Lindell,
and Rabin [4] investigated the problem of characterizing Boolean functions that
imply coin-tossing, and are thus inherently unfair. They showed that certain
functions, dubbed balanced, can be used to toss a uniform random coin. Con-
versely, they found that coin-tossing is not reducible to any balanced function in
the information theoretic-sense. Boolean functions that imply non-trivial sam-
pling where identified by Makriyannis [12], who expanded the class of Boolean
functions that are known to be unfair.

Regarding sufficient criteria, Gordon, Hazay, Katz and Lindell laid the foun-
dation with [10], and all subsequent papers [2, 3, 12] on the topic are based on
the GHKL protocol. By digging deep into the security analysis of the GHKL
protocol, Asharov [2] deduced sufficient conditions for the protocol to compute
functions with full security. Furthermore, the author showed that almost all
Boolean functions with unequal-size domains satisfy these conditions, and thus
a surprisingly large amount of functions are fair. Sufficient conditions for GHKL
were also deduced independently by Makriyannis in [12].

Recently, Asharov, Beimel, Makriyannis and Omri [3] showed that a counter-
intuitive modification of GHKL allows for the complete characterization of all
Boolean functions. The characterization states that a Boolean function is com-
putable with full security if and only if the all-one vector or the all-zero vector
belong to the affine span of either the rows or the columns of the matrix de-
scribing the function. Remarkably, the characterization extends to randomized
Boolean functions as well as multiparty Boolean functions when exactly half of
the parties are corrupted.

Finally, we mention that Gordon and Katz [11] constructed a fully-secure
three-party protocol for the majority function and a t-party protocol for the
AND of t bits.

Limits of the GHKL Approach. While significant progress has been made
towards characterizing fairness in secure computation, we argue that the meth-
ods that appear in the literature have reached their limits in terms of usefulness.
Specifically, regarding the design of fully secure protocols for arbitrary func-
tions, the “standard” approach of generalizing and modifying GHKL to extract
sufficient conditions seems to offer few gains. For one, straightforward general-
izations of the protocol tell us very little about why a given function might be
computable with fairness. On the other hand, how to go about modifying GHKL
in a meaningful way is easier said than done, even for the limited case of Boolean
functions that are not symmetric.

On the negative side, while it is beyond the scope of the present paper,
we mention the limitations of extracting further impossibility results from the
impossibility of computing inputless functionalities.

3

1.2 Our Contributions

The present paper attempts to address the criticisms mentioned above with re-
gards to the design of fully secure protocols. To this end, we introduce two con-
cepts we refer to as locking strategies and sampling attacks which are inspired
by the impossibility results of [1, 4, 7, 12]. We believe that locking strategies
and sampling attacks are important conceptual tools for analyzing fairness. Our
investigation naturally leads to a security notion that we call security against
sampling attacks; a necessary condition for fair protocols (as opposed to fair
functions). An appealing feature of the proposed security notion is that it by-
passes lower-bounds on fairness. Specifically, as was shown by Gordon et al. [10],
fair functions may require computation in super-logarithmic round-complexity.
In contrast, security against sampling attacks seems to be achievable in a con-
stant number of rounds for the same functions. The appeal of our approach is
further strengthened by our main result.

Our main result is a generic construction that transforms any protocol that
is – constant-round – passively secure – secure against sampling attacks, into
a fully-secure protocol. In the spirit of GHKL, this is achieved by introducing
a special threshold round i∗. Our main result may be viewed as a framework
for designing fair protocols, and we believe that it demystifies the “standard”
approach that appears in the literature. What’s more, it applies to any constant-
domain two-party function (i.e. randomized, asymmetric and non-Boolean).

Finally, to illustrate the usefulness of our approach, we propose an algorithm
for designing suitable protocols (constant-round, passively secure, secure against
sampling attacks). Our algorithm takes an asymmetric Boolean function as in-
put, and it either returns an appropriate protocol, or it returns that it failed to
do so. The algorithm is accompanied with a proof of correctness. In Section 5.3,
we show how our algorithm handles the asymmetric function that was suggested
as an open problem in [3], and we prove that it is fair.

Unfortunately, our methods do not settle the characterization of constant-
domain two-party functions, even for the asymmetric Boolean case. That being
said, we believe that the questions that are left unanswered may be as interesting
as the results themselves. They are discussed in the conclusion.

Organization of the Paper. After recalling some preliminaries in Section 2,
we introduce locking strategies and sampling attacks in Section 3. Section 4 is
dedicated to our main result and its proof. In Section 5, we focus on asymmetric
Boolean functions. Finally, open problems and future directions are discussed in
Section 6. Proofs of some results can be found as supplementary material in the
pages following the paper.

2 Preliminaries

Throughout this paper, n denotes the security parameter and N denotes the
set of positive integers. All vectors are column vectors over the real field R.

4

Vectors are denoted using bold letters, e.g. v, 1 (the all-one vector). The i-
th entry of some vector v is denoted v(i). If v1, . . . ,vs denotes a family of
vectors, then 〈v1, . . . ,vs〉 denotes the vector space generated by those vectors,
and let 〈vi |vj〉 = vTi vj . Matrices are denoted with capital letters, e.g. M , P .
The i-th row and j-th column of some matrix M are denoted [M]i,∗ and [M]∗,j ,
respectively. Furthermore, the element indexed by (i, j) in M is denoted M(i, j).
We write [M1 ‖ . . . ‖Mt] for the concatenation of matrices M1, . . . ,Mt.

Definition 2.1. Let A and B be arbitrary matrices. We write C = A∗B if C is
equal to the entry-wise (Hadamard) product of the two matrices, i.e. C(i, j) =
A(i, j) ·B(i, j).

Finally, if X and Y denote distribution ensembles, we write X = Y, X s≡ Y and

X s≡ Y, respectively, if the ensembles are perfectly, statistically or computation-
ally indistinguishable.

2.1 Secure Two-Party Computation

Let P1 and P2 denote the parties. A two-party functionality f = (f1, f2) is a
random process that maps pair of inputs (one for each party), to pairs of random
variables called outputs (again, one for each party). The domain of f is denoted
X × Y . For our purposes, we assume that X = {1, . . . , `}, Y = {1, . . . , k} and
the parties’ outputs are sampled from [m] = {0, . . . ,m − 1}. Let M consist of
all the non-empty subsets of {0, 1 . . . ,m− 1} of size strictly less than m/2, and
the subsets of size m/2 that do not contain 0. Define matrices {M (µ,ν)}µ,ν∈M
associated with f such that

M (µ,ν)(x, y) = Pr [f(x, y) ∈ µ× ν] .

If µ = {a}, write M (a,ν) instead of M ({a},ν). Similarly, if ν = {b}, write M (µ,b)

instead of M (µ,{b}). If µ = {a} and ν = {b}, we write M (a,b). In addition, define
{M (µ,∗)}µ∈M and {M (∗,µ)}µ∈M such that M (µ,∗)(x, y) = Pr [f1(x, y) ∈ µ] and
M (∗,µ)(x, y) = Pr [f2(x, y) ∈ µ]. A two-party protocol Π for computing f is a
polynomial-time protocol such that, on global input 1n (the security parame-
ter) and private inputs x ∈ X, y ∈ Y , the joint distribution of the outputs
{Π(1n, x, y)}n is statistically close (f1, f2)(x, y), assuming both parties behave
honestly. The parties run in polynomial-time in n.

The Adversary. We introduce an adversary A given auxiliary input z ∈ {0, 1}∗
corrupting one of the parties. We assume the adversary is computationally
bounded and malicious, i.e. the adversary runs in polynomial-time in n and
she may instruct the corrupted party to deviate from the protocol arbitrarily.
Write (out, view)RealA(z),Π for the pair consisting of the honest party’s output and
the adversary’s view in an execution of protocol Π. Next, we define security in
terms of the ideal model.
Let S denote the ideal-world adversary. Write (out, view)IdealS(z),f for the pair con-
sisting of the honest party’s output and the adversary’s view in the ideal model.

5

The Fully-Secure Model

– Inputs: P1 is holding 1n and x ∈ X, P2 is holding 1n and y ∈ Y . The
adversary is given auxiliary input z ∈ {0, 1}∗. The trusted has no input.

– Parties send inputs: The honest party sends his input to the trusted
party. The corrupted party sends a value of the adversary’s choice. Write
(x′, y′) for the pair of values received by the trusted party.

– Trusted party performs computation: If either x′ or y′ is not in the
appropriate domain, the trusted party reassigns the aberrant input to
some default value. Write (x′, y′) for the pair of inputs after (possible)
reassignment. The trusted party chooses a random string r ∈ {0, 1}∗ and
computes f(x, y ; r).

– Parties receive outputs: P1 receives f1(x, y ; r), P2 receives f2(x, y ; r).
– Outputs: The honest party outputs whatever he received for the trusted

party, the corrupted party outputs nothing, the adversary outputs a prob-
abilistic polynomial-time function of its view.

Fig. 1: The Ideal Model with Full-Security for computing f .

Definition 2.2. Let Π be a protocol for computing f . We say that Π is fully
secure if for every non-uniform polynomial time adversary A in the real model,
there exists a non-uniform polynomial time adversary S in the ideal model such
that {

(out, view)RealA(z),Π(1n, x, y)
}
n∈N,(x,y)∈X×Y,z∈{0,1}∗

c≡
{

(out, view)IdealS(z),f (1n, x, y)
}
n∈N,(x,y)∈X×Y,z∈{0,1}∗

.

It is important to note that the only way for the ideal-world adversary to affect
the honest party’s input is through the choice of input. Finally, we remark that
the fully-secure model is the standard model for the honest-majority multi-party
setting.

The Hybrid Model. The hybrid model with ideal access to F is a communi-
cation model where the parties have access to a trusted computing some func-
tionality F with full security. In this model, the parties communicate as in the
plain model and they are allowed to make a single call to the trusted party for
computing F . Protocols and security for this communication model are defined
along the same lines as above. By [6], as long as F admits a secure real-world
protocol, the existence of a secure hybrid protocol for f implies the existence of
a secure protocol for f in the real model. By contraposition, if f cannot be real-
ized securely, then the existence of a secure protocol for f in the hybrid model
implies the impossibility of realizing F securely in the real model.

The Dealer Model. Throughout the paper, we define protocols by describing
the number of rounds r(n) and the backup outputs {ai}ri=0 for P1 and {bi}ri=0

6

for P2. When executing a protocol, the parties hand their inputs to an entity
called the dealer. In turn, the dealer performs all the computations and hands
the relevant backup outputs to P1 and then P2 in a sequence of r(n) iterations.
Either party may abort the execution at any time and the protocol terminates at
that point. The remaining party is instructed to output the last backup output
he received. This approach is known as the online dealer model, and it does not
incur any loss of generality as there is a standard transformation from the online
dealer model to the plain model [2,3,5]. The online dealer model is convenient in
that it provides clarity to our presentation and it greatly simplifies the security
analysis.

3 Locking Strategies & Sampling Attacks

The only known necessary condition for fairness is the semi-balanced criterion [3,
12], which, in turn, relies on the generalization of Cleve’s result by Agrawal and
Prabhakaran [1]. In [3, 12], the authors showed how certain functions, dubbed
semi-balanced, reduce to non-trivial instances of the sampling functionality. The
construction assumes that the parties have access to a fair realization of a semi-
balanced function, and, by choosing their inputs in a particular way and by
applying local transformations to their outputs, the parties obtain correlated bits
that are independent of each other’s inputs. In a sense, the procedure described
in [3,12] allows the parties to “lock” the probability distribution of their outputs.
By [1], it follows that these functions are not computable with fairness.

In summary, the semi-balanced criterion involves two algorithmic processes
(one for each party), and the family of attacks from [1,7]. Each party’s process is
encoded by a distribution over the inputs, and a function applied to the party’s
view. In this section, we attempt to dissociate the semi-balanced criterion from
the underlying attacks. Instead of investigating the conditions under which the
impossibility from [1] applies to a given function, i.e. whether the parties can
follow processes to sample correlated bits; we ask whether a corrupted party can
directly alter the distribution of the honest output resulting from such a process,
i.e. without necessarily relying on the family of attacks described by Cleve.

To this end, we introduce the notions of locking strategy and sampling attacks.
As one might expect, locking strategies refer to the processes that the parties are
instructed to follow while computing the function. On the other hand, sampling
attacks describe a family of fail-stop attacks with a specific intent; to alter the
distribution of the honest party’s output resulting from a locking strategy. We
begin by formally describing locking strategies, and we show that every strategy
can be encoded by 2m−1 − 1 vectors. Next, we restrict the number of vectors to
m − 1, and we generalize the semi-balanced criterion. Then, in Section 3.3, we
define sampling attacks in relation to locking strategies, and we are naturally
led to the notion of security against sampling attacks; a necessary condition for
fairness. We note that all-but-one of the proofs in the present section have been
moved to the end of the paper as supplementary material.

7

To motivate our discussion, we use specific functions from the literature as
illustrative examples. Namely, the XOR function encoded by matrices

M (1,∗) = M (∗,1) =

(
0 1
1 0

)
,

the function fnm from [12] encoded by matrices

M (1,∗) = M (∗,1) =


0 1 0 1
1 1 1 0
0 0 1 0
1 0 0 0

 ,

the function f sp from [3] encoded by matrices

M (1,∗) =


1 1 1 0
0 0 0 1
1 0 0 1
0 1 0 1

 , M (∗,1) =


1 0 1 0
1 0 0 1
1 0 0 0
0 1 1 1

 .

We remark that since the functions above are deterministic, the corresponding
matrices fully describe these functions. In addition, we note that f sp is com-
putable with fairness, while XOR and fnm are not. Next, we briefly discuss why
that is the case.

3.1 Warm-up

It is not hard to see that a fully-secure realization of XOR yields a fully-secure
coin-toss. Indeed, by instructing the parties to choose their inputs uniformly at
random, the output from a fully-secure computation of XOR is uniformly dis-
tributed, even in the presence of malicious adversaries. A slightly more involved
procedure allows the parties to sample correlated bit, using a fully-secure pro-
tocol for fnm. Indeed, instruct P1 to choose his input among {x1, x3, x4} with
uniform probability, instruct P2 to choose y4 with probability 2/5 or one of his
other inputs with probability 1/5. Let c denote the the output from the compu-
tation of fnm. Party P1 outputs c, party P2 outputs 1 − c if he chose y2 and c
otherwise.

For us, it is important to note that the procedures described above are
encoded by certain vectors. For XOR, these vectors are (1/2, 1/2) for P1 and
(1/2, 1/2) for P2. For fnm, they are (1/3, 0, 1/3, 1/3) for P1 and (1/5,−1/5, 1/5, 2/5)
for P2. To elaborate further, each vector instructs the relevant party how to
choose its input (by taking the absolute value) and whether to flip the output
from the computation of the function (negative values indicate that the party
must flip the output). Observe that

(1/2, 1/2) ·
(

0 1
1 0

)
∈ 〈1T2 〉 ,

(
0 1
1 0

)(
1/2
1/2

)
∈ 〈12〉 ,

8

and

(1/3, 0, 1/3, 1/3)


0 1 0 1
1 1 1 0
0 0 1 0
1 0 0 0

 ∈ 〈1T4 〉 ,


0 1 0 1
1 1 1 0
0 0 1 0
1 0 0 0

 ·


1/5
−1/5
1/5
2/5

 ∈ 〈14〉 .

The relations above capture the fact that the procedure encoded by the vector
yields an output whose distribution is independent of the opponent’s input,
i.e. Pi’s output resulting from the procedure is independent of P3−i’s choice of
input, assuming the underlying function is computed with full security. It is
straightforward to check that the parties’ outputs exhibit statistical correlation,
and thus the functions in question are not computable with full-security, by [1,7].

On the other hand, it is interesting to note that similar vectors and procedures
can be defined for function f sp. Specifically, observe that

(1/2, 1/2, 0, 0)


1 1 1 0
0 0 0 1
1 0 0 1
0 1 0 1

 ∈ 〈1T4 〉 ,


1 0 1 0
1 0 0 1
1 0 0 0
0 1 1 1

 ·


1/2
1/2
0
0

 ∈ 〈14〉 .

In more detail, by choosing one of their first two inputs uniformly at random,
the outputs from a fully-secure computation of f sp are uniformly random, even
in the presence of malicious adversaries. However, contrary to the previous cases,
the parties’ outputs are independent as random variables.

3.2 Locking Strategies

Formally, for i ∈ {1, 2}, let ∆i denote a distribution over the inputs of Pi, and
let φi(z, c) denote a (possibly randomized) Boolean function, where c ∈ [m] and
z denotes an element from Pi’s input domain. Suppose that in the hybrid model
with ideal access to f , party Pi chooses an input z according to ∆i, and outputs
φi(z, outi) – where outi denotes the value that Pi receives from the trusted party.
We say that (∆i, φi) is a locking strategy if Pi’s output from the procedure is
independent of P3−i’s input.

For semi-balanced functions [3, 12], the functions φi amounted to determin-
istic flips depending on the input, i.e. for a certain partitioning Z0 t Z1 of the
input space, z ∈ Zj ⇔ φi(z, c) = j ⊕ c. The strategies were deduced by solving
a simple linear system. Naturally, we ask how to find relevant functions and
distributions for arbitrary functions.

Definition 3.1. We say that σ2 = (∆2, φ2) is a locking strategy for P2 with
respect to f if, for every x, x′ ∈ X, it holds that

Pr
y←∆2

[φ2(y, f2(x, y)) = 1] = Pr
y←∆2

[φ2(y, f2(x′, y)) = 1] .

Locking strategies for P1 are defined in a similar fashion.

9

3.2.1 Locking Strategies are (Quasi) Linear

We show that locking strategies are endowed with a quasi-linear structure, i.e. we
can embed them into a vector space. This is highly desirable since using vec-
tors and matrices, instead of distributions and functions, greatly simplifies our
analysis. To show that such an embedding exists, we interpret φ1 and φ2 as prob-
abilistic combinations of deterministic indicator functions. First, we introduce
further notation. For every y ∈ Y , let dy = Pr [y0 = y | y0 ← ∆2]. Furthermore,

let {b(y)0 , b
(y)
1 , . . . , b

(y)
m−1} be an ordering of [m] such that

Pr
[
φ2(y, b

(y)
0) = 1

]
≤ Pr

[
φ2(y, b

(y)
1) = 1

]
≤ · · · ≤ Pr

[
φ2(y, b

(y)
m−1) = 1

]
.

For i ∈ {−1, . . . ,m}, define p
(y)
i such that

p
(y)
i =


0 if i = −1

Pr
[
φ2(y, b

(y)
i) = 1

]
if 0 ≤ i ≤ m− 1

1 if i = m

.

For i ∈ {0, . . . ,m}, define τ
(y)
i : [m] → {0, 1} such that τ

(y)
i (b) = 1 if b ∈

{b(y)i , . . . , b
(y)
m−1} and 0 otherwise. Observe that

φ2(y, b) = τ
(y)
i (b) with probability p

(y)
i − p

(y)
i−1 .

Define vectors {yµ}µ∈M ⊆ Rk, such that

yµ(y) =


dy · (p(y)i − p

(y)
i−1) if τ

(y)
i (b) = 1⇔ b ∈ µ

dy · (−p(y)i + p
(y)
i−1) if τ

(y)
i (b) = 1⇔ b /∈ µ

0 otherwise

.

Finally, define vectors y∅ and y[m] such that y∅(y) = dy ·(1−p(y)m−1) and y[m](y) =

dy · p(y)0 .

Claim 3.2. The procedure from fig. 2 is functionally equivalent to σ2. In addi-
tion,

1`×k · y[m] +
∑
µ∈M

M (∗,µ) · yµ =

δ2 − ∑
yµ(y)<0

|yµ(y)|

 · 1` ,
where δ2 denotes the probability that strategy σ2 returns 1. Conversely, up to a
multiplicative factor, vectors {yµ}µ∈M ∪{y∅,y[m]} such that y∅,y[m] ≥ 0 define
a locking strategy if, for some δ2 ∈ R,∑

µ∈M
M (∗,µ) · yµ = δ2 · 1` .

10

Locking Strategies from Vectors

– Offline.
1. With probability y∅(y) choose y and τ such that τ ≡ 0.
2. With probability y[m](y) choose y and τ such that τ ≡ 1.
3. With probability |yµ(y)| choose y and τ such that

(a) If yµ(y) ≥ 0,

τ(b) =

{
1 if b ∈ µ
0 otherwise

.

(b) If yµ(y) < 0,

τ(b) =

{
1 if b /∈ µ
0 otherwise

.

– Online. P2 sends y to the trusted party. The latter replies with b =
f2(x, y), where x denotes the input chosen by P1.

– Output. P2 outputs τ(b).

Fig. 2: How to Obtain Locking Strategies from Vectors.

Proof. Fix an arbitrary x ∈ X and observe that P2 outputs 1 with probability∑
yµ(y)≥0

Pr [f2(x, y) ∈ µ] · yµ(y) +
∑

yµ(y)<0

Pr [f2(x, y) /∈ µ] · |yµ(y)|+
∑
y∈Y

y[m](y) .

To conclude, it suffices to note that Pr [f2(x, y) /∈ µ] = 1− Pr [f2(x, y) ∈ µ]. ut

3.2.2 Dependent Strategies

So far, we showed that strategies for P2 are encoded by vectors {yµ}µ∈M ∪
{y∅,y[m]} that satisfy

∑
µ∈MM (∗,µ) · yµ = δ2 · 1`, for some δ2 ∈ R. Extend all

of the above to the first party, and deduce that strategies for P1 are encoded by
vectors {xµ}µ∈M ∪{x∅,x[m]} that satisfy

∑
µ∈M xTµ ·M (µ,∗) = δ1 ·1Tk , for some

δ1 ∈ R.

Proposition 3.3. Using the notation above, it holds that the associated locking
strategies yield statistically dependent outputs if and only if∑

µ,ν∈M
xTµ ·M (µ,ν) · yν 6= δ1δ2 .

To conclude, we present a generalization of the semi-balanced criterion. First,
we will restrict locking strategies to smaller families of vectors. Observe that the
party applying a locking strategy chooses from among 2m/2 + 1 vectors. In light
of Proposition 3.3, let us assume that y∅ = y[m] = 0k, in effect restricting the
number of vectors to 2m/2 − 1. In what follows, we show that we can restrict

11

the number of vectors to m − 1. Using the notation from the previous section,
consider a locking strategy represented by vectors {yµ}µ∈M. Let us move a few
terms around in the expression below.

∑
µ∈M

M (∗,µ) · yµ =
∑
µ∈M

∑
b∈µ

M (∗,b)

 · yµ
= M (∗,0) ·

 ∑
µ | 0∈µ

yµ

+

m−1∑
b=1

M (∗,b) ·

 ∑
µ | b∈µ

yµ

 .

Now, since M (∗,0) = 1`×k −
∑m−1
b=1 M (∗,b), it follows that

∑
µ∈M

M (∗,µ) · yµ =

 ∑
µ | 0∈µ

〈yµ |1k〉

 · 1` +

m−1∑
b=1

M (∗,b) ·

 ∑
µ | b∈µ

yµ −
∑
µ | 0∈µ

yµ


(1)

Define2 vectors {yb}b∈[m] such that

yb =
∑
µ | b∈µ

yµ −
∑
µ | 0∈µ

yµ .

We note that these vectors encode a new locking strategy. In accordance with
the notation so far, the locking strategy associated with {yb}b∈[m] is functionally
equivalent to the locking strategy associated with {y′µ}µ∈M, where

y′µ =

{
yb if µ = {b}
0k otherwise

.

The fact that the resulting vectors encode a locking strategy follows from eq. (1),
the fact that {yµ}µ∈M encode a locking strategy, and Claim 3.2. Immediately, we
see that {yb}b∈[m] is much “simpler” than {yµ}µ∈M, since we have exponentially
fewer maps to choose from. Next, we show that any loss of generality that this
simplification incurs does not affect our analysis of the semi-balanced criterion.

Proposition 3.4. Let {xµ}µ∈M, {yµ}µ∈M and {yb}b∈[m] be as above. The out-
puts from the locking strategies associated with {xµ}µ∈M and {yµ}µ∈M are sta-
tistically dependent if and only the outputs from the strategies associated with
{xµ}µ∈M and {yb}b∈[m] are as well.

Let L2 denote an arbitrary basis of the vector space consisting of all vectors y
of the form yT = (yT1 , . . . ,y

T
m−1) such that, for some δ2 ∈ R,(

M (∗,1)
∥∥∥M (∗,2)

∥∥∥ · · · ∥∥∥M (∗,m−1)
)
· y = δ2 · 1` .

2 No confusion should arise between {yµ}µ∈M and {yb}b∈[m]. One family consists of
vectors indexed over sets, the other family is indexed over integers.

12

Similarly let L1 denote an arbitrary basis of the vector space consisting of all
vectors x of the form xT = (xT1 , . . . ,x

T
m−1) such that, for some δ1 ∈ R,(

M (1,∗)T
∥∥∥M (2,∗)T

∥∥∥ · · · ∥∥∥M (m−1,∗)T
)
· x = δ1 · 1k .

Theorem 3.5. Function f is semi-balanced if and only if there exist x ∈ L1

and y ∈ L2 such that

m−1∑
a,b=1

xTa ·M (a,b) · yb 6= δ1δ2 ,

where δ1 · 1Tk =
∑m−1
a=1 xTa ·M (a,∗) and δ2 · 1` =

∑m−1
b=1 M (∗,b) · yb .

3.3 Sampling Attacks

Consider the following single-round protocol for f sp = (f1, f2) defined by means
of the backup outputs {ai, bi}i=0,1:

a0 = f1(x, ỹ) where ỹ ∈U Y b0 = f2(x̃, y) where x̃ ∈U X

a1 = f1(x, y) b1 = f2(x, y)

Suppose that party P2 applies locking strategy y = (1/2, 1/2, 0, 0)T . Notice
that in an honest execution of Π, party P2 outputs a uniform random bit. Now,
suppose that an adversary corrupting P1 uses x3 for the computation, and aborts
the computation prematurely if a1 = 0 (In that case P2 outputs b0). Deduce
that the honest party outputs 1 with probability 3/4 and thus the protocol is
not fully-secure.

On the other hand, consider the following two-round protocol Πsp for f sp

defined by means of the backup outputs {ai, bi}i=0...2:

a0 = f1(x, ỹ) where ỹ ∈U Y b0 = f2(x̃, y) where x̃ ∈U X

a1 =

{
f1(x, y) if x ∈ {x1, x2}
f1(x, ỹ′) where ỹ′ ∈U Y if x ∈ {x3, x4}

b1 = f2(x, y)

a2 = f1(x, y) b2 = f2(x, y)

Already, we see that the attack described above will not work for this protocol.
In fact, a straightforward analysis shows that it is impossible to alter the distri-
bution of the honest party’s output resulting from a locking strategy, both for
P1 and P2. To see that, let b̂j (resp. âj) denote the bit obtained from bj (resp.
aj) by applying some locking strategy, and observe that the random variables

b̂i−1 and b̂2 (resp. âi and â2) conditioned on the adversary’s view at round i are
identically distributed.

Knowing that locking strategies are encoded by vectors, let y denote some
locking strategy for P2, and L2 denote an arbitrary basis of the relevant vector

13

space. Suppose that A corrupts P1 and define {In}n∈N such that In ⊂ N and
|In| <∞, and ∃n0 ∈ N such that |In| = |In0

|, for every n ≥ n0. Without loss of

generality, assume that In = {j(n)0 , j
(n)
1 , . . . , j

(n)
in
}, and that j

(n)
0 < j

(n)
1 < . . . <

j
(n)
in

. To alleviate notation, we write ji instead of j
(n)
i .

Definition 3.6. A sampling attack is fail-stop attack parametrized by {In}n∈N.
The adversary executes the protocol with an input of her own choosing, observes
the subsequence (aj0 , aj1 , . . . , ajin) of the backup sequence, and, depending on
the adversary’s specifications, quits either at round jin or not at all, i.e. carries
on honestly.

Write ôut2 for the output resulting from the locking strategy in an execution of
Π. Protocol Π is secure against sampling attacks if for every y ∈ 〈L2〉, for every
A carrying out a sampling attack, it holds that

∣∣Pr
[
ôut2 = 1

]
− δ2

∣∣ = negl(n),
where δ2 denotes the probability that P2 outputs 1 in the hybrid model with
ideal access to f . Next, for every {In}n∈N, for every x ∈ X, for every y ∈ 〈L2〉,
define a−In = (aj0 , . . . , ajin , b̂jin−1) and a+

In
= (aj0 , . . . , ajin , b̂r), where b̂∗ denotes

the bit obtained from b∗ by applying y.

Proposition 3.7. The protocol is secure against sampling attacks if and only if
for every {In}n∈N as above, for every x ∈ X, for every y ∈ 〈L2〉, it holds that
random variables a−In and a+

In
are statistically close.

3.3.1 Sampling Attacks in Linear-Algebraic Terms

In this section, we show how security against sampling attacks can be expressed
in linear-algebraic terms. First, we define closeness for vectors. Let {vn}n∈N and
{un}n∈N denote two families of vectors indexed by N. We say that vn is close to

un if ‖un−vn‖ ≤ negl(n). By abusing notation, we write un
s≡ vn if the vectors

are close.

Definition 3.8. For every {In}n∈N, for every ~αIn = (αj1 , . . . , αjin) ∈ [m]in ,

and every β ∈ [m], define matrices B
(~αIn ,β)
− , B

(~αIn ,β)
+ ∈ R`×k such that

B
(~αIn ,β)
− (x, y) = Pr

[
(~aIn , bjin−1)(x, y) = (~αIn , β)

]
B

(~αIn ,β)
+ (x, y) = Pr [(~aIn , br)(x, y) = (~αIn , β)] .

Similarly, for every ~βIn = (βj1 , . . . , βjin) ∈ [m]in and every α ∈ [m] define

matrices A
(α,~βIn)
− , A

(α,~βIn)
+ ∈ R`×k such that

A
(α,~βIn)
− (x, y) = Pr

[
(ajin ,

~bIn)(x, y) = (α, ~βIn)
]

A
(α,~βIn)
+ (x, y) = Pr

[
(ar,~bIn)(x, y) = (α, ~βIn)

]
.

Theorem 3.9. Protocol Π is secure against sampling attacks if and only if

14

– for every y ∈ 〈L2〉, for every {In}n∈N, for every ~αIn ∈ [m]in , the vector
below is close to 0`.(

B
(~αIn ,1)
+ −B(~αIn ,1)

−

∥∥∥ · · · ∥∥∥B(~αIn ,m−1)
+ −B(~αIn ,m−1)

−

)
· y . (2)

– for every x ∈ 〈L1〉, for every {In}n∈N, for every ~βin ∈ [m]|In|, the vector
below is close to 0k.(

A
(1,~βIn)T
+ −A(1,~βIn)T

−

∥∥∥ . . . ∥∥∥A(m−1,~βIn)T
+ −A(m−1,~βIn)T

−

)
· x . (3)

For example, for protocol Πsp, the distributions of (a1, b0) and (a1, b2) is given
by the following matrices.

B
(0,1)
− =


0 0 0 1/2

3/4 1/4 1/2 0
3/8 1/8 1/4 1/4
3/8 1/8 1/4 1/4

 , B
(0,1)
+ =


0 0 0 0
1 0 0 0

1/2 0 0 0
0 1/2 1/2 1/2



B
(1,1)
− =


3/4 1/4 1/2 0
0 0 0 1/2

3/8 1/8 1/4 1/4
3/8 1/8 1/4 1/4

 , B
(1,1)
+ =


1 0 1 0
0 0 0 1

1/2 0 0 0
0 1/2 1/2 1/2

 .

Similarly, the distributions of (a1, b1) and (a2, b1) is given by the following ma-
trices.

A
(0,1)
− =


0 1 0 0
0 0 0 0
0 1/2 1/2 1/2

1/2 0 0 0

 , A
(0,1)
+ =


0 1 0 0
0 0 0 0
0 0 0 1
0 0 0 0



A
(1,1)
− =


1 0 1 0
0 0 0 1

1/2 0 0 0
0 1/2 1/2 1/2

 , A
(1,1)
+ =


1 0 1 0
0 0 0 1
1 0 0 0
0 1 0 1

 .

Notice that the matrices above satisfy Proposition 3.9.

4 Towards Full Security

In this section , we show that constant-round protocols that satisfy passive se-
curity and security against sampling attacks are easily transformed into fully
secure protocols. The entire section is dedicated to the construction and its se-
curity proof. Let Π be a protocol for computing f . We model the protocol in
the usual way. The parties’ backup outputs for Π will be denoted (c0, . . . , cr′)
and (d0, . . . , dr′), respectively, where r′ denotes the number of rounds.

15

Assumption on the round-complexity. We assume that r′ is constant in the
security parameter. This assumption is desirable for for the proof of our main
theorem, and it is good enough for our purposes. Nevertheless, the question of
determining the optimal round complexity for protocols that are passively secure
and secure against sampling attacks may be of independent interest.

We assume that the protocol is passively secure. Therefore, there exist simula-
tors, denoted {Spi }i∈{1,2}, that can recreate the backup sequences in the ideal
model. In addition, since the protocol is constant-round, it follows that the ideal
sequences are statistically close to the real ones. Formally,

(c0, . . . , cr′ , dr′)
Real s≡ (c0, . . . , cr′ , f2)Ideal

(d0, . . . , dr′ , cr′)
Real s≡ (d0, . . . , dr′ , f1)Ideal .

Finally, we assume that Π is secure against sampling attacks. Theorem 3.9 ap-
plies to Π in a very straightforward way. Using the notation from the previous
section,

– For every y ∈ 〈L2〉, for every i = 1, . . . , r′, for every ~αi ∈ [m]i+1, the vector
below is close 0`.(

B
(~αi,1)
+ −B(~αi,1)

−

∥∥∥ · · · ∥∥∥B(~αi,m−1)
+ −B(~αi,m−1)

−

)
· y . (4)

– For every x ∈ 〈L1〉, for every i = 0, . . . , r′ − 1, for every ~βi ∈ [m]i+1, the
vector below is close to 0k.(

A
(1,~βi)T
+ −A(1,~βi)T

−

∥∥∥ · · · ∥∥∥A(m−1,~βi)T
+ −A(m−1,~βi)T

−

)
· x . (5)

4.1 Protocol SecSamp2Fair(Π)

We are going to combine the main ingredient of the GHKL protocol – the thresh-
old round i∗ – with the protocol above. Specifically, we are going to instruct the
parties to run a protocol such that, at some point in the execution, unbeknownst
to them, the parties begin running Π.

This is achieved by choosing a random threshold round according to a geo-
metric distribution. Prior to that round, the parties exchange backup outputs
that are independent of each other, and, once the threshold round has been
reached, the parties exchange backups according to the specifications of Π. For-
mally, consider protocol SecSamp2Fair(Π) from fig. 3. For the new protocol,
i∗ ≥ r′ + 1 is chosen according to a geometric distribution with parameter γ. If
i < i∗ − r′, then ai and bi are independent of one another. If i∗ − r′ ≤ i < i∗,
then ai and bi are equal to ci−i∗+r′ and di−i∗+r′ , respectively. Finally, if i ≥ i∗,
then (ai, bi) = (cr′ , dr′)

s≡ (f1, f2).

Theorem 4.1. Suppose that protocol Π for f is constant-round, passively se-
cure, and secure against sampling attacks. There exists γ0 ∈ [0, 1] such that
protocol SecSamp2Fair(Π) is fully secure for f , for every γ < γ0.

16

Protocol SecSamp2Fair(Π)

1. The parties P1 and P2 hand their inputs, denoted x and y respectively, to
the dealer.a

2. The dealer executes Π locally on inputs x and y and security parameter
n. Write (c0, . . . , cr′) and (d0, . . . , dr′) for the sequences of backup outputs
computed by the dealer.

3. The dealer chooses i∗ ≥ r′ + 1 according to the geometric distribution
with parameter γ.

4. The dealer computes (out1, out2) = (cr′ , dr′), and, for 0 ≤ i ≤ r,

ai =

 f1(x, ỹ(i)) where ỹ(i) ∈U Y if i < i∗ − r
ci−(i∗−r′) if i∗ − r′ ≤ i < i∗

out1 otherwise

and

bi =

 f2(x̃(i), y) where x̃(i) ∈U X if i < i∗ − r
di−(i∗−r′) if i∗ − r′ ≤ i < i∗

out2 otherwise.

5. The dealer gives b0 to P2.
6. For i = 1, . . . , r,

(a) The dealer gives ai to P1. If P1 aborts, then P2 outputs bi−1 and halts.
(b) The dealer gives bi to P2. If P2 aborts, then P1 outputs ai and halts.

a If x is not in the appropriate domain or P1 does not hand an input, then
the dealer sends f(x̂, y) (where x̂ is a default value) to P2, which outputs
this value and the protocol is terminated. The case of an inappropriate y is
dealt analogously.

Fig. 3: Protocol SecSamp2Fair(Π) for Computing f .

17

4.2 Security Analysis

We only deal with the case where P1 is corrupted. The other case is virtually
analogous. Write A for the adversary corrupting P1. We begin with a high-
level description of the simulator. The simulator S chooses i∗ according to the
specifications of the protocol, and simulates the rounds of the protocol as follows.
Prior to iteration/round i∗−r′, the simulator generates backup outputs in exactly
the same way as the dealer does in the real model. If the adversary decides to
abort, S sends x0 ∈ X to the trusted party, where x0 is sampled according to

probability vector z
(~αr′)
x ∈ R`. As the notation suggests, z

(~αr′)
x depends on x (the

input handed by the adversary for the computation) and the last r′ + 1 backup
outputs computed by the simulator. At iteration i∗− r′, assuming the adversary
is still active, the simulator hands x to the trusted party, and receives output
a = f1(x, y). In order to reconstruct the next values of the backup sequence, the
simulator invokes Sp2 , and hands one-by-one to A the values computed by Sp2 .
At every iteration following i∗, the simulator hands a to A. At any given point,
if the adversary aborts, the simulator outputs the sequence of values he handed
to A, and halts.

Intuition. By definition, the simulator’s output together with the honest party’s
output in the ideal model is required to be indistinguishable from the adversary’s
view and the honest party’s output in the real model. In our case, the adversary’s
view corresponds to the sequence of backup outputs she observes. Notice that
the backup up sequences of each world are statistically close, which follows from
the way i∗ is chosen in both worlds, the passive security of Π, and the fact that
prior to i∗ − r′ the backup outputs in the real and ideal world are identically

distributed. The hard part is to argue that there exists z
(~αr′)
x from which the

simulator can sample from. As we shall see, the existence of z
(~αr′)
x follows from a

corollary of the fundamental theorem of Linear Algebra, which comes into play
because of the security against sampling attacks assumption.

Recall that for i = 1 . . . r′ matrices B
(α0,...,αi,β)
− and B

(α0,...,αi,β)
+ denote

B
(α0...αi,β)
− (x, y) = Pr [(c0, . . . , ci, di−1)(x, y) = (α0, . . . , αi, β)]

B
(α0...αi,β)
+ (x, y) = Pr [(c0, . . . , ci, dr′)(x, y) = (α0, . . . , αi, β)]

Now, define p
(α)
x = Pr [f1(x, ỹ) = α | ỹ ∈U Y]. To alleviate notation, we will omit

the security parameter. As mentioned earlier, the corrupted party’s backup se-
quences in the real and ideal world are statistically close. Therefore, if the ad-
versary quits in the real world, then the adversary quits in the ideal world as
well, with all but negligible probability – and vice versa. The whole point of the
simulation is to show that early aborts do not breach security. In particular, if
the adversary quits after round i∗, then the relevant distributions in the real
and ideal world are statistically close. Our analysis only deals with aborts that
take place prior to round i∗.

18

The simulator S for Protocol SecSamp2Fair(Π)

– The adversary A gives its input x to the simulator.a

– The simulator chooses i∗ ≥ r′ + 1 according to the geometric distribution
with parameter γ.

– For i = 1, . . . , i∗ − r′ − 1:
• The simulator gives ai = f(x, ỹ(i)) to the adversary A, where ỹ(i) is

chosen according to the uniform distribution.
• If A aborts, then the simulator chooses an input x0 according to

a distribution z
(ai−ρ,...,ai)
x (which depends on the input x and the

last sequence ρ + 1 values that the simulator generated, where ρ =
min(r′, i)), gives x0 to the trusted party, outputs the bits a1, . . . , ai,
and halts.

– At round i = i∗ − r′, the simulator gives x to the trusted party and gets
the output a = f1(x, y).

• The simulator constructs (ai∗−r′ , . . . , ai∗−1) such that ai∗−r′+j = âj
by invoking Sp

2 on input x, output a = f1(x, y) and security parameter
n.

– For i = i∗− r′, . . . , i∗− 1: The simulator gives ai to the adversary A, if A
aborts, then the simulator outputs the bits a1, . . . , ai and halts.

– For i = i∗, . . . , r: The simulator gives ai = a to the adversary A, if A
aborts, then the simulator outputs the bits a1, . . . , ai and halts.

– The simulator outputs the bits a1, . . . , ar and halts.

a If the adversary gives an inappropriate x (or no x), then the simulator
sends some default x̂ ∈ X to the trusted party, outputs the empty string,
and halts.

Fig. 4: The Simulator S for Protocol SecSamp2Fair(Π).

19

We only focus on the last r′ + 1 elements of the corrupted party’s backup
sequence. Having assumed that i∗ has not been surpassed, anything prior to the
last r′ + 1 elements is essentially noise, and it has no bearing on the security
analysis. For every sequence of elements ~αr′ ∈ [m]r

′+1 and every β ∈ [m], we
compute the probability that the adversary’s view and honest party’s output
in the real world is equal to (~αr′ , β), and we express the result in terms of the
B

(,)
− -matrices. Similarly, for the ideal world, we compute the probability that

the simulator’s output and honest party’s output is equal to (~αr′ , β), and we

express the result in terms of the B(,)
+ -matrices and vector z

(~ar′)
x .

The point of the exercise is to obtain (linear) constraints for vector z
(~ar′)
x .

Then, we ask if the constraints are satisfiable, and, if so, whether solutions can be
found efficiently. The second question can be readily answered. If an appropriate
solution exists, the simulator can compute it efficiently. Indeed, the simulator
can approximate the probability of all possible sequences of size r′ + 1, and,
assuming it exists, the simulator computes z

(~ar′)
x by solving a linear system of

size |X| × (m− 1) · |Y |. Thus, it suffices to show that z
(~ar′)
x exists. The security

features of Π come into play in this regard.

An early abort on the part of the adversary alters the conditional3 probabil-
ity distribution of the honest party’s output. Security against sampling attacks
guarantees that the output remains consistent with the function at hand. Thus,
by introducing a threshold round and fine-tuning its parameter, we restrict the
distribution of the output until it falls within the range of the function, and the
simulator can match it with an appropriate input.

Three Simplifying Assumptions. The case where the adversary aborts be-
fore round r′ needs special consideration. However, the only difference is that

z
(~ai)
x depends on fewer elements. The analysis is largely the same and we do not

address this case any further. Furthermore, we assume that p
(α)
x 6= 0, for every

α ∈ [m] and x ∈ X. This assumption allows for a smoother exposition by dis-
regarding degenerate cases. Finally, regarding Π, we will assume that security
against sampling attacks holds perfectly, i.e. (4) and (5) are equal to 0` and 0k
respectively. Again, the latest assumption is not necessary to prove the theorem.
We do so in order to avoid introducing notions from Topology to deal with the
convergent sequences.

4.3 Real vs Ideal

For every sequence ~αr′ = (α0, . . . , αr′) ∈ [m]r
′+1 and every β ∈ [m], we compute

the probability that the adversary quitting at round i ≤ i∗ observes ~αr′ and
the honest party outputs β. The adversary is assumed to use input x ∈ X for
the computation. To account for every possible input of the honest party, the
relevant probabilities are expressed in terms of vectors.

3 conditioned on the adversary’s view.

20

Claim 4.2. In the real model, it holds that

Pr
[
(ai−r′ , . . . , ai, bi−1)Real = (~αr′ , β)

∣∣ i ≤ i∗] =

(1− γ)r
′+1 · p(α0)

x · · · p(αr′)x · q(β)T + γ(1− γ)r
′
· p(α0)
x · · · p(αr′−1)

x ·
[
B

(αr′ ,β)
−

]
x,∗

+

. . .+ γ(1− γ) · p(α0)
x ·

[
B

(α1...αr′ ,β)
−

]
x,∗

+ γ ·
[
B

(~αr′ ,β)
−

]
x,∗

,

where q(β) = M (∗,β)T · 1`/`.

Proof. Simple expansion over possible values of i∗.

Define c
(~αr′ ,β)
x ∈ Rk such that c

(~αr′ ,β)
x (y) = Pr

[
f2(x0, y) = β

∣∣∣x0 ← z
(~αr′)
x

]
.

Claim 4.3. In the ideal model, it holds that

Pr
[
(ai−r′ , . . . , ai, f2)Ideal = (~αr′ , β)

∣∣ i ≤ i∗] =

(1− γ)r
′+1 · p(α0)

x · · · p(αr′)x · c(~αr′ ,β)Tx + γ(1− γ)r
′
· p(α0)
x · · · p(αr′−1)

x ·
[
B

(αr′ ,β)
+

]
x,∗

+

. . .+ γ(1− γ) · p(α0)
x ·

[
B

(α1...αr′ ,β)
+

]
x,∗

+ γ ·
[
B

(~αr′ ,β)
+

]
x,∗

.

Thus, for every β ∈ [m], we require that c
(~αr′ ,β)T
x is close to

q(β)T +

r′∑
i=0

λi(γ, ~αr′) ·
[
B

(αr′−i...αr′ ,β)
− −B(αr′−i...αr′ ,β)

+

]
x,∗

,

where

λi(γ, ~αr′) =
γ(1− γ)r

′−i · p(α0)
x · · · p(αr′−i−1)

x

(1− γ)r′+1 · p(α0)
x · · · p(αr′)x

=
γ

(1− γ)i+1
· 1

p
(αr′−i)
x · · · p(αr′)x

.

Knowing that c
(~αr′ ,1)T
x = z

(~βr′)T
x ·M (∗,β), the simulation is successfully if there

exists probability vector z
(~αr′)
x ∈ Rk such that

z(~αr′)Tx ·
(
M (∗,1)

∥∥∥ · · · ∥∥∥M (∗,m−1)
)

s≡(
q(1)T

∥∥∥ · · · ∥∥∥q(m−1)T
)

+ λ0 ·
[
B

(αr′ ,1)
+ −B(αr′ ,1)

−

∥∥∥ · · · ∥∥∥B(αr′ ,m−1)
+ −B(αr′ ,m−1)

−

]
x,∗

+

. . .+ λr′ ·
[
B

(~αr′ ,1)
+ −B(~αr′ ,1)

−

∥∥∥ · · · ∥∥∥B(~αr′ ,m−1)
+ −B(~αr′ ,m−1)

−

]
x,∗

.

(6)

Define u
(~αr′)
x = z

(~αr′)
x − 1`/` and notice that (6) is equivalent to

21

u(~αr′)T
x ·

(
M (∗,1)

∥∥∥ · · · ∥∥∥M (∗,m−1)
)

s≡

λ0 ·
[
B

(αr′ ,1)
+ −B(αr′ ,1)

−

∥∥∥ · · · ∥∥∥B(αr′ ,m−1)
+ −B(αr′ ,m−1)

−

]
x,∗

+

· · ·+ λr′ ·
[
B

(~αr′ ,1)
+ −B(~αr′ ,1)

−

∥∥∥ · · · ∥∥∥B(~αr′ ,m−1)
+ −B(~αr′ ,m−1)

−

]
x,∗

,

(7)

and 
∑
x0

u(~αr′)
x (x0) = 0

∀x0 ∈ X, u(~αr′)
x (x0) ∈ [−1/`, 1− 1/`]

.

Lemma 4.4. Let c be an arbitrary vector and let M be an arbitrary matrix.
There exists u such that

∑
z u(z) = 0 and uT ·M = cT if and only if cTv = 0,

for every v such that Mv ∈ 〈1〉.

Proof. Define

M ′ =

−1 1 . . . 0
...
...
. . .

...
−1 0 . . . 1

 ·M .

Observe that the row-space of M ′ is equal to the image of the hyperplane
{u |

∑
z u(z) = 0} by MT and that ker(M ′) = {v |Mv ∈ 〈1〉}. Conclude by

applying the fundamental theorem of linear algebra. ut

Proof of Theorem 4.1. We show that there exist suitable vectors u
(~αr′)
x sat-

isfying (7), for every x ∈ X and ~αr′ ∈ [m]r
′+1. By assumption, security against

sampling attacks holds perfectly for Π. It follows that(
B

(~αi,1)
+ −B(~αi,1)

−

∥∥∥ · · · ∥∥∥B(~αi,m−1)
+ −B(~αi,m−1)

−

)
· y = 0` ,

for every y ∈ 〈L2〉. By Lemma 4.4, there exists u
(~αr′)
x,i such that

∑
x0

u
(~αr′)T
x,i (x0) =

0 and

u
(~αr′)T
x,i ·

(
M (∗,1)

∥∥∥ · · · ∥∥∥M (∗,m−1)
)

=[
B

(~αi,1)
+ −B(~αi,1)

−

∥∥∥ · · · ∥∥∥B(~αi,m−1)
+ −B(~αi,m−1)

−

]
x,∗

.

Thus, u
(~αr′)
x

def
=
∑
i λiu

(~αr′)
x,i satisfies (7). To conclude, we argue that there exists

γ0 such that u
(~αr′)
x (x0) ∈ [−1/`, 1− 1/`], for every γ < γ0. Recall that

λi(γ, ~αr′) =
γ

(1− γ)i+1
· 1

p
(αr′−i)
x · · · p(αr′)x

.

Observe that λi tends to 0 as γ tends to 0. ut

22

5 The Asymmetric Case

Our analysis of locking strategies and sampling attacks culminates in Theorem
4.1 from the previous section. The theorem states that, in order to demonstrate
that a given function is computable with full security, it suffices to design a
constant-round, passively-secure protocol that is secure against sampling at-
tacks. In this section, we look for relevant protocols for asymmetric Boolean
functions. We propose an algorithm that takes a description of the function as
input, and, depending on the termination step, either returns the description of
an appropriate protocol, or it returns that it failed to do so.

We begin by visiting some mathematical tools and a few useful lemmas.
Next, we define a game involving the parties computing f and the dealer. The
game simulates the last interaction in a correct protocol computing f , and whose
purpose is for the dealer to hand a backup4 output to the disadvantaged party
without compromising any of the security requirements. Finally, largely as an
extension of the game, we obtain an algorithm for designing constant-round
protocols that are passively secure and secure against sampling attacks. Using
the tools and the lemmas from section 5.1, we demonstrate that our algorithm
satisfies correctness.

Speculative Remark. For what it is worth, numerical results on small cases
indicate that our algorithm accounts for the overwhelmingly majority of non
semi-balanced functions. We also encountered a handful of non semi-balanced
functions for which our algorithm fails to come up with a suitable protocol. These
functions are noteworthy because we suspect that their unknown status cannot
be attributed to potential shortcomings of our algorithm. We believe that our
algorithm is as good at finding suitable protocols as can be expected.

5.1 Irreducible Locking Strategies

Let f : X×Y → {0, 1}2 denote some Boolean asymmetric (possibly randomized)
finite function. Since f is asymmetric, it has four associated matrices M (0,0),
M (0,1), M (1,0), M (1,1) ∈ [0, 1]`×k. Recall that locking strategies for P1 and P2

correspond to elements of the vector spaces 〈L1〉 = {x ∈ R` |xTM (1,∗) ∈
〈
1Tk
〉
}

and 〈L2〉 = {y ∈ Rk |M (∗,1)y ∈ 〈1`〉}, where L1 and L2 denote arbitrary bases of
each space. Without loss of generality, assume |L1| = s1 and |L2| = s2. Locking
strategies endow a matrix with a matroid structure, in the same way that linear
dependence does. We define the matroid by means of its minimally dependent
sets, i.e. circuits.

Definition 5.1. We say that the columns of M (∗,1) indexed by Y ′ ⊆ Y are
minimally dependent if

–
{
M (∗,1)ey

}
y∈Y ′ ∪ {1`} are linearly dependent,

4 Other than the actual output.

23

– for every y0 ∈ Y ′, it holds that
{
M (∗,1)ey

}
y∈Y ′\{y0}

∪ {1`} are linearly

independent.

Similarly, we say that the rows of M (1,∗) indexed by X ′ ⊆ X are minimally
dependent if

–
{
eTxM

(1,∗)}
x∈X′ ∪

{
1Tk
}

are linearly dependent,

– for every x0 ∈ X ′, it holds that
{
eTxM

(1,∗)}
x∈X′\{x0}

∪
{
1Tk
}

are linearly

independent.

Proposition 5.2. Suppose that the columns of M (∗,1) indexed by Y ′ ⊆ Y are
minimally dependent. Up to a multiplicative factor, there exists a unique q ∈
Rk \ {0k} such that M (∗,1)q ∈ 〈1`〉 and supp(q) = Y ′.

Proof. By definition, there exists q ∈ Rk such that M (∗,1)q ∈ 〈1`〉 and supp(q) =
Y ′. The non-trivial task is to show that this vector is unique, up to a multiplica-
tive factor. Suppose there exists q′ such that supp(q′) ⊆ Y ′ and M (∗,1)q′ ∈ 〈1`〉.
In pursuit of a contradiction, assume that q′ 6= λq, for every λ ∈ R. Equiva-
lently, there exists i, j ∈ Y ′ such that q(i) = λiq

′(i) and q(j) = λjq
′(j), with

λi 6= λj . Without loss of generality, say that λi 6= 0 and define q′′ = λi · q′ − q.
Deduce that M (∗,1)q′′ ∈ 〈1`〉 and supp(q′′) (Y ′, in contradiction with the fact
that the columns indexed by Y ′ are minimally dependent. ut

Definition 5.3. If q ∈ Rk is as in Proposition 5.2, we say that q is irreducible.

Proposition 5.4. There exists a basis of 〈L2〉 consisting of irreducible strate-
gies.

Proof. It is a well known that any generating set contains a basis. Thus, it suffices
to show that irreducible locking strategies form a generating set. Let y ∈ 〈L2〉
and consider supp(y). Let µ1, . . . , µty denote all the subsets of supp(y) that index
minimally dependent columns, and write q1, . . . ,qty for the associated unique
irreducible locking strategies. We show that y ∈ 〈q1, . . . ,qty〉 by constructing a
sequence of locking strategies y0, . . . ,ysy such that

y0 = y

yj+1 = yj − αj · q(j)

ysy = 0`

,

where αj ∈ R and q(j) ∈ {q1, . . . ,qty}. Let q(0) be an arbitrary element of

{q1, . . . ,qty} and fix j0 such that q(0)(j0) 6= 0. Define y1 = y − y(j0)
q(0)(j0)

· q(0).

Notice that y1 is a locking strategy and that supp(y1) (supp(y). Since y1 is a
locking strategy, it follows that µ(1) ⊂ supp(y1), for some µ(1) ∈ {µ1, . . . , µty}.
Write q(1) for the associated locking strategy. Similarly to what we just did, fix

j1 such that q(1)(j1) 6= 0, define y2 = y1 − y1(j1)
q(1)(j1)

· q(1), and notice that y2

is a locking strategy and that supp(y2) (supp(y1). Repeat the procedure and
conclude that it terminates in at most |supp(y)| steps. ut

24

Define Y0, . . . , Yk′ to be a partitioning of the input domain Y that we construct
as follows. First, y ∈ Y0 if ey is orthogonal to 〈L2〉. Next, for i ≥ 1, let q(i) be an
irreducible locking strategy such that supp(q(i))∩ (Yi−1 ∪ . . . ,∪Y0) = ∅. Finally,

y ∈ Yi if there exist irreducibles q
(i)
1 , . . . ,q

(i)
ty such that

q(i) = q
(i)
1

supp(q
(i)
j) ∩ supp(q

(i)
j+1) 6= ∅

y ∈ supp(q
(i)
ty)

.

5.2 The Dealer Game

In this section, we present a game involving the parties computing f and the
dealer. The purpose of the game is to define a simplified variant of the security
against sampling attacks requirement. Assume that the honest party, say P2,
applies some locking strategy y while executing a protocol for computing f .
If the protocol is secure against sampling attacks, then the adversary cannot
distinguish between the correct output and the backup output of the honest
party. In the worst case, the adversary is handed the output of the corrupted
party before the honest party’s receives his. In such an event, we ask what the
honest party’s backup output ought to be, other than the correct output.

Write ai (resp. bi) for P1’s (resp. P2’s) backup output at round i. Let b̂∗
denote the bit obtained from b∗ by applying5 y, and r denotes the number of
rounds. From an honest P2’s perspective, we require that the pairs (ai, b̂i−1)

and (ai, b̂r) are statistically close, for every x ∈ X, y ∈ 〈L2〉 and i ∈ {1 . . . r}.
Consider the following process involving a dealer. The dealer receives inputs x
and y from P1 and P2, respectively, and computes f(x, y) = (f1(x, y), f2(x, y)).
Then, the dealer hands f1(x, y) to P1 and a bit b to P2, where b is a probabilistic
function of P2’s input and f2(x, y). We investigate how to construct b with the
following goals in mind.

1. minimize the information b contains about f2(x, y)
2. (f1, f̂2) is statistically close to (f1, b̂), for every x ∈ X and q ∈ 〈L2〉.

Let us introduce vectors b(0), b(1) ∈ Rk such that

b(β)(y0) = Pr
[
b = 1

∣∣∣ f2(x, y) = β ∧ y = y0

]
.

Fix y ∈ Y , and notice that b ≡ f2 on input y if b(0)(y) = 0 and b(1)(y) = 1. On
the other hand, b contains no information about f2(x, y) if and only if b(0)(y) =
b(1)(y). Consequently, our aim is for b(0) and b(1) to be equal on as many indices
as possible.

Claim 5.5. Using the notation above, It holds that (f1, f̂2) is statistically close

to (f1, b̂) if and only if, for every y ∈ 〈L2〉,{
M (0,0)

(
b(0) ∗ y

)
+M (0,1)

(
b(1) ∗ y

)
= M (0,1)y

M (1,0)
(
b(0) ∗ y

)
+M (1,1)

(
b(1) ∗ y

)
= M (1,1)y

. (8)

5 Recall that y encodes an input distribution but also a certain transformation.

25

Proof. Fix x ∈ X, y ∈ 〈L2〉, α ∈ {0, 1}, and note that

Pr
[
(f1, f̂2) = (α, 1)

]
= eTx

 ∑
y(y)≥0

[
M (α,1)

]
∗,y

y(y) +
∑

y(y)<0

[
M (α,0)

]
∗,y
|y(y)|


= eTx

M (α,1)y +
∑

y(y)<0

[
M (α,∗)

]
∗,y
|y(y)|


On the other hand, Pr

[
(f1, b̂) = (α, 1)

]
=

∑
y(y)≥0

eTx

([
M (α,1)

]
∗,y
· b(1)(y) +

[
M (α,0)

]
∗,y
· b(0)(y)

)
y(y)+

∑
y(y)<0

([
M (α,1)

]
∗,y
· (1− b(1)(y)) +

[
M (α,0)

]
∗,y
· (1− b(0)(y))

)
|y(y)| ,

and thus Pr
[
(f1, b̂) = (α, 1)

]
=

eTx

M (α,0)
(
b(0) ∗ y

)
+M (α,1)

(
b(1) ∗ y

)
+
∑

y(y)<0

[
M (α,∗)

]
∗,y
|y(y)|

 .

To conclude, note that since b(0),b(1) are fixed vectors, it holds that (f1, f̂2) and

(f1, b̂) are statistically close if and only if they are identically distributed. ut

Moving on, fix Yi ∈ {Y0, . . . , Yk′} and suppose there exist b(0),b(1) satisfying
eq. (8) such that b(0)(y0) 6= 0 or b(1)(y0) 6= 1, for some y0 ∈ Yi. We show that
there exist b′(0),b′(1) satisfying eq. (8) such that b′(0)(y) = b′(1)(y), for every
y ∈ Yi. This is where the underlying matroid structure will come in handy.

Proposition 5.6. It holds that b(1)(y)−b(0)(y) = b(1)(y0)−b(0)(y0), for every
y ∈ Yi. In addition, vectors b′(1), b′(0) satisfy eq. (8), where

b′(b)(y) =


b(b)(y) if y /∈ Yj

b(0)(y)

b(0)(y0)− b(1)(y0) + 1
if y ∈ Yj

.

Proof. For the first part of the claim, we apply Proposition 5.2. The case i = 0
is left to the reader. Let i ≥ 1 and fix irreducible q such that y0 ∈ supp(q). We
know that, for any y ∈ 〈L2〉,

M (0,0)
(
b(0) ∗ y

)
+M (0,1)

(
b(1) ∗ y

)
= M (0,1)y , (9)

M (1,0)
(
b(0) ∗ y

)
+M (1,1)

(
b(1) ∗ y

)
= M (1,1)y . (10)

26

Let y = q and add the two expressions.(
1`×k −M (∗,1)

)(
b(0) ∗ q

)
+M (∗,1)

(
b(1) ∗ q

)
= M (∗,1)q .

By moving a few terms around, deduce that M (∗,1) ((b(1) − b(0)) ∗ q
)
∈ 〈1`〉.

Consequently, by Proposition 5.2, b(1)(y) − b(0)(y) = b(1)(y0) − b(0)(y0), for
every y ∈ supp(q). Moving on, fix an arbitrary y ∈ Yi. We know there exists a

sequence of irreducibles q
(i)
1 . . .q

(i)
t′y

such that


q = q

(i)
1

supp(q
(i)
j) ∩ supp(q

(i)
j+1) 6= ∅

y ∈ supp(q
(i)
t′y

)

,

Apply the same argument as above and, by induction, deduce that b(1)(y) −
b(0)(y) = b(1)(y0) − b(0)(y0). For the second part of the claim, we rely on the
following observations.

– Vectors b
(0)
0 and b

(1)
0 satisfy equations (9) and (10), where

b
(0)
0 =

{
b(0)(y) if y /∈ Yi
0 if y ∈ Yi

, b
(1)
0 =

{
b(1)(y) if y /∈ Yi
1 if y ∈ Yi

.

– Solutions to Equations (9) and (10) can be combined linearly.

The second item is trivial. For the first item, we show that vectors b
(0)
0 and

b
(1)
0 are solutions to the equations for a particular basis of 〈L2〉. By Proposition

5.4, consider a basis of 〈L2〉 that consists of irreducible strategies. Conclude by
observing that Yi∩ supp(q′) = ∅, for every irreducible q′ such that supp(q) * Yi.
Next, define

b′(b) =
1

b(0)(y0)− b(1)(y0) + 1
· b(b) +

(
1− 1

b(0)(y0)− b(1)(y0) + 1

)
· b(b)

0 .

We note that b′(0), b′(1) admit the right expression. It remains to show that
b′(b)(y) ∈ [0, 1], for every y. Since b′(b)(y) = b(b)(y) if y /∈ Yj , it suffices to show
that

b(0)(y)

b(0)(y)− b(1)(y) + 1
∈ [0, 1] , (11)

for y ∈ Yi. We conclude by observing that (11) is equivalent to 0 ≤ b(0)(y) and
b(1)(y) ≤ 1. ut

27

5.3 The Algorithm

Next, we show how to construct passively-secure protocols that are also secure
against sampling attacks. The idea is to build the backup outputs from the
bottom-up, i.e. start with ar ≡ f1 and br ≡ f2, and construct ar−1 and br−1
such that ar−1 (resp. br−1) only depends on x and f1(x, y) (resp. y and f2(x, y))
without compromising security against sampling attacks.

To this end, we employ a minimization algorithm in combination with Propo-
sition 5.6. Without loss of generality, we begin by assuming that P1 is corrupted,
and that he observes ar ≡ f1(x, y). To define br−1, we run an optimization al-
gorithm that constructs vectors {b(β)}β∈{0,1}, and we delete any input y ∈ Y
for which b(1)(y) − b(0)(y) 6= 1. Then, in order to define ar−1, we run an op-
timization algorithm that constructs vectors {a(α)}α∈{0,1}, assuming P2 is cor-
rupted, and the party is privy to the output only if the input he used was not
deleted in the previous step. We proceed by deleting any input x ∈ X for which
a(1)(y) − a(0)(y) 6= 1. We carry on in this fashion until one party runs out of
inputs, or the process does not allow for any further deletions.

Getting ahead of ourselves, we note that deleted inputs cannot be used by
the adversary to mount a successful sampling attack. In light of Proposition 5.6,
if an input was deleted at iteration i, then every backup output until round r− i
contains no information about the output.

Additional Notation. Before we describe the algorithm, let us introduce some
notation. For every q ∈ L2 and X ′ ⊆ X, define

Aq(X ′) =


[
M (0,0) ∗Q

]
X′

[
M

(0,1)
X′ ∗Q

]
X′[

M (1,0) ∗Q
]
X′

[
M (1,1) ∗Q

]
X′

M (∗,0) ∗Q M (∗,1) ∗Q

 , ~bq =


[
M (0,1)

]
X′

q[
M (1,1)

]
X′

q

M (∗,1)q


where Q = 1` ·qT and the notation [·]X′ indicates that only the rows indexed
by X ′ ⊆ X appear. Write L2 = {q1, . . . ,qs2} and consider the following linear
system for unknown (b(0)T ,b(1)T).

Aq1
(X ′)

Aq2(X ′)
...

Aqs2
(X ′)

 ·
(

b(0)

b(1)

)
=


~bq1

(X ′)
~bq2(X ′)

...
~bqs2 (X ′)

 (12)

(
0k
0k

)
≤
(

b(0)

b(1)

)
≤
(

1k
1k

)
Similarly, for every p ∈ L1 and Y ⊆ Y ′, define

Bp(Y ′) =


[
M (0,0)T ∗ P

]
Y ′

[
M (1,0)T ∗ P

]
Y ′[

M (0,1)T ∗ P
]
Y ′

[
M (1,1)T ∗ P

]
Y ′

M (0,∗)T ∗ P M (1,∗)T ∗ P

 , ~ap =


[
M (1,0)T

]
Y ′

p[
M (1,1)T

]
Y ′

p

M (1,∗)Tp



28

where P = 1k ·pT and the notation [·]Y ′ indicates that only the rows indexed
by Y ′ ⊆ Y appear. Write L1 = {p1, . . . ,ps1} and consider the following linear
system for unknown (a(0)T ,a(1)T).

Bp1
(Y ′)

Bp2
(Y ′)
...

Bps1
(Y ′)

 ·
(

a(0)

a(1)

)
=


~ap1

(Y ′)
~ap2

(Y ′)
...

~aps1 (Y ′)

 (13)

(
0`
0`

)
≤
(

a(0)

a(1)

)
≤
(

1`
1`

)

Building the Backup Outputs

1. Inputs: f , L1, L2.
2. Define X− = X and Y − = Y ∪ {k + 1}.
3. Minimize −1Tk b(0) + 1Tk b(1) subject to

Aq1(X−)
Aq2(X−)

...
Aqs2

(X−)

 ·
(

b(0)

b(1)

)
=


~bq1(X−)
~bq2(X−)

...
~bqs2 (X−)


(

0k
0k

)
≤
(

b(0)

b(1)

)
≤
(

1k
1k

)
Define Y + consisting of all the y’s such that b(1)(y)− b(0)(y) = 1.

4. If Y + = Y − or Y + = ∅ stop, otherwise set Y −
def
= Y + and go to Step 5.

5. Minimize −1T` a(0) + 1T` a(1) subject to
Bp1(Y −)
Bp2(Y −)

...
Bps1

(Y −)

 ·
(

a(0)

a(1)

)
=


~ap1(Y −)
~ap2(Y −)

...
~aps1 (Y −)


(

0`
0`

)
≤
(

a(0)

a(1)

)
≤
(

1`
1`

)
Define X+ consisting of all the x’s such that a(1)(x)− a(0)(x) = 1.

6. If X+ = X− or X+ = ∅ stop, otherwise set X−
def
= X+ and go to Step 3.

7. Output: The transcript of the execution.

Fig. 5: An Algorithm for Designing Fully-Secure Protocols.

