Skip to main content

Data Modelling for Dynamic Monitoring of Vital Signs: Challenges and Perspectives

  • Conference paper
  • First Online:
Advances in Conceptual Modeling (ER 2017)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 10651))

Included in the following conference series:

  • 1076 Accesses

Abstract

The use-case described in this paper covers data acquisition and real-time analysis of the gathered medical data from wearable sensor system. Accumulated data is essential for monitoring vital signs and tracking the dynamics of the treatment process of disabled patients or patients undergoing the recovery after traumatic knee joint injury (e.g. post-operative rehabilitation). The main goal of employing the wearable sensor system is to conduct rehabilitation process more effectively and increase the rate of successful rehabilitation. The results of data analysis of patient’s vital signs and feedback allow a physiotherapist to adjust the rehabilitation scenario on the fly. In this paper, we focus on the methodology for data modelling with a purpose to design a computer-aided rehabilitation system that would support agility of changing information requirements by being flexible and augmentable.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. American Academy of Orthopaedics: Common Knee Injuries. http://orthoinfo.aaos.org/topic.cfm?topic=a00325. Accessed 10 June 2017

  2. Bergmann, J.H.M., et al.: An attachable clothing sensor system for measuring knee joint angles. Sensors 13(10), 4090–4097 (2013)

    Article  Google Scholar 

  3. Pasa, L., Visna, P.: Suture of meniscus. Scr. Med. (Brno) 78(3), 135–150 (2005)

    Google Scholar 

  4. Kuhn, H.H., Kimbrell, W.C.J.: Electrically conductive textile materials and method for making same. Patent US4803096, USA, 7 February 1989

    Google Scholar 

  5. Foody, J., et al.: A prototype sourceless kinematic-feedback based video game for movement based exercise. In: Proceedings of IEEE International Conference on Engineering in Medicine and Biology Society, vol. 1, p. 5366 (2006)

    Google Scholar 

  6. Matsubara, M., et al.: The effectiveness of auditory biofeedback on a tracking task for ankle joint movements in rehabilitation. In: Proceedings of ISon 2013, Fraunhofer IIS, Germany, pp. 81–86 (2013)

    Google Scholar 

  7. Yamada, T., et al.: A stretchable carbon nanotube strain sensor for human-motion detection. Nat. Nanotechnol. 6, 296–301 (2011)

    Article  Google Scholar 

  8. Guo, Y., et al.: A low-cost body inertial-sensing network for practical gait discrimination of hemiplegia patients. Telemed. E-Health 18(10), 748–754 (2012)

    Article  Google Scholar 

  9. Raya, C., et al.: KneeMeasurer. A wearable interface for joint angle measurements. In: Proceedings of DRT4all, pp. 89–96 (2007)

    Google Scholar 

  10. Chen, K., et al.: Wearable sensor-based rehabilitation exercise assessment for knee osteoarthritis. Sensors 15(2), 4193–4211 (2015)

    Article  Google Scholar 

  11. Seel, T., Raisch, J., Schauer, T.: IMU-based joint angle measurement for gait analysis. Sensors 14(4), 6891–6909 (2014)

    Article  Google Scholar 

  12. Daponte, P., et al.: Design and validation of a motion-tracking system for ROM measurements in home rehabilitation. Measurement 55, 82–96 (2014)

    Article  Google Scholar 

  13. Yurtman, A., Barshan, B.: Automated evaluation of physical therapy exercises using multi-template dynamic time warping on wearable sensor signals. Comput. Methods Programs Biomed. 117(2), 189–207 (2014)

    Article  Google Scholar 

  14. Riaz, Q.: Human Motion Analysis Using Very Few Inertial Measurement Units. Bonn, Germany (2015). http://hss.ulb.uni-bonn.de/2016/4243/4243.pdf. Accessed 10 June 2017

  15. Hermanis, A., et al.: Demo: wearable sensor system for human biomechanics monitoring. In: Proceedings of EWSN 2016, pp. 247–248. Junction Publishing, Canada (2016)

    Google Scholar 

  16. van der Lans, R.F.: Developing a bi-modal logical data warehouse architecture using data virtualization (2016). Denodo whitepapers http://www.denodo.com/en/document/whitepaper/developing-bimodal-logical-data-warehouse-architecture-using-data-virtualization. Accessed 10 June 2017

  17. Mesaglio, M., Mingay, S.: Bimodal IT: how to be digitally agile without making a mess (2014). Gartner https://www.gartner.com/doc/2798217/bimodal-it-digitally-agile-making. Accessed 10 June 2017

  18. Jovanovic, V., Bojicic, I.: Conceptual data vault model. In: Proceedings of SAIS 2012, vol. 22 (2012)

    Google Scholar 

  19. Linstedt, D.: Data vault basics. Dan Linstedt https://danlinstedt.com/solutions-2/data-vault-basics/. Accessed 10 June 2017

  20. Inmon, W.H., Linstedt, D.: Data Architecture: A Primer for the Data Scientist - Big Data, Data Warehouse and Data Vault. Morgan Kaufmann, 378p. (2015)

    Google Scholar 

  21. Krneta, D., Jovanovic, V., Marjanovic, Z.: A direct approach to physical data vault design. Comput. Sci. Inf. Syst. 11(2), 569–599 (2014)

    Article  Google Scholar 

  22. Linstedt, D., Olschimke, M.: Building a Scalable Data Warehouse with Data Vault 2.0. Morgan Kaufmann, 684p. (2015)

    Google Scholar 

  23. Golfarelli, M., Graziani, S., Rizzi, S.: Starry vault: automating multidimensional modeling from data vaults. In: PokornĂ½, J., Ivanović, M., Thalheim, B., Å aloun, P. (eds.) ADBIS 2016. LNCS, vol. 9809, pp. 137–151. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-44039-2_10

    Chapter  Google Scholar 

  24. Pezzini, M., et al.: Hybrid transaction/analytical processing will foster opportunities for dramatic business innovation (2014). Gartner https://www.gartner.com/doc/2657815/hybrid-transactionanalytical-processing-foster-opportunities. Accessed 10 June 2017

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Natalija Kozmina .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kozmina, N., Syundyukov, E., Kozmins, A. (2017). Data Modelling for Dynamic Monitoring of Vital Signs: Challenges and Perspectives. In: de Cesare, S., Frank, U. (eds) Advances in Conceptual Modeling. ER 2017. Lecture Notes in Computer Science(), vol 10651. Springer, Cham. https://doi.org/10.1007/978-3-319-70625-2_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-70625-2_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-70624-5

  • Online ISBN: 978-3-319-70625-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics