
Resource-efficient OT combiners

with active security

Ignacio Cascudo1?, Ivan Damg̊ard2??, Oriol Farràs3? ? ?, and Samuel Ranellucci4†
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Abstract. An OT-combiner takes n candidate implementations of the oblivious transfer (OT)
functionality, some of which may be faulty, and produces a secure instance of oblivious transfer as
long as a large enough number of the candidates are secure. We see an OT-combiner as a 2-party
protocol that can make several black-box calls to each of the n OT candidates, and we want to
protect against an adversary that can corrupt one of the parties and a certain number of the OT
candidates, obtaining their inputs and (in the active case) full control of their outputs.
In this work we consider perfectly (unconditionally, zero-error) secure OT-combiners and we focus
on minimizing the number of calls to the candidate OTs.
First, we construct a single-use (one call per OT candidate) OT-combiner which is perfectly secure
against active adversaries corrupting one party and a constant fraction of the OT candidates.
This extends a previous result by Ishai et al. (ISIT 2014) that proves the same fact for passive
adversaries.
Second, we consider a more general asymmetric corruption model where an adversary can corrupt
different sets of OT candidates depending on whether it is Alice or Bob who is corrupted. We give
sufficient and necessary conditions for the existence of an OT combiner with a given number of
calls to the candidate OTs in terms of the existence of secret sharing schemes with certain access
structures and share-lengths. This allows in some cases to determine the optimal number of calls to
the OT candidates which are needed to construct an OT combiner secure against a given adversary.

1 Introduction

1-out-of-2 bit oblivious transfer [EGL82] (OT) is a well-known cryptographic primitive
between two parties, a sender Alice and a receiver Bob, in which the sender has as input
two one-bit messages and the receiver chooses to learn one of them; in addition, two other
guarantees hold, namely the sender does know which of her two messages was chosen by
the receiver and the receiver obtains no information about the message that he did not
choose to learn.

OT is a fundamental primitive for secure multiparty computation. In fact it is known
that secure multiparty computation protocols can be entirely based on OT [Kil88,IPS08].
However, unconditionally secure two-party computation is not possible in the plain model,
even if we only assume that one of the parties may be passively corrupted. Hence, OT
is likewise impossible to be attained unless we assume the existence of some additional
resource or some restriction on the capabilities of the parties. Examples of such situations

? Acknowledges support from the Danish Council for Independent Research, grant no. DFF-4002-00367.
?? This project has received funding from the European Research Council (ERC) under the European Unions’s

Horizon 2020 research and innovation programme under grant agreement No 669255 (MPCPRO).
? ? ? Supported by the European Union through H2020-ICT-2014-1-644024 and H2020-DS-2015-1-700540, and by

the Spanish Government through TIN2014-57364-C2-1-R.
† Supported by NSF grants #1564088 and #1563722. Any opinions, findings, and conclusions or recommenda-

tions expressed in this material are those of the authors and do not necessarily reflect the views of the National
Science Foundation.



include: physical assumptions such as the existence of a noisy channel between the sender
and the receiver [CK88], hardware tokens [GIS+10], or the premise that one of the parties
has bounded memory [CCM98]; and computational assumptions, where we assume that
the parties are computationally bounded and we base the security of the OT protocol
on the hardness of some problem, for example hardness of factoring [Rab81], the DDH
assumption [BM89,AIR01], hardness of decoding [DvdGMN08], the quadratic residuosity
assumption, and worst-case lattice assumptions [PVW08].

However, a particular assumption may at some point become compromised (e.g. com-
putational assumptions may be broken, a hardware token may be corrupted, or a party
may be in possession of a better-than-expect reception equipment in the case of a protocol
based on noisy channels) and this would consequently jeopardize the security of an OT
protocol based on such assumption. This motivates the notion of an OT combiner, a pro-
tocol between Alice and Bob that makes black-box calls to n candidate implementations
of OT, and produces an instance of OT which is secure as long as a certain number of the
candidates were secure to start with. In this way, we do not need to rely on a particular
OT candidate being secure.

OT combiners can also be seen as a server-aided oblivious transfer protocol, where
the resource that Alice and Bob have at their disposal is the existence of n servers, each
of which is supposed to implement the OT functionality. Alice and Bob can call each of
the servers several times, where for each execution a server receives two bits from Alice
and one bit from Bob, and outputs the resulting bit to Bob. Therefore, in particular,
there is no need of direct communication between servers; in fact, the servers do not even
need to be aware of each other. We adopt this view of OT combiners in what follows.

OT combiners were introduced in [HKN+05] and further studied in several articles
such as [HIKN08,PW08,IMSW14]. In this work we are interested in minimizing the num-
ber of calls to each of the servers, and we take as starting point [IMSW14], where the
authors focus on single-use OT combiners, in which each OT server is used only once.
In their work, they consider an adversary that may corrupt Alice and up to tA servers
or Bob and up to tB servers, thereby obtaining all information seen during the protocol
by the corrupted servers and party. We will call this adversary a (tA, tB)-adversary. It is
shown that for large enough n, there exists a single-use OT combiner which is perfectly
secure against a passive (tA, tB)-adversary where tA = tB = Ω(n). More precisely this
holds for tA = tB = 0.11n. Furthermore, they show that the existence of single-use OT
combiners implies the existence of a certain secret sharing scheme whose privacy and
reconstruction thresholds are related to tA and tB and where the shares are of constant
size. By applying certain bounds on secret sharing over small alphabets [CCX13], they
conclude among other facts that unconditionally secure single-use OT-combiners cannot
exist when tA + tB = n − O(1) (it is easy to show that perfectly secure OT combiners,
single-use or not, cannot exist if tA + tB ≥ n).

In this work, we first show a construction of single-use OT-combiners which are per-
fectly secure against an active adversary corrupting the same sets as in [IMSW14], namely:

Theorem 1. For any large enough n, there exists an n-server single-use OT-combiner
which is perfectly secure against an active (0.11n, 0.11n)-adversary.

In fact, this theorem is a special case of a more general result, that represents a tight
link between secret sharing schemes and OT combiners.



In order to explain this result, we first need to consider a slightly more general adver-
sary that can corrupt either Alice and a set A ∈ A of servers, or Bob and a set B ∈ B of
servers. Here A and B are two adversary structures5 on the set of servers {1, . . . , n}. We
say that a pair (A,B) of adversary structures is R2 if for all A ∈ A and B ∈ B we have
A ∪B 6= {1, . . . , n}. Our result is then as follows.

Theorem 2. Let A, B be adversary structures on the set of servers {1, . . . , n}. Suppose
that the following conditions are true:

– (A,B) is an R2 pair of structures.
– There exists a secret sharing scheme S for the set of participants {1, . . . , n} with the

following properties:
1. It is a linear secret sharing scheme.
2. The domain of secrets is {0, 1} and for i = 1, . . . , n the domain of the i-th share

is {0, 1}`i, for some `i > 0.
3. Every set A ∈ A is unqualified in S and for every set B ∈ B, its complement B is

qualified in S.

Then there exists a OT-combiner which is perfectly secure against any active (A,B)-
adversary and uses the i-th server exactly `i times.

Therefore we can see that a single-use OT combiner exists in the cases where an ideal
(i.e. every share is one bit long) linear secret sharing scheme S exists with a fitting access
structure. Theorem 1 is obtained by plugging into Theorem 2 secret sharing schemes
constructed from families of binary linear codes such that both them and their duals are
on the Gilbert-Varshamov bound [CCG+07] (see Section 5.3 for more details).

An interesting fact about Theorem 2 is that it is close to give a tight characterization
of unconditionally secure OT combiners in terms of secret sharing schemes, since one can
extend the arguments in [IMSW13] to prove the following result.

Theorem 3. Let A, B be adversary structures on the set of servers {1, . . . , n}. If there
exists a perfectly secure OT-combiner which is secure against any active (A,B)-adversary
and uses server Si exactly `i times, then:

– (A,B) is an R2 pair of structures.
– There exists a secret sharing scheme S for the set of participants {1, . . . , n} with the

following properties:
1. The domain of secrets is {0, 1} and for i = 1, . . . , n the domain of the i-th share

is {0, 1}`i, for some `i > 0.
2. Every set A ∈ A is unqualified in S and for every set B ∈ B, its complement B is

qualified in S.

If we compare both Theorems 2 and 3 we see there is just one gap regarding sufficient
and necessary conditions, namely that our construction from Theorem 2 requires a linear
secret sharing scheme, while we do not know if this is strictly necessary. Nevertheless,
Theorems 2 and 3 can be used to determine the exact minimal number of calls that are
sufficient and necessary for a perfectly secure OT combiner in some cases. For example,
we can determine that if there are 3 servers and the adversary can be corrupt one party
and one server, then the optimal number of OT calls is 5 (Section 8).

5 An adversary (or anti-monotone) structure A is a family of subsets of {1, . . . , n} such that if A ∈ A and
A′ ⊆ A, then A′ ∈ A.



1.1 Details and techniques

Our construction of an OT combiner showing Theorem 2 relies on the combination of
two secret sharing schemes. The first one is the secret sharing scheme S assumed by
the theorem, which is used by Bob in order to secret share his input among the servers.
The other secret sharing scheme is a multi-secret sharing scheme Σ with some unusual
properties, whose construction may be of independent interest. This will be used by Alice
in order to secret share her inputs among the servers.

Such secret sharing scheme takes a 2-bit secret (m0,m1) and, in the simplified “single-
use” case of our theorem where all `i = 1 (which is enough to show Theorem 1), splits
it into 2n shares, indexed by pairs (i, j), where i = 1, . . . , n, and j = 0, 1. The secret
sharing scheme is such that a set of participants of the form {(1, v1), (2, v2), . . . , (n, vn)}
(where vi ∈ {0, 1}) can reconstruct the message m0 if and only if the bit-string (v1, . . . , vn)
belongs to some given vector space V , while it can reconstruct m1 if and only if (v1, . . . , vn)
belongs to some affine space t + V for some given vector t. Further, these sets are the
only minimally qualified sets for each of the messages.

If they were the only requirements, the existence of such a secret sharing scheme would
be guaranteed by known general results in secret sharing (where each coordinate m0 and
m1 would then be independently shared with a secret sharing scheme with potentially
exponentially long shares). But what makes the problem interesting is that we have an
additional requirement: every share is one bit long. This rules out the solution above and
therefore the question of how the requirements on the access structures of m0 and m1

can be realized simultaneously is not trivial. Moreover, given that m0 and m1 cannot be
shared independently, it is also necessary to exact some conditions preventing certain sets
of shares from leaking correlations between m0 and m1 even if they give no information
about either individual message. We show that we can achieve all these properties by a
relatively simple construction.

With all these elements in hand, it is now easy to explain how our OT combiner works.
Alice will use a secret sharing scheme as specified above where V is the set of all possible
sharings of 0 in the scheme S used by Bob, and t is a sharing of 1 in S. In this situation
t + V is the set of all sharings of 1 in S by linearity of S. She then sends the (i, 0) and
(i, 1)-th shares to the i-th server. If Bob has used b1, ..., bn as input for the servers, he
will receive the shares of (m0,m1) with indices (1, b1), ..., (n, bn). By the properties of the
scheme Σ given that set of shares he can now reconstruct m0 if (b1, . . . , bn) was a sharing
of 0 with S, and m1 if (b1, . . . , bn) was a sharing of 1 with S. Of course this only shows
the correctness of the protocol when Alice and Bob are honest. We need to take into
account that Bob can corrupt a set B ∈ B of servers, obtaining both of Alice’s shares
corresponding to those servers. Furthermore, in the active case, he can also submit values
that do not correspond to a valid sharing of a bit with S. However, we show that even
using both strategies simultaneously will not give him information about more than one
of Alice’s messages.

1.2 Other related work

[HKN+05] introduced the notion of OT combiners. Several different flavours are intro-
duced; the notion we are considering in this paper corresponds to the one they call
third-party black-box combiners. They consider threshold security with tA = tB = t, and
show that passively unconditionally secure OT combiners cannot exist for n = 2, t = 1.



On the other hand, they give a concrete construction of a secure OT combiner for n = 3,
t = 1 making 2 calls to each OT-candidate (giving a total number of calls of 6, which as
mentioned above can be brought down to 5 by our construction).

In [HIKN08], OT-combiners are constructed from secure multiparty computation pro-
tocols. Again, the threshold case with tA = tB = t is considered. They show how to con-
struct OT combiners which are statistically secure against a (t, t)-adversary with t = Ω(n)
which make O(1) calls to each server. Furthermore they achieve constant production rate,
meaning that their construction allows to produce Θ(n) instances of OT (in this work,
we are only concerned about producing one instance). Furthermore, they show a variant
of their protocol that is computationally secure against active adversaries. Subsequently
[IPS08] shows, as one of the applications of their compiler, that the latter construction
can be turned into a statistically secure OT-combiner, still achieving constant production
rate and being secure against an active (t, t)-adversary with t = Ω(n).

In [PW08] an oblivious linear function evaluation (OLFE) combiner is constructed
where each server executes a single instance of OLFE and the construction achieves
perfect security whenever tA + tB < n. OLFE is a functionality where Alice has as input
two values a, b in a finite field Fq of q elements, Bob has as input x ∈ Fq and receives
ax + b as output. Even though OLFE is a generalization of OT (OT is equivalent to
OLFE over F2), the construction in [PW08] requires q > n, since it uses Shamir secret
sharing in order to share the parties’ inputs among the servers.

Finally, it is interesting to point out that [BI01] and [VV15] consider, in different con-
texts, secret sharing schemes with access structures that are somewhat related to the ones
we need. Given a language L ⊆ {0, 1}n, their secret sharing schemes for 2n participants
have as minimally qualified subsets all those of the form {(1, v1), (2, v2), . . . , (n, vn)} where
(v1, v2, . . . , vn) ∈ L. However, both works also include the sets of the form {(i, 0), (i, 1)}
as minimally qualified.

1.3 Extensions and open questions

We briefly consider some possible extensions of our result that we do not fully address
in this paper. First, [IMSW14] also presents a single-use OT combiner that achieves
statistical security against a passive adversary corrupting one of Alice and Bob and up to
n/2− ω(log κ) servers, where κ is the security parameter. We sketch in Section 5.3 how
we think our construction from Theorem 1 can be modified in order to achieve a similar
result as [IMSW14] against a static active adversary.

Moreover, in this paper we have focused in minimizing the number of OT calls when
we want to produce a single secure instance of OT. It is an interesting open question to
understand whether our constructions can be extended to achieve constant production
rate for perfect actively secure combiners. This raises the question whether our multi-
secret sharing scheme can be modified so that it handles secrets of size O(n).

Finally, we only consider adversaries that corrupt one of the parties Alice and Bob
together with a subset of servers. Our model does not consider corruption of only servers.
It is easy to see that if an OT combiner is secure against a passive (A,B)-adversary,
then it is also secure against passive corruption of a server set C which lies in both A
and B. This is because such “external” adversary corrupting only C cannot obtain more
information about Alice’s (resp. Bob’s) input than an adversary corrupting C and Bob
(resp. Alice). However, when considering and active adversary we also need to guarantee



the correctness of the combiner, i.e., that the external adversary is not able to make Bob
output a value that is inconsistent with Alice’s inputs. We can in fact identify situations
where the R2 condition is not enough to achieve security against such adversaries. We
discuss this in Section 9. It is an open question to determine in which conditions security
is possible against corruption of servers only.

1.4 Overview

Section 2 contains preliminaries on secret sharing and adversary structures, although we
also introduce the notion of R2 pair. Section 3 describes our model. Section 4 gives a
construction of a multi-secret sharing scheme with certain properties regarding its access
structure; this will be the secret sharing scheme used by Alice in our construction. In
Section 5 we show Theorem 2 in the case where S can be taken to be an ideal secret
sharing scheme (i.e. every share is a bit long). This is enough to show Theorem 1. In
Section 6 we show Theorem 2 in the general case. In Section 7 we show Theorem 3.
In Section 8 we apply our results to determine the minimal number of calls which are
required for a 3-server OT combiner to be secure against an active (1,1)-adversary. Finally
Section 9 contains our considerations on the case where an adversary corrupts only servers.

2 Preliminaries

2.1 Adversary structures and R2 pairs of structures

We denote by Pn the set {1, 2, . . . , n}. Furthermore, 2Pn is the family of all subsets of Pn.

Definition 1. An adversary (or antimonotone) structure A ⊆ 2Pn is a family of subsets
of Pn such that ∅ ∈ A and for every A ∈ A and B ⊆ A we have B ∈ A.

Definition 2. We say that a pair (A,B) of adversary structures is R2 if for all A ∈ A,
B ∈ B, we have A ∪B 6= Pn.

R2 is a generalization of the well known notion of a Q2 adversary structure (an
adversary structure A is Q2 if for all A,B ∈ A, we have A ∪ B 6= Pn). More precisely,
the pair of adversary structures (A,A) is R2 if and only if A is Q2. However, there exist
adversary structures A,B such that neither A nor B are Q2, while the pair (A,B) is
R2. For example: n = 4, and A and B are the adversary structures with maximal sets
{1, 2}, {3, 4} in the case of A, and {1, 3}, {2, 4} in the case of B.

2.2 Secret sharing

Our protocols rely heavily on secret sharing, a well-known cryptographic primitive intro-
duced by Shamir [Sha79] and, independently, Blakley [Bla79]. We recall some terminology
and results which will be needed later.

A secret sharing scheme for the set of participants Pn is given by a probabilistic
algorithm ShareS that takes as input a secret s and outputs values a1, a2, . . . , an known
as shares. The vector (a′1, a

′
2, . . . , a

′
n) is called a sharing of s if on input s ShareS outputs

the values a′i as shares with non-zero probability.
We say that a setA ⊆ Pn is unqualified if for any secret s and any sharing (a1, a2, . . . , an)

for it, the vector (ai)i∈A gives no information about the secret, i.e., the probability that



the values (ai)i∈A are outputted (as shares for A) by ShareS on input s is the same as the
probability of the same event when the input is s′. Note that the family A ⊆ 2Pn of all
unqualified sets of S is an adversary structure. We say that a set A ⊆ Pn is qualified if for
any secret s and any sharing (a1, a2, . . . , an) for it, the vector (ai)i∈A uniquely determines
the secret, i.e. there is a unique secret for which ShareS can output those values as shares
for A. The family of all qualified sets is called the access structure of S. We say that
a secret sharing scheme is perfect if every set A ⊆ Pn is either qualified or unqualified
(there are no sets of shares which give partial information about the secret).

We also define ReconstructS , an algorithm that takes as input a set of pairs {(i, ai) :
i ∈ A} where A ⊆ Pn and outputs s if A is a qualified set for S and the values (ai)i∈A
are part of a valid sharing of the secret s, and ⊥ otherwise.

Let F be a finite field. A linear secret sharing scheme S (over F), LSSS for short,
is a secret sharing scheme where the space of secrets is a vector space F`0 , the space
of the i-th shares is F`i for i = 1, . . . , n, and there exists an integer e and a map M :
F`0+e → F`1 × · · ·×F`n such that ShareS consists in choosing a uniformly random vector
u ∈ Fe and outputting M(s,u) as shares. We denote by [s,u]S ∈ F` this sharing, where

` =
∑n

i=1 `i. Given a set A ⊆ Pn we use [s,u]
(A)
S to denote the vector consisting only of

the shares corresponding to A. When we do not need to make the randomness explicit,
then we write [s]S and [s]

(A)
S . Moreover, we say that ` is the complexity of S. We note that

ShareS runs in polynomial time in `. The set of possible sharings in a LSSS is a vector
space and for all λ1, λ2 ∈ F we have λ1[s1,u1]S+λ2[s2,u2]S = [λ1s1+λ2s2, λ1u1+λ2u2]S ,
i.e. a linear combination of sharings is a sharing for the same linear combination applied
to the secrets. An immediate implication is that ReconstructS , on input a qualified set
A and a set of shares for it, acts by applying a linear function to these shares.

We need a few facts about when sets are qualified and unqualified in a linear secret
sharing scheme. First, consider the case `0 = 1, where the secret is just an element in F.
In that case a LSSS is perfect, and we have:

Lemma 1. Let S be a LSSS with secrets in F. A set A ⊆ Pn is unqualified if and only
if there exists a vector u, such that [1,u]

(A)
S = 0, i.e., if we share the secret 1 using

randomness u, the shares corresponding to A are all zero. Otherwise, it is qualified.

This can be easily derived by taking into account that, if the condition above is
satisfied, then[s, t]S and [s′, t′]S = [s, t]S + (s′ − s)[1,u]S are sharings of s and s′ such
that all the shares in A coincide.

Now suppose that in addition F = F2, so we are dealing with binary LSSS; and that
every share is one bit long, i.e., `i = 1. Since given a qualified set A, the reconstruction
algorithm in a LSSS consists of applying a linear function on the corresponding shares,
under the conditions above the secret needs to equal the sum of the shares of a fixed subset
A′ ⊆ A. Therefore we can characterize the minimally qualified sets (those qualified sets
such that none of their subsets are qualified) as follows.

Lemma 2. Let S be a LSSS with secrets in F2 and shares in F2. A set A is minimally
qualified if and only if for any secret s ∈ F2 and any sharing (a1, a2, . . . , an) = [s]S , we
have that s =

∑
i∈A ai.

In this work it will also be essential to understand LSSSs where `0 = 2 and F is the
binary field F2. In general, if `0 > 1, the situation is more complicated than in the case
`0 = 1 since there may be sets A ⊆ Pn which can obtain partial information about the



secret. The generalization of Lemma 1 is as follows. Let TA ⊆ F`0 be the set of secrets s
such that there exists u with [s,u]

(A)
S = 0. Then for any secret m, when given [m]

(A)
S , any

element in m + TA has the same probability of being the secret and any element not in
m + TA can be ruled out. Furthermore, TA is always a vector space. In the case `0 = 2,
F = F2, this means that a set A can be either qualified, unqualified or learn one bit of
information about the secret m = (m0,m1), and this partial information can be of three
types, corresponding to the three different subspaces of F2

2 of dimension 1: either it learns
one coordinate m0 and has no information about the other m1, or viceversa, or it learns
m0 +m1 and nothing else. A LSSS Σ with secrets (m0,m1) in F2

2 induces a perfect LSSS
Σ0 for the secret m0 (by considering m1 as randomness) and similarly, perfect LSSSs Σ1

and Σ2 for m1 and m0 +m1 respectively. Therefore we can talk about qualified sets and
unqualified sets for m0 (resp. m1, m0 + m1) and we will use Lemma 1 and Lemma 2
for these individual secrets later on. We are therefore seeing Σ as a multi-secret sharing
scheme (in a multi-secret sharing scheme [JMO93] several secret values are distributed
among a set of users, and each secret may have different qualified subsets). Moreover, we
can clearly define a reconstruction algorithm for the individual secrets m0 and m1, which
we call Reconstruct0Σ and Reconstruct1Σ respectively.

As for the existence of LSSS, it is well known [ISN87] that every adversary structure
is the adversary structure of a LSSS.

Theorem 4. For every finite field F and integer `0 ≥ 1 and for every adversary structure
A there exists a perfect LSSS S with secrets in F`0 and adversary structure A.

In general the complexity of the LSSS S constructed with the methods used in [ISN87]
is exponential in n. We say that a LSSS is ideal if `0 = 1 and `i = 1 for all i. The complexity
of an ideal LSSS is n, which is the smallest possible. Given a finite field F most adversary
structures A do not admit ideal LSSSs over F.

3 OT-combiners

We describe our model in more detail. Alice has a pair of inputs m0,m1 ∈ {0, 1} and
Bob has an input a selection bit b ∈ {0, 1}. They execute a protocol π whose goal is
to implement the functionality FOT securely (in the presence of an adversary which we
specify below) on those inputs. The protocol π consists only of local computations by
each of the parties and oracle calls to servers S1, . . . , Sn (in particular, we do not need a
direct communication channel between Alice and Bob). If the server Si is not corrupted,
then it executes a copy of the functionality FOT and may be called several times. Each
time a server is called, it receives a new pair of inputs x0, x1 ∈ {0, 1} from Alice and c
from Bob, and executes the functionality FOT on these inputs, therefore outputting the
message xc towards Bob.

Functionality FOT

1. On input (transfer, b) from Bob, send (ready) to Alice.
2. On input (send,m0,m1) from Alice, if (transfer, b) has been received previously from Bob, send

(sent,mb) to Bob.

Fig. 1. Functionality FOT



We consider a static adversary Adv characterized by a pair of adversary structures
(A,B) each contained in 2{S1,...,Sn}, which we call an (A,B)-adversary. Such adversary can
corrupt, before the protocol starts, either Alice and a set of servers A ∈ A or Bob and a
set of servers B ∈ B. If the adversary is passive, then it obtains all information seen by
the corrupted party and servers during the protocol, but cannot make them deviate from
the protocol. If the adversary is active, it can in addition make the corrupted party and
servers deviate arbitrarily from the protocol.

In these conditions, we say that the protocol π is an n-server OT-combiner secure
against Adv if it securely implements the functionality FOT in the presence of this adver-
sary. In this paper we will prove security using the Universal Composability framework
[Can01], see [CDN15] for more information.

Let 1 ≤ tA, tB ≤ n. If there exist A and B such that A contains all subsets of size
tA of {1, . . . , n} and B contains all subsets of size tB of {1, . . . , n} and if π is an n-server
OT-combiner secure against any (A,B)-adversary, then we say that π is an n-server
OT-combiner secure against a (tA, tB)-adversary.

4 A multi-secret sharing scheme

As we mentioned in Section 1.1, our OT combiners rely on the combination of two linear
secret sharing schemes S and Σ. S is given by the statement of Theorem 2 and is used
by Bob. The secret sharing scheme Σ, used by Alice, is a multi-secret sharing scheme
satisfying a number of properties that we need in order to achieve security of our combiner.

In this section, we abstract the properties that we will need for Σ, and we give a
construction achieving these properties. How this will play a role in our OT-combiners
will become apparent in the next sections.

Proposition 1. Let ` be an integer, V ( F`2 be a vector subspace, t ∈ F`2 be a vector
such that t /∈ V and let W be the affine space W = t + V . Finally for I ⊆ {1, . . . , `} let
eI ∈ F`2 denote the vector with 1’s in the I-coordinates and 0’s in the rest.

Then the linear secret sharing scheme Σ for 2` participants (indexed by pairs (i, j))
with secrets in {0, 1}2 and shares in {0, 1}, given in Figure 2, is such that the following
properties hold:

1. The minimally qualified sets for reconstructing the first coordinate m0 of the secret are
exactly the sets of the form

{(i, ai) : i = 1, . . . , n, (a1, . . . , an) ∈ V }.

2. The minimally qualified sets for reconstructing the second coordinate m1 of the secret
are exactly the sets of the form

{(i, ai) : i = 1, . . . , n, (a1, . . . , an) ∈ W}.

3. The minimally qualified sets for reconstructing the sum m0 +m1 are those of the form

{(i, c) : i ∈ H, c = 0, 1},

where H is such that eH ∈ W and eH′ /∈ W for H ′ ⊆ H.



The multi-secret sharing scheme Σ

Let V ⊥ be the orthogonal space to V , i.e.,

V ⊥ = {h ∈ F`2 : 〈v,h〉 = 0 for all v ∈ V }.

To share (m0,m1) ∈ F2
2:

– Sample uniformly at random r1, . . . , r`−1 ∈ F2 and let r` = m0 −
∑`−1
i=1 ri.

– Sample h = (h1, h2, . . . , h`) uniformly at random in the space

{h ∈ F`2 : h ∈ V ⊥, < t,h >= m0 +m1}.

– Send a(i,j) = ri + jhi ∈ F2 to participant (i, j)

Fig. 2. The multi-secret sharing scheme Σ

Before starting with the proof, we need some definitions. Let U be the vector space
spanned by the set V ∪ {t}. Note U = V +W . We define

Z0 = U⊥ = {h ∈ F`2 : h ∈ V ⊥, < t,h >= 0}

and

Z1 = {h ∈ F`2 : h ∈ V ⊥, < t,h >= 1}.

Note since b /∈ V , then Z1 is non-empty and Z1 = Z0 + g for some g such that
< t,g >= 1.

We also need the following lemma, which is a basic fact of linear algebra.

Lemma 3. For every u /∈ U , the random variable < u,h >, where h is chosen uniformly
at random in Z0 (resp. Z1), is uniformly distributed in F2.

Now we can proceed with the proof of Proposition 1

Proof of Proposition 1. Clearly Σ is linear, since a fixed linear combination of the shar-
ings is a sharing for the same linear combination applied to the secrets. Nevertheless we
can also make the linearity of the construction more explicit by showing how the shares
are constructed as a linear function of the secret (m0,m1) and a uniform random vector
in some space Fe2, as follows. Note that V ⊥ is a vector subspace. The set Z0 is also a
vector subspace which will have a basis {z(1), z(2), . . . , z(s)}.

A uniformly random element in {h ∈ F`2 : h ∈ V ⊥, < t,h >= m0 + m1} can be
then sampled by sampling independent uniform random elements d1, . . . , ds ∈ F2 and
outputting d1z

(1) + · · · + dsz
(s) + (m0 + m1)g. The elements hi in our construction are

simply the coordinates d1z
(1)
i + · · · + dsz

(s)
i + (m0 + m1)gi. Therefore, the shares can be

written as a linear combination of uniformly random elements r1, . . . , r`−1, d1, . . . , ds ∈ F2

and the values m0, m1.
Now we need to argue about the access structure of the secret sharing schemes for

the different pieces of information m0, m1 and m0 +m1.
By Lemma 2, in the conditions of these scheme (linear, binary, every share is a bit)

a set is minimally qualified for m0 (resp. m1, m0 + m1) if and only if the corresponding
shares always sum up to m0 (resp. m1, m0 + m1) and there is no stricty smaller subset
satisfying the same.



Fix A ⊆ {1, 2, . . . , `} × {0, 1} a set of indices. We define two sets I1, I2 ⊆ {1, 2, . . . , `}
as follows:

I1 = {i : exactly one of (i, 0) and (i, 1) is in A}

and

I2 = {i : (i, 1) ∈ A}.

Then ∑
(i,j)∈A

a(i,j) =
∑
i∈I1

ri +
∑
i∈I2

hi =
∑
i∈I1

ri+ < eI2 ,h >

where eI2 is the vector with 1’s in the positions of I2 and 0’s in the rest.

Note that if I1 6= ∅, {1, . . . , `}, then
∑

i∈I1 ri is uniformly distributed in F2 over the
choice of the ri’s. Furthermore,

∑
i∈I1 ri is clearly independent from < eI2 ,h >. Hence

the sum
∑

(i,j)∈A a(i,j) is uniformly distributed in F2.

Likewise if eI2 /∈ U = V ∪ W then < eI2 ,h > is uniformly distributed in F2 by
Lemma 3 (regardless of whether m0 +m1 = 0 or m0 +m1 = 1). Therefore, the only cases
where A can be minimally qualified for either m0, m1, m0 +m1 are the following:

– I1 = {1, . . . , `}, eI2 ∈ V . This case corresponds to

A = {(1, b1), (2, b2), . . . , (n, bn)}

where (b1, b2, . . . , bn) = eI2 ∈ V . Moreover
∑

(i,j)∈A a(i,j) = m0+ < h, eI2 >= m0, so
this set is minimally qualified for m0, since clearly there cannot be smaller subsets
satisfying the same property.

– I1 = {1, . . . , `}, eI2 ∈ W . This case corresponds to

A = {(1, b1), (2, b2), . . . , (n, bn)}

where (b1, b2, . . . , bn) = eI2 ∈ W . Moreover
∑

(i,j)∈A a(i,j) = m0+ < h, eI2 >= m1, so
this set is minimally qualified for m1, since clearly there cannot be smaller subsets
satisfying the same property.

– I1 = ∅, eI2 ∈ V : in this case,

A = {(i, 0) : i ∈ I2} ∪ {(i, 1) : i ∈ I2}.

However
∑

(i,j)∈A a(i,j) =< h, eI2 >= 0, so this set is not minimally qualified for any
of the secrets.

– I1 = ∅, eI2 ∈ W : in this case, again

A = {(i, 0) : i ∈ I2} ∪ {(i, 1) : i ∈ I2}.

Now
∑

(i,j)∈A a(i,j) =< h, eI2 >= m0+m1, so this set is minimally qualified for m0+m1

unless there is a smaller subset I ′2 ⊆ I2 such that eI′2 ∈ W .



5 Construction of OT-combiners when S is ideal

In this section we will show Theorem 2, under the additional assumption that the secret
sharing scheme S is also ideal. That is, we show:

Theorem 2, case S ideal. Let A, B ⊆ 2Pn be adversary structures such that (A,B) is
a R2 pair. Suppose there exists a linear secret sharing scheme S for n participants where
the secret is in {0, 1} and every share is in {0, 1}, and such that every set A ∈ A is
unqualified in S and the complement B of every set B ∈ B is qualified in S.

Then there exists a single-use n-server OT combiner which is perfectly secure against
any active (A,B)-adversary.

This result is enough to show Theorem 1, which is proven at the end of this section.

5.1 The protocol

Our protocol πOT described in Figure 3 works as follows: Bob computes a secret sharing
of his input b with the ideal linear secret sharing scheme S promised above, therefore
creating n shares bi, each of which is a bit since the scheme is ideal. On the other hand,
Alice will secret share her input (m0,m1) with a secret sharing scheme Σ that is defined
as follows: Σ is the secret sharing scheme given by Proposition 1 where ` = n, V is the
set of all possible sharings [0,u]S of 0 with S (which is a vector space because S is linear)
and t will be one sharing of 1 with S (for example t = [1,0]S). By linearity, W is the set
of all possible sharings of 1.

Now Alice an Bob call each OT server once, the inputs to the i-th server being
a(i,0) and a(i,1), in this order, on Alice’s side, and bi on Bob’s side. Assuming that there
is no active corruption, Bob will receive a(i,bi) from the servers. By definition of Σ he
has enough information to reconstruct mb by running the corresponding reconstruction
algorithm (if the reconstruction fails, because Alice’s shares were malformed, Bob outputs
0 by default).

Oblivious transfer protocol πOT

Let (m0,m1) be Alice’s input and b be Bob’s input.

1. Local computation:
Alice creates a sharing [(m0,m1)]Σ = (a(i,j))(i,j)∈Pn,2

of her input.
Bob creates a sharing [b]S = (b1, . . . , bn) of his input. Note that each bi ∈ {0, 1} because S is ideal.

2. Use of the OT servers:
For i ∈ {1, . . . , n}, Alice and Bob use server Si to execute an OT with inputs (ai,0, ai,1) for Alice and bi
for Bob. Let yi denote the output of Bob.

3. Local computation: If b = 0, Bob constructs m′0 by applying

Reconstruct
0
Σ({((i, bi), yi) : i ∈ Pn}).

Similarly, if b = 1, Bob constructs m′1 by applying

Reconstruct
1
Σ({(i, bi), yi) : i ∈ Pn}).

In any of the cases, if the reconstruction fails, output 0. Otherwise output the reconstructed m′b.

Fig. 3. Protocol πOT for ideal LSSSs.



Proposition 2. If Alice and Bob follow the protocol semi-honestly, then πOT (Figure 3)
implements OT with perfect correctness.

Proof. If Alice and Bob follow the protocol (semi-)honestly, at the end of the pro-

tocol Bob will have received all values m
(i,bi)
b , i = 1, . . . , n, for some sharing [b]S =

(b1, . . . , bn). By Proposition 1, {(1, b1), . . . , (n, bn)} is qualified for reconstructing mb (be-
cause (b1, . . . , bn) ∈ V if b = 0 and (b1, . . . , bn) ∈ W if b = 1).

5.2 Security

In order to guarantee the privacy of Alice’s input, the first thing that we need to observe
is that Bob does not learn mb from a(i,bi) if (b1, . . . , bn) is not a valid sharing of b with S,
since in that case {(1, b1), . . . , (n, bn)} is not qualified for mb by Proposition 1. However,
this only guarantees privacy against a very weak semi-honest adversary corrupting Bob
and no servers. Note that, first of all, the adversary can corrupt some set B ∈ B of
servers, thereby obtaining both a(i,0) and a(i,1) for all i ∈ B. Moreover, if the adversary
is malicious, it can also make Bob submit values bi such that (b1, . . . , bn) is not a valid
sharing [b]S . Finally, remember that in Section 2.2 we argued that given an ideal LSSS
with secrets in F2, like it is the case with Σ, it may in principle happen that some sets of
shares allow to reconstruct m0 + m1 even if they do not get any information about the
individual m0 and m1. Therefore we also need to ensure that these cases will not happen
in our problem.

We show how the properties we have guaranteed in Proposition 1 take care of all
these and prevent the potentially malicious Bob from learning other information than he
should.

Proposition 3. Suppose (A,B) is an R2 pair of adversary structures and S and Σ are
defined as above. Let (m0,m1) be shared with Σ. Fix B ∈ B and (b′1, . . . , b

′
n) ∈ Fn2 , and

define the set of indices

H = {(i, b′i) : i ∈ B} ∪ {(i, j) : i ∈ B, j ∈ {0, 1}}.

Then:

– If the set {b′i : i ∈ B} is not part of any sharing [c]S for any c ∈ {0, 1} then the values
a(i,j), (i, j) ∈ I ′ give no information about the pair (m0,m1).

– If the set {b′i : i ∈ B} is a part of a sharing [c]S of some c ∈ {0, 1} then the values
a(i,j), (i, j) ∈ I ′ give full information about mc but no information about m1−c.

Proof. By the considerations in Section 2.2, we know that in principle a set of shares
could either be unqualified (give no information about (m0,m1)), qualified (give full
information) or give partial information, which in turn can be of three types: either it
gives information about one of the coordinates md and no information about m1−d or it
could give information about m0+m1 and nothing else. On the other hand, Proposition 1
describes the minimally qualified sets for m0, m1 and m0 +m1.

We show first that the set H is not qualified for m0 +m1 in any case. If that were the
case, then there would exist a set I ⊆ Pn such that H would contain all indices of the
form (i, 0), (i, 1) with i ∈ I and such that eI ∈ Fn2 is a sharing of 1 with S. H contains
both (i, 0) and (i, 1) exactly for those i ∈ B. But assume there existed an I ⊆ B such that



eI ∈ Fn2 were a sharing of 1. Now we get a contradiction as follows: from the assumptions,
B is qualified in S. Therefore by linearity of S there cannot be a sharing of 1, [1]S , such

that [1]BS = 0. But on the other hand eI ∈ Fn2 is a sharing of 1 which satisfies that [1]IS is
zero, and since B ⊆ I both statements are contradictory.

Now note that the minimally qualified sets for m0 (resp. m1) are those of the form
{(1, b1), . . . , (n, bn)} ⊆ Pn,2 where (b1, . . . , bn) is a sharing of 0 (resp. 1) with S. This
implies that if H is qualified for m0 (resp. m1) then necessarily {b′i : i ∈ B} needs to be
part of a sharing [0]S (respectively [1]S).

These elements are enough to formally show the security of our construction.

Theorem 5. The protocol πOT UC-implements the functionality FOT in the presence of
an (A,B)-adversary.

Proof. Alice honest, Bob malicious:
We will suppose without loss of generality that corrupted servers act as a dummy

adversary. Let B denote the set of corrupted servers.
First, Sim awaits (ready, i) for i ∈ B and that the environment has sent b′i for each

i ∈ B. Then it executes ReconstructS({(i, b′i) : i ∈ B}). If the reconstruction fails then
Sim chooses random messages m̃0, m̃1. If the reconstruction succeeds, let b be its output;
then Sim sends the command (transfer, b) to FOT , receives message (sent,mb) and sets
m̃b := mb; it selects a random message m̃1−b ∈M.

In any case, Sim generates a sharing (a(i,j))(i,j)∈Pn,2 = [(m̃0, m̃1)]Σ.

Finally, in parallel Sim sends the following to the environment: for each i ∈ B, it
sends a(i,b′i), and for each i ∈ B, it sends the entire vectors a(i,0), a(i,1).

We need to prove now that the distribution of these values is indistinguishable from
the ones obtained in the interaction with the actual protocol. We should first note that
since the set B is qualified for S, the values {b′i : i ∈ B} cannot be part of both a sharing
[0]S and a sharing [1]S . Using Proposition 3, this implies that the distribution of the set
of shares (m̃0)(i,j), (m̃1)(i,j), for i ∈ B and j ∈ {0, 1} and (m̃0)(i,b′i)), (m̃1)(i,b′i)) for i ∈ B
obtained in the simulation is the same as the corresponding distribution in the actual
protocol.

Alice malicious, Bob honest:
We will suppose without loss of generality that corrupted servers act as a dummy

adversary. Let A ∈ A be the set of corrupted servers. The simulator works as follows:
Upon receiving (ready) from the ideal functionality FOT , Sim generates uniformly

random sharings of b = 0 and b′ = 1 in S subject to the only condition that if i ∈ A,
then bi = b′i. Note that this is possible since A is unqualified for S. Then, in parallel Sim
sends bi to the environment for each i ∈ A. Sim now awaits that for each i ∈ A, the
environment sends a(i,0) and a(i,1) and that for each i ∈ A the environment sends a(i,bi).

For k = 0, 1, if mk is not already set to 0 then Sim computes

mk = ReconstructkΣ({((i, bi), a(i,bi)) : i ∈ Pn})

If the reconstruction of mk fails, Sim sets mk = 0. Finally, it sends (send,m0,m1) to
FOT .

By construction, the shares bi corresponding to the set A of corrupt servers that



the environment receives are indistinguishable from the A-shares in a uniformly random
sharing of b, regardless of whether b = 0 or b = 1. Hence these bi do not allow the receiver
to distinguish the real and ideal world. Now, since after that step there is no further
interaction, it suffices to show that the messages sent to Bob are indistinguishable from
the ones sent in the real world.

This is the case since the shares have been chosen with the distribution Bob would
use and since the simulator reconstructs the messages m0 and m1 in exactly the same
way as Bob would reconstruct mb in the real protocol, if b is his input. Therefore the real
and ideal world are indistinguishable.

We note that the simulators in the proof above run in polynomial time.

5.3 Threshold adversaries

We now consider threshold (tA, tB)-adversaries, which corrupt Alice and up to tA servers
or Bob and up to tB servers. Our main result is Theorem 1, which we recall next.

Theorem 1. For any large enough n, there exists an n-server single-use OT-combiner
which is perfectly secure against an active (0.11n, 0.11n)-adversary.

This and other statements we claim below will be a consequence of the following
lemma.

Lemma 4. If there exists a linear error-correcting code C over the binary field with length
n, minimum distance d satisfying d ≥ tB + 2, and such that the minimum distance d⊥

of its dual C⊥ satisfies d⊥ ≥ tA + 2, then there exists a single-use OT-combiner for n
servers which is perfectly secure against an active (tA, tB)-adversary.

Proof. We know from [Mas93] (see also [CCG+07, Theorem 1]) that given a linear code
C (over a field Fq) with length n + 1, one can construct a linear secret sharing scheme
for n participants with secret and shares in the same field Fq as follows. Namely, given
a secret s ∈ Fq, choose a codeword from C whose first coordinate is s, and define the
remaining coordinates as the n shares. Then, if the code has minimum distance d and
its dual code C⊥ has minimum distance d⊥, then any set of d⊥ − 2 participants in this
LSSS is unqualified and any set of n−d+2 participants is qualified. Hence the conditions
of the lemma guarantee the existence of a ideal binary LSSS S for n participants where
every set of tA participants is unqualified and every set of n− tB participants is qualified.
Plugging this S into Theorem 2 (in the ideal case we have already proved in this section)
shows the result.

Theorem 1 is then derived from the following result

Theorem 6. For large enough n, there exists a linear binary code with length n+ 1 and
d, d⊥ ≥ 0.11n.

The proof of this result essentially follows the steps from [CCG+07], and is based on
the well-known Gilbert-Varshamov theorem from coding theory.

Theorem 7 (Gilbert-Varshamov). For every 0 ≤ δ < 1/2 and any 0 < ε < 1− h2(δ)
(where h(·) denotes the binary entropy function), if a linear code is chosen uniformly at
random among all linear codes over F2 of length n+ 1 and dimension k = d(1− h2(δ)−
ε)(n+1)e, then with probability 1−2−Ω(n) the code has minimum distance at least δ(n+1).



Proof of Theorem 6. Choosing δ = 0.11 (which guarantees h2(δ) < 1/2), and ε = 1/2 −
h2(δ), Theorem 7 states that for large n, a uniformly random binary linear code of dimen-
sion (n+ 1)/2 has minimum distance δ(n+ 1) with very large probability. Now the dual
of a code of dimension (n + 1)/2 also has dimension (n + 1)/2. So one can use Gilbert-
Varshamov bound (applied to both a code and its dual, whose distribution is clearly
also uniformly random among all codes of dimension (n+ 1)/2) and a union bound argu-
ment and the observations above about the relationship between codes and secret sharing
schemes to conclude the result.

Proof of Theorem 1. This is now straightforward from Lemma 4 and Theorem 6.

We can also give non-asymptotic statements, at the cost of a small loss in the constant
0.11.

Theorem 8. For n ≥ 21, there exists an n-server single-use OT-combiner which is per-
fectly secure against an active (b0.1nc, b0.1nc)-adversary.