As noted earlier, the idea is to delete inputs from the parties in a sequence
of iterations. Namely, we begin by running a linear program that minimizes

29

−1Tk b(0) + 1Tk b(1) under the constraints of eq. (12), with X ′ = X. At this point,
we delete any input y ∈ Y for which b(1)(y) − b(0)(y) < 1. Write Y − ⊆ Y for
the remaining inputs. We proceed by running a linear program that minimizes
−1T` a(0) + 1T` a(1) under the constraints of eq. (13), with Y ′ = Y −. Again, we
delete any input x ∈ X for which a(1)(x)−a(0)(x) < 1. We repeat the procedure
until either one of the parties runs out of inputs or no further deletions can be
made, for either party. See fig. 5 for a full description of the algorithm. Before
we discuss the general ramifications of the terminating step, we illustrate the
usefulness of our algorithm with an example.

Example. Consider the deterministic asymmetric Boolean function from [3]
described by the following matrices.

M (1,∗) =


0 1 1 0
1 0 1 1
1 0 0 0
0 1 0 1

 , M (∗,1) =


1 1 1 0
1 0 1 1
0 1 0 1
1 1 0 0

 .

For this function, each party has a unique locking strategy. Namely, pT =
(1, 1, 1, 1) and qT = (1, 1, 0, 1) respectively. Let us walk through each itera-
tion of the algorithm. The first optimization returns b(0)T = (0, 0, 1, 0) and
b(1)T = (1, 1, 0, 1). Notice that Y + = {y1, y2, y4}. The algorithm assigns Y − =
Y + and moves on to the next step. The second optimization returns a(0)T =
(1/2, 0, 1, 1/2) and a(1)T = (1/2, 0, 1, 1/2). Notice that X+ = ∅, and the algo-
rithm terminates. Now, we will use these vectors to define backup outputs for
the parties. Consider the following two-round protocol described by means of
the backup outputs {(ai, bi)}i=0...2. Assuming the parties use x ∈ X and y ∈ Y
for the computation,

a0 = f1(x, ỹ) where ỹ ∈U Y b0 = f2(x̃, y) where x̃ ∈U X

a1 =


a ∈U {0, 1} if x ∈ {x1, x4}
1 if x = x2

0 if x = x3

b1 =

{
b ∈U {0, 1} if y = y3

f2(x, y) if y 6= y3
.

a2 = f1(x, y) b2 = f2(x, y)

Observe that a1 and b1 are constructed in accordance with a(0), a(1) and b(0),b(1),
respectively. It is not hard to see that the resulting protocol is passively secure
and secure against sampling attacks. In light of Theorem 4.1, function f is com-
putable with full security. Next, we discuss the general case.

General Case. Assume that the algorithm terminates because one of the par-
ties ran out of inputs. Without loss of generality, say that Y + = ∅ and write(

b
(0)
0

b
(1)
0

)
· · ·

(
b
(0)
t

b
(1)
t

)
,

(
a
(0)
1

a
(1)
1

)
· · ·

(
a
(0)
t

a
(1)
t

)

30

for the vectors computed in the execution of the algorithm – starting from the

bottom-up – i.e. b
(0)
0 ,b

(1)
0 denote the last vectors computed for P2 and b

(0)
t ,b

(1)
t

denote the first vectors computed for P2. Similarly, a
(0)
1 ,a

(1)
1 denote the last

vectors computed for P1 and a
(0)
t ,a

(1)
t denote the first vectors computed for

P1. Now, assume6 that for every i ∈ {1, . . . , t}, and every j ∈ {1, . . . , `}, either

a
(1)
i (j)− a

(0)
i (j) = 1 or a

(1)
i (j) = a

(0)
i (j). Similarly, for every i ∈ {0, . . . , t}, and

every j ∈ {1, . . . , k}, either b
(1)
i (j) − b

(0)
i (j) = 1 or b

(1)
i (j) = b

(0)
i (j). Write Tf

for the transcript of the algorithm and consider the protocol from fig. 6.

Protocol SecSamp(Tf)

1. The parties P1 and P2 hand their inputs, denoted x and y respectively, to
the dealer.a

2. The dealer computes f(x, y) = (α, β) and constructs (a0, . . . , at+1) and
(b0, . . . , bt+1) such that

– a0 = f1(x, ỹ), where ỹ ∈U Y .

– b0 is sampled independently such that Pr [b0 = 1] = b
(0)
0 (y) = b

(1)
0 (y).

– For every i ∈ {1, . . . , t}, ai and bi are bits satisfying{
Pr [ai = 1] = a

(α)
i (x)

Pr [bi = 1] = b
(β)
i (y)

– at+1 = f1(x, y) and bt+1 = f2(x, y).
3. The dealer hands a0 to P1 and b0 to P2.
4. For i = 1, . . . , t+ 1,

(a) The dealer gives ai to P1. If P1 aborts, then P2 outputs bi−1 and halts.
(b) The dealer gives bi to P2. If P2 aborts, then P1 outputs ai and halts.

a If x is not in the appropriate domain or P1 does not hand an input, then
the dealer sends f(x̂, y) (where x̂ is a default value) to P2, which outputs
this value and the protocol is terminated. The case of an inappropriate y is
dealt analogously.

Fig. 6: Protocol SecSamp(Tf) for Computing f .

Theorem 5.7. Using the notation above, Protocol SecSamp(Tf) is passively
secure and secure against sampling attacks.

Proof (Sketch). The fact that the protocol is passively secure is trivial. Regarding
security against sampling attacks, notice that, at any given round, the adver-
sary either knows the output or knows nothing about it (other than what the
corrupted party’s input suggests). The adversary will not be able to mount a

6 In light of Proposition 5.6, we can construct vectors admitting the required expres-
sion.

31

successful sampling attack in neither case. If the output has not been revealed
to her, then her view is independent of the honest party’s output resulting from
some locking strategy (regardless of whether she quits at that round or at the
end). If the output has been revealed to the adversary, then sampling attacks
are foiled by design thanks to the algorithm. ut

When the algorithm fails. We turn our attention to functions for which the
algorithm returns Y + 6= ∅ and X+ 6= ∅. Semi-balanced functions fall under
this category. By Cleve [7], protocols that satisfy both correctness and security
against sampling attacks do not exist in the plain model. However, there are
functions other than semi-balanced for which the algorithm fails. Unfortunately,
we do not fully understand why that is the case. We elaborate on this point in
the next section.

6 Conclusions and Open Problems

In this paper, we introduced a notion of security referred to as security against
sampling attacks. The notion of security is useful because it is necessary for fair-
ness and it appears easier to achieve compared to fairness. What is more, we
showed how certain protocols satisfying security against sampling attacks can
be transformed into fully-secure protocols. We emphasize that the route towards
full-security we propose is not arbitrary; every known protocol based on GHKL
can be viewed as a special case of our approach. Finally, for asymmetric func-
tions, we showed how to design suitable protocols by means of an algorithm.
Given an asymmetric (possibly randomized) Boolean function, our algorithm
either returns an appropriate protocol or it returns that it failed to do so. Un-
fortunately, our algorithm fails for functions other than semi-balanced, and the
status of these functions is still unknown. We provide a few conjectures as to
why that may be the case.

First, we believe that a failure on the part of the algorithm is essentially
a proof of impossibility. In other words, we believe that if our algorithm fails
to come up with an suitable protocol for some function, then any realization
of the function is susceptible to some attack. At the same time, we believe
that the attack in question cannot rely solely on sampling attacks, but on some
combination of passive and sampling attacks. The motivation behind this belief
is that we suspect certain functions to be computable with fairness-without-
privacy7 but not with full security. A candidate for such a function is given by
the matrices

M (1,∗) =


1 1 1 1 0
0 1 0 1 1
1 1 1 1 1
0 0 1 0 1
1 0 0 0 1

 , M (∗,1) =


1 1 0 0 0
1 0 0 0 1
1 0 0 1 0
0 0 1 1 1
0 1 0 1 0

 .

7 Of course, this notion needs to be formalized.

32

The Multi-Party Case. We note that, like [3], our analysis extends to the
multi-party case where the total number of parties is constant and exactly half
of the parties are corrupted. Specifically, if f = (f1, . . . , ft) : Z1 × . . . × Zt →
[m]t denotes a (possibly randomized) t-party function, there are

(
t
t/2

)
two-party

functions that result from partitioning the set into two equal-sized subsets. These
functions can be viewed as non-Boolean asymmetric functions in X × Y →
[mt/2]2. Using the techniques from [3, 5], functionality f is fair if and only if all
of the underlying two-party functions are fair as well. Thus, our framework is
also useful in this regard.

Finally, our work says little about the multi-party case with absolute dishon-
est majorities as well as two-party and multi-party functionalities that depend
on the security parameter F = {fn}n∈N. Of course, locking strategies and sam-
pling attacks are still meaningful in these settings, and it would be interesting
to see how they can be put to use.

References

1. S. Agrawal and M. Prabhakaran, On fair exchange, fair coins and fair sam-
pling, in CRYPTO, 2013, pp. 259–276.

2. G. Asharov, Towards characterizing complete fairness in secure two-party com-
putation, in TCC, 2014, pp. 291–316.

3. G. Asharov, A. Beimel, N. Makriyannis, E. Omri, Complete Characterization
of Fairness in Secure Two-Party Computation of Boolean Functions, in TCC 2015,
pp. 119-228.

4. G. Asharov, Y. Lindell, and T. Rabin, A full characterization of functions that
imply fair coin tossing and ramifications to fairness, in TCC, 2013, pp. 243–262.

5. A. Beimel, E. Omri, and I. Orlov, Protocols for multiparty coin toss with a
dishonest majority, J. of Cryptology, 28 (2015), pp. 551–600.

6. R. Canetti, Security and composition of multiparty cryptographic protocols, J. of
Cryptology, 13(1) (2000), pp. 143–202.

7. R. Cleve, Limits on the security of coin flips when half the processors are faulty,
in STOC, 1986, pp. 364–369.

8. O. Goldreich, Foundations of Cryptography, Volume II Basic Applications, Cam-
bridge University Press, 2004.

9. O. Goldreich, S. Micali and A. Wigderson, How to play any mental game
or a completeness theorem for protocols with honest majority, STOC, pp. 218–229,
1987.

10. S. D. Gordon, C. Hazay, J. Katz, and Y. Lindell, Complete fairness in secure
two-party computation, J. of the ACM, 58 (2011), p. Article No. 24.

11. S. D. Gordon and J. Katz, Complete fairness in multi-party computation without
an honest majority, in TCC, 2009, pp. 19–35.

12. N. Makriyannis, On the Classification of Finite Boolean Functions up to Fair-
ness,In Proc. of the Security and Cryptography for Networks Conference, pp. 135–
154, 2014.

13. A. C. Yao, Protocols for secure computations, in FOCS, 1982, pp. 160–164.

33

Missing Proofs

Proof of Proposition 3.3. To prove the claim, we show that

Pr [(out1, out2) = (1, 1)] =
∑

µ,ν∈M
xTµ ·M (µ,ν) · yν

+ δ1 ·

〈y[m] |1k
〉

+
∑

yν(y)<0

|yν(y)|

+ δ2 ·

〈x[m] |1`
〉

+
∑

xµ(x)<0

|xµ(x)|


+

〈x[m] |1`
〉

+
∑

xµ(x)<0

|xµ(x)|

 ·
〈y[m] |1k

〉
+

∑
yν(y)<0

|yν(y)|


So, for every (µ, ν) ∈M2, define matrix M̂ (µ,ν) such that

M̂ (µ,ν)(x, y) =


Pr [(f1(x, y), f2(x, y)) ∈ µ× ν] if xµ(x) ≥ 0,yν(y) ≥ 0

Pr [(f1(x, y), f2(x, y)) ∈ µ× ν] if xµ(x) ≥ 0,yν(y) < 0

Pr [(f1(x, y), f2(x, y)) ∈ µ× ν] if xµ(x) < 0,yν(y) ≥ 0

Pr [(f1(x, y), f2(x, y)) ∈ µ× ν] if xµ(x) < 0,yν(y) < 0

.

Let |xµ| and |yν | denote the vectors obtained from xµ and yν by taking the
absolute value of all the entries. Clearly, Pr [(out1, out2) = (1, 1)] =

∑
µ,ν∈M

|xµ|T ·M̂ (µ,ν) · |yν |+

δ1 +
∑

xµ(x)<0

|xµ(x)|

 · 〈y[m] |1k
〉

+

δ2 +
〈
y[m] |1k

〉
+

∑
yµ(y)<0

|yµ(y)|

 · 〈x[m] |1`
〉
.

Next, |xµ|T · M̂ (µ,ν) · |yν | =∑
xµ(x)≥0
yν(y)≥0

xµ(x)·Pr [(f1(x, y), f2(x, y)) ∈ µ× ν] · yν(y)

+
∑

xµ(x)≥0
yν(y)<0

xµ(x) · Pr [(f1(x, y), f2(x, y)) ∈ µ× ν] · |yν(y)|

+
∑

xµ(x)<0
yν(y)≥0

|xµ(x)|·Pr [(f1(x, y), f2(x, y)) ∈ µ× ν] · yν(y)

+
∑

xµ(x)<0
yν(y)<0

|xµ(x)| · Pr [(f1(x, y), f2(x, y)) ∈ µ× ν] · |yν(y)| .

34

Now, note that

Pr [(f1(x, y), f2(x, y)) ∈ µ× ν] =

Pr [f1(x, y) ∈ µ]− Pr [(f1(x, y), f2(x, y)) ∈ µ× ν]

Pr [(f1(x, y), f2(x, y)) ∈ µ× ν] =

Pr [f2(x, y) ∈ ν]− Pr [(f1(x, y), f2(x, y)) ∈ µ× ν] ,

and that

Pr [(f1(x, y), f2(x, y)) ∈ µ× ν] =

1 + Pr [(f1(x, y), f2(x, y)) ∈ µ× ν]− Pr [f1(x, y) ∈ µ]− Pr [f2(x, y) ∈ ν] .

From all of the above, it follows that
∑
µ,ν∈M |xµ|T · M̂ (µ,ν) · |yν | =∑

µ,ν∈M
xTµ ·M (µ,ν) · yν +

∑
yν(y)<0

|yν(y)| ·
∑
µ

xTµ

[
M (µ,∗)

]
∗,y

+
∑

xµ(x)<0

|xµ(x)| ·
∑
ν

[
M (∗,ν)

]
x,∗

yν +
∑

xµ(x)<0
yν(y)<0

|xµ(x)| · |yν(y)|

=
∑

µ,ν∈M
xTµ ·M (µ,ν) · yν + δ1 ·

∑
yν(y)<0

|yν(y)|

+ δ2 ·
∑

xµ(x)<0

|xµ(x)|+
∑

xµ(x)<0
yν(y)<0

|xµ(x)| · |yν(y)|

ut

Proof of Proposition 3.4. Since {xµ}µ∈M and {yµ}µ∈M are locking strate-
gies, let δ1, δ2 ∈ R such that δ1 · 1Tk =

∑
µ∈M xTµ · M (µ,∗) and δ2 · 1` =∑

ν∈MM (∗,ν) · yν . The proof relies on applying Proposition 3.3. Let us com-
pute

∑
µ,ν∈M

xTµ ·M (µ,ν) · y′ν =
∑
µ

m−1∑
b=1

xTµ ·M (µ,b) · yb

=
∑
µ

m−1∑
b=1

xTµ ·M (µ,b) ·

 ∑
ν | b∈ν

yν −
∑
ν | 0∈ν

yν


=
∑
µ

xTµ ·

m−1∑
b=1

∑
ν | b∈ν

M (µ,b) · yν −
m−1∑
b=1

∑
ν | 0∈ν

M (µ,b) · yν


=
∑
µ

xTµ ·

∑
ν

∑
b∈ν\{0}

M (µ,b) · yν −
∑
ν | 0∈ν

m−1∑
b=1

M (µ,b) · yν

 .

35

Now, observe that
∑m−1
b=1 M (µ,b) =

∑m−1
b=0 M (µ,b) −M (µ,0) = M (µ,∗) −M (µ,0).∑

µ,ν∈M
xTµ ·M (µ,ν) · y′ν =

∑
µ

xTµ ·

∑
ν

∑
b∈ν\{0}

M (µ,b) · yν +
∑
ν | 0∈ν

(
M (µ,0) −M (µ,∗)

)
· yν

 .

Thus,

∑
µ,ν∈M

xTµ ·M (µ,ν) · y′ν =
∑
µ

xTµ ·

∑
ν

∑
b∈ν

M (µ,b) · yν −M (µ,∗) ·
∑
ν | 0∈ν

yν


=
∑
µ,ν

xTµ ·M (µ,ν) · yν −

(∑
µ

xTµ ·M (µ,∗)

) ∑
ν | 0∈ν

yν

=
∑
µ,ν

xTµ ·M (µ,ν) · yν − δ1 · 1Tk ·
∑
ν | 0∈ν

yν

=
∑
µ,ν

xTµ ·M (µ,ν) · yν − δ1 ·
∑
ν | 0∈ν

〈yν |1k〉 .

To conclude, observe that by eq. (1),

∑
ν∈M

M (∗,ν) · y′ν =

δ2 − ∑
ν | 0∈ν

〈yν |1k〉

 · 1` .
ut

Proof of Proposition 3.7. In pursuit of a contradiction, say there exists

{In}n∈N, and (~αIn , βn) ∈ [m]
|In| × {0, 1} and t ∈ poly such that for an infinite

number of n’s∣∣Pr
[
a+
In

= (~αIn , βn)
]
− Pr

[
a−In = (~αIn , βn)

]∣∣ ≥ 1

t(n)

Now consider the following attack: If (aj0 , . . . , ajin) = ~αIn , quit at round jin .
Otherwise proceed honestly. We show that the attack results in a bias. Let’s
compute the probability that the honest party’s output is equal to βn.

Pr
[
ôut2 = βn

]
= Pr

[
~aIn = ~αIn ∧ b̂jin−1 = βn

]
+ Pr

[
~aIn 6= ~αIn ∧ b̂r = βn

]
= Pr

[
~aIn = ~αIn ∧ b̂i−1 = βn

]
− Pr

[
~aIn = ~αIn ∧ b̂r = βn

]
+ Pr

[
b̂r = βn

]
(14)

36

By correctness ∣∣∣Pr
[
b̂r = βn

]
− Pr

[
f̂2 = βn

]∣∣∣ ≤ negl(n) . (15)

Combining (14) and (15), and using the triangle inequality, it follows that∣∣∣Pr
[
ôut2 = βn

]
− Pr

[
f̂2 = βn

]∣∣∣ ≥∣∣∣Pr
[
ôut2 = βn

]
− Pr

[
b̂r = βn

]∣∣∣− ∣∣∣Pr
[
b̂r = βn

]
− Pr

[
f̂2 = βn

]∣∣∣
≥∣∣Pr

[
a+
In

= (~αIn , βn)
]
− Pr

[
a−In = (~αIn , βn)

]∣∣− negl(n)

≥ 1

t(n)
− negl(n) ≥ 1

c · t(n)
,

for any fixed c > 1 and n large enough. Turning to the converse, suppose that
for every {In}n∈N, , for every x ∈ X and y ∈ 〈L2〉, and every (~αIn , βn) ∈
[m]
|In| × {0, 1} it holds that∣∣Pr

[
a+
In

= (~αIn , βn)
]
− Pr

[
a−In = (~αIn , βn)

]∣∣ ≤ negl(n) .

Let p~αIn denote the probability that the adversary quits at round jin having
observed ~αIn . Let’s compute the bias. By the triangle inequality,∣∣∣Pr

[
ôut2 = 1

]
− Pr

[
f̂2 = 1

]∣∣∣ ≤∣∣∣Pr
[
ôut2 = 1

]
− Pr

[
b̂r = 1

]∣∣∣+
∣∣∣Pr
[
b̂r = 1

]
− Pr

[
f̂2 = 1

]∣∣∣ . (16)

And thus

(16) ≤

∣∣∣∣∣∣
∑
~αIn

Pr
[
ôut2 = 1 ∧ ~aIn = ~αIn

]
− Pr

[
b̂r = 1 ∧ ~aIn = ~αIn

]∣∣∣∣∣∣+ negl(n)

≤
∑
~αIn

p~αIn ·
∣∣Pr
[
a−i = (~αIn , 1)

]
− Pr

[
a+
In

= (~αIn , 1)
]∣∣+ negl(n)

≤ negl(n) .

The first inequality follows by a simple expansion. The second inequality follows
from the triangle inequality and the fact that

Pr
[
ôut2 = 1 ∧ ~aIn = ~αIn

]
=

p~αIn · Pr
[
b̂jin−1 = 1 ∧ ~aIn = ~αIn

]
+ (1− p~αIn) · Pr

[
b̂r = 1 ∧ ~aIn = ~αIn

]
.

The last inequality follows from the hypothesis of the claim and the fact that
|In| is constant in the security parameter. ut

37

Proof of Theorem 3.9. Write f̂2 for P2’s output resulting from some strategy
yT = (yT1 , . . . ,y

T
m−1) and let |y| denote the vector obtained from y by taking

the absolute value of all the entries. In addition, define B̂
(~αIn ,β)
+ and B̂

(~αIn ,β)
−

such that

B̂
(~αIn ,β)
+ (x, y) =

{
Pr [(~aIn(x, y), br(x, y)) = (~αIn , β)] if yβ(y) ≥ 0

Pr [~aIn(x, y) = ~αIn ∧ br(x, y) 6= β] if yβ(y) < 0
,

B̂
(~αIn ,β)
− (x, y) =

{
Pr
[
(~aIn(x, y), bjin−1(x, y)) = (~αIn , β)

]
if yβ(y) ≥ 0

Pr
[
~aIn(x, y) = ~αIn ∧ bjin−1(x, y) 6= β

]
if yβ(y) < 0

.

Let us compute the probability that (~aIn , f̂2) is equal to (~αIn , 1).

Pr
[
(~aIn , f̂2) = (~αIn , 1)

]
=

m−1∑
b=1

B̂
(~αIn ,β)
+ · |yb|

=

m−1∑
b=1

B
(~αIn ,β)
+ · yb +

∑
yb(j)<0

|yb(j)| ·
[
B

(~αIn ,∗)
+

]
∗,j

Pr
[
(~aIn , b̂jin−1) = (~αIn , 1)

]
=

m−1∑
b=1

B̂
(~αIn ,β)
− · |yb|

=

m−1∑
b=1

B
(~αIn ,β)
− · yb +

∑
yb(j)<0

|yb(j)| ·
[
B

(~αIn ,∗)
−

]
∗,j

Notice that

Pr
[
(~aIn , f̂2) = (~αIn , 1)

]
= Pr [~aIn = ~αIn]− Pr

[
(~aIn , f̂2) = (~αIn , 0)

]
Pr
[
(~aIn , b̂jin−1) = (~αIn , 1)

]
= Pr [~aIn = ~αIn]− Pr

[
(~aIn , b̂i−1) = (~αIn , 0)

]
,

and thus (~aIn , f̂2) is close to (~aIn , b̂jin−1) if the vector in (2) is close to 0`. We
omit the proof for an honest P1. ut

38