Proof. [CCG+07, Corollary 2] (see also Definition 5 in the same paper) guarantees that
for n ≥ 21, there exists a binary linear code with both d, d⊥ ≥ b0.1nc. Again applying
Lemma 4 we obtain the result.

Theorem 1 is an existence result, and explicit constructions of codes attaining the
Gilbert-Varshamov bound over the binary field are not known. We can only guarantee
that choosing a random code of length n + 1 and dimension (n + 1)/2 will with high
probability yield a linear secret sharing scheme with the desired guarantees. Explicit
constructions of perfectly secure OT-combiners against an active (Ω(n), Ω(n))-adversary
can be obtained from algebraic geometric codes, but the underlying constant is worse
than 0.11. For small values of n one can also obtain explicit constructions of ideal binary
LSSS with relatively good privacy and reconstruction thresholds. One possibility is to
use self-dual codes (i.e. codes that are their own duals), since in that case the minimum
distance of the code and its dual is the same. Tables of self-dual codes with the largest
known minimum distance for their lengths are available at [Gab]. These tables show for
instance the existence of a binary self-dual code of length 8 and minimum distance 4,
which yields a single-use 7-server OT-combiner with perfect security against an active
(2, 2)-adversary.

Finally, while in this paper we focus on perfect security, we briefly sketch a modifica-
tion of our protocol towards the goal of achieving statistical security against a stronger
threshold adversary that corrupts n/2− ω(log κ) servers, for a security parameter κ, fol-
lowing the ideas of [IMSW14] who obtained a similar result for passive adversaries. In this
case, we need to assume the existence of a direct communication channel between Alice
and Bob and we assume that the static adversary corrupts a set of servers and one of the
parties prior to the beginning of the protocol. The idea is to use our construction from
Theorem 1 but, rather than fixing a LSSS S prior to the start of the protocol as we do in
Theorem 1, in the statistical version we would let Alice and Bob choose a random linear
code and hence its associated LSSS as the first step of the protocol, after corruption of
the servers (and one of the parties) has taken place. They do this by means of a secure
coin tossing protocol. According to the arguments in Theorem 2, the adversary can only
break the security of the protocol if it was able to corrupt either Alice and a set of servers



A which is qualified in the corresponding LSSS scheme S or Bob and a set of servers
B such that the complement B is not qualified in S. However, the adversary does not
know the LSSS at the time of the corruption, so he must basically guess which set to
corrupt. The results about LSSS constructed from codes in [Mas93,CCG+07] imply that
the adversary succeeds if he corrupts a set of servers such that there exists a codeword in
either C or C⊥ with a 1 in the first coordinate and the rest of its support is contained in
the set of indices corresponding to the corrupted set. However, one can show by a simple
counting argument that the probability that this bad event happens is negligible in κ.

6 Construction of OT-combiners in the general case

In this section we present the general version of the protocol πOT from the previous
Section 5, when the adversary structure A is not necessarily the adversary structure of
an ideal LSSS over F2. Note that many interesting access structures, for example most
threshold structures, do not admit an ideal LSSS over F2.

Theorem 2. Let A, B ⊆ 2Pn be adversary structures such that (A,B) is a R2 pair.
Suppose there exists a linear secret sharing scheme S for n participants where the secret
is in {0, 1} and the i-th share is in {0, 1}`i, and such that every set A ∈ A is unqualified
in S and the complement B of every set B ∈ B is qualified in S.

Then there exists an OT combiner which calls the i-th server `i times and is perfectly
secure against any active (A,B)-adversary.

Oblivious transfer protocol πOT (non-ideal S case)

We use the index i ∈ {1, . . . , n} for the servers, ki ∈ {1, . . . , `i} to index the bits of the i-th share of S and
j ∈ {0, 1} to index the bits in Alice’s input to each instance of OT.

1. Local computation:
Bob creates a sharing [b]S = (bi)i∈{1,...,n}, where each bi ∈ {0, 1}`i is parsed as (bi,1, bi,2, . . . , bi,`i) with
bi,k ∈ {0, 1}.
Alice creates a sharing

[(m0,m1)]Σ = (a(i,k,j))i∈{1,...,n},k∈{1,...,`i},j∈{0,1}.

2. Use of the OT servers:
For i ∈ {1, . . . , n} and for each k ∈ {1, . . . , `i}, Alice and Bob use server Si to execute an OT with inputs
(ai,k,0, ai,k,1) for Alice and bi,k for Bob. Let yi,k denote the output of Bob in instance (i, k).

3. Local computation:
If b = 0, Bob constructs m′0 by applying

Reconstruct
0
Σ({((i, k, bi,k), yi,k) : i ∈ Pn, k ∈ {1, . . . , `i}}).

Similarly, if b = 1, Bob constructs m′1 by applying

Reconstruct
1
Σ({((i, k, bi,k), yi,k) : i ∈ Pn, k ∈ {1, . . . , `i}}).

In any of the cases, if the reconstruction fails, output 0. Otherwise output the reconstructed m′b.

Fig. 4. Protocol πOT for general LSSSs.

Let S be a possibly non-ideal perfect secret sharing scheme with adversary structure
A. For i = 1, . . . , n the i-th share of S belongs to some vector space Ui = {0, 1}`i for
some integer `i ≥ 1. Let ` =

∑n
i=1 `i be the complexity of S.



The idea of the generalization is simple. The i-th server is split in `i subservers, each
of which will receive one different bit of the i-th share of Bob’s input. These subservers
will now work as the servers did in the protocol from Section 5 (we remark however that
the adversaries corrupt full servers and not individual subservers). For that we need to
modify the secret sharing scheme Σ used by Alice accordingly. More precisely, let V,W ⊆
U1×· · ·×Un be the sets of all possible sharings of 0 and 1 respectively. We can think of the
elements of V and W as `-bit strings, and we index their coordinates by pairs (i, k) where
the (i, k)-th coordinate of a sharing is the k-th bit of the i-th share. Now we can define Σ
as in Proposition 1 for these V and W (and setting t to be some sharing [1]S). Everything
works therefore the same as in Section 5.1 except that Σ will now have 2` shares. The
set of shares will be indexed by P`,2 := {(i, k, j) : i = 1, . . . , n, k = 1, . . . , `i, j = 0, 1}.
The general protocol is given in Figure 4. The security proofs work essentially as in the
case presented in Section 5.

7 Necessary conditions for the existence of OT combiners

In this section we show Theorem 3,

Theorem 3. Let A, B be adversary structures on the set of servers {S1, . . . , Sn}. If
there exists a perfectly secure OT-combiner which is secure against any passive (A,B)-
adversary and uses server Si exactly `i times, then (A,B) is an R2 pair of structures and
there exists a secret sharing scheme for n participants with secret in {0, 1}, the i-th share
in {0, 1}`i, for i = 1, . . . , n and such that every set A ∈ A is unqualified in S and the
complement B of any set every set B ∈ B is qualified in S.

First we show that if (A,B) were not R2 then the existence of an unconditionally
secure OT combiner would imply the existence of a 2-party unconditionally secure OT
protocol. Indeed if (A,B) is not R2, then there exists A ∈ A and B ∈ B such that
A ∪ B is the set of all servers. Then the entire protocol can be emulated by two parties:
Alice′, who plays the joint role of Alice and all the servers in A and Bob′ who plays for
Bob and all servers in B. This is then a two-party protocol in the plain model which
is unconditionally secure against a semi-honest adversary who can corrupt either of the
parties Alice′ and Bob′. This is known to be impossible.

Next, we prove the existence of a secret sharing scheme with the properties mentioned
in the theorem. In fact, we simply reproduce the arguments from [IMSW13] in our setting.
Assume we have an OT combiner which is perfectly secure against an (A,B)-adversary
and where the i-th server is used `i times. Then Bob’s inputs to the OT servers must
have been computed from his global input to the OT combiner by some probabilistic
algorithm AlgBob. We now consider a secret sharing scheme S whose sharing algorithm
is AlgBob (understanding that the i-th share is the bit-string containing all `i inputs bits
to the i-th OT server produced by AlgBob). Since the OT combiner is secure against
and adversary corrupting Alice and a set A ∈ A, this means that every A ∈ A must
be unqualified in S. Next we show that for every B ∈ B, its complement B must be
a reconstructing set for S. Consider a party Alice′ who plays the role of Alice and the
servers in B in the OT-combiner and a party Bob′, who plays the role of Bob and the
servers in B. Assume that the inputs of Alice and Bob are independent. We then have a
protocol between Alice′ and Bob′ in the plain model, which correctly implements the OT
functionality and in which, by security of the OT combiner and since B ∈ B, Bob′ obtains



no information about the input (m0,m1) of Alice′ after the protocol has been executed.
In these conditions, it follows from standard arguments about the impossibility of two
party computation in the plain model (see e.g. [CDN15]) that Alice′ not only obtains
information about the input of Bob′, but in fact she recovers it with probability 1. Given
that all the information that Alice′ has learned during the execution of the protocol is
the input bits to the servers in B, we conclude that B is a reconstructing set for S.

8 2-out-of-3 OT-combiners

As an application of Theorems 2 and 3 we determine the minimal number of calls for a
perfectly secure OT combiner where we have 3 servers, and 2 of them are secure. In other
words, we want perfect security against an (1, 1)-adversary, i.e. A = B = {{1}, {2}, {3}}.
By Theorem 2, we are then interested in finding a linear secret sharing scheme over F2

for 3 participants such that it has 1-privacy (every single participant is unqualified) and
it has 2-reconstruction (every set of two participants is qualified). Note that we want to
find a threshold secret sharing scheme, but Shamir’s scheme cannot be used directly over
F2 (we would tolerate at most 2 participants). One could instead use Shamir’s scheme
over the extension field F4, and in this case we have shares which are each in {0, 1}2. This
yields an OT-combiner where each server is called twice, which matches the number of
calls in a construction in [HKN+05]. However, we show that one can do better with the
following LSSS S.

Secret sharing scheme S

To share s ∈ {0, 1}.

– Sample r and r′ uniformly at random in {0, 1}.
– Send:

1. r to Participant 1.
2. (s− r, r′) to Participant 2.
3. (s− r, s− r′) to Participant 3.

Fig. 5. A 2-out-of-3 threshold linear secret sharing scheme S

Lemma 5. S has 2-reconstruction and 1-privacy.

Corollary 1. There exists an OT combiner for 3 OT servers which is perfectly secure
against an (1, 1)-adversary and makes 1 call to one of the OT servers and 2 calls to each
of the other 2 servers.

Now we apply Theorem 3 in combination with the results from [CCX13] to show that
this is optimal in the total number of server calls. Theorem 3 states that given an OT-
combiner in the conditions above, there needs to exist a secret sharing scheme (linear or
not) for 3 participants with 1-privacy, 2-reconstruction and share lengths matching the
number of calls to the OT-servers. On the other hand we have

Theorem 9 ([CCX13]). Suppose there exists a secret sharing scheme for n participants,
where the i-th share takes values in an alphabet Ai, and such that it has t-privacy and



r-reconstruction. Let q = 1
n

∑n
i=1 |Ai| be the average cardinality of the share-alphabets.

Then

r − t ≥ n− t+ 1

q
.

Therefore, a secret sharing in the conditions above must satisfy that the average
cardinality of the share-alphabets is q ≥ 3. Now note that in our case the shares are
in {0, 1}`i , which are alphabets of cardinality 2`i , and we can rule out degenerate cases
where `i = 0 (since in that case, clearly it cannot happen simultaneously that {i, j} is
qualified and {j} is unqualified). Under all these conditions, one can easily check that∑3

i=1 `i < 5 and q = 1
3

∑3
i=1 2`i ≥ 3 cannot be achieved simultaneously. Therefore,

Corollary 2. The minimal number of calls for a OT combiner for 3 OT servers which
is perfectly secure against an (1, 1)-adversary is 5.

9 Security Against Corruptions of Only Servers

Our model does not consider corruption of only servers, and our security proofs therefore
do not directly guarantee any security in case the adversaries corrupt only a set of servers.
Nevertheless, we can argue that some security properties are satisfied even in case of
server-only corruption.

Let Adv be an adversary that corrupts a set C of servers only. Alice and Bob are
both honest and have inputs (m0,m1), b respectively. Let us first consider the case where
Adv is semi-honest and corrupts only a set S ∈ B of servers. If a protocol π is secure in
our model, it is easy to see that it will compute the correct result (⊥,mb) (meaning Bob
receives mb and Alice receives nothing) also in this case and that Adv will learn nothing
more than at most b,mb. This follows, since if Adv had also corrupted Bob semi-honestly,
he would have learned at least as much and we can use security of π to conclude that
in that case the correct result is computed and Adv learns nothing more than b,mb. In
particular, the view of Adv can be simulated perfectly based on b,mb. A similar conclusion
holds if we switch the roles of Alice and Bob, i.e. if Adv is semi-honest and corrupts only
a set S ∈ A of servers, his view can be simulated perfectly based only on m0,m1.

Now, consider the case where S ∈ A and S ∈ B. We can then conclude that the view
of Adv can be simulated perfectly based on m0,m1 and also based on b,mb. But this must
mean that the distribution of this view does not depend on any of these values: assume for
contradiction that there existed m0,m1 such that the distribution of the view of S given
(0,m0) is different from the one given (1,m1). Now compare the two cases where we run
the protocol on inputs (m0,m1, 0) respectively (m0,m1, 1). Then the simulation based on
m0,m1 would output the same distribution in both cases, so it cannot be consistent with
both the distribution resulting from (m0,m1, 0) and from (m0,m1, 1). So we have

Proposition 4. If protocol π is perfectly secure in our model, it is also secure against
semi-honest corruption of a set of servers that is in both A and B, except that the simu-
lation may not in general be efficient.

Let us now consider malicious corruption: Alice and Bob are honest and Adv is ma-
licious and corrupts only a set C ∈ B of servers. Note that from Alice’s point of view,
the situation is indistinguishable from a case where Adv also corrupts Bob but lets him
play honestly. Security of π now implies that Adv learns nothing more than b and mb′ for



some well defined input b′ that is determined by the behaviour of the malicious servers.
Note that we are not guaranteed that b′ is equal to the honest input b, even though Bob
plays honestly. Similarly, for C ∈ A, Adv will learn nothing about b.

We observe that if S is in both A and B, then both the honest Alice and honest Bob
are guaranteed privacy: By running π, I will give away only the function evaluated in my
own input and some input from the other party. But Alice and Bob are not guaranteed
to agree on the result, so we do not get security in the standard single adversary sense
against malicious corruption of C.

We can in fact argue that this cannot in general be achieved in our model, even if C
is in both A and B: Consider a case with 3 servers 1, 2, 3 and let A = {{1}, {2}} and
B = {{2}, {3}}. This is clearly R2, so our model applies. Now, it is easy to see that a
secure protocol π in our sense will in this case also be semi-honestly secure against single-
adversary corruption of {Alice, 1}, as well as {Bob, 3}. So if π was also single adversary
maliciously secure against corruption of {2}, then we would have a situation where the
whole player set is covered by 2 sets that are semi-honestly corruptible and 1 set that
is maliciously corruptible, while π remains secure. And where furthermore the malicious
server 2 has no inputs or outputs. We are precisely in the case where the proof of Theorem
1 in [FHM99] rules out the possibility of having a secure protocol.
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