
 
 
General rights 
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright 
owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. 
 

 Users may download and print one copy of any publication from the public portal for the purpose of private study or research. 

 You may not further distribute the material or use it for any profit-making activity or commercial gain 

 You may freely distribute the URL identifying the publication in the public portal 
 
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately 
and investigate your claim. 
  
 

   

 

 

Downloaded from orbit.dtu.dk on: Apr 23, 2024

Linear Cryptanalysis of DES with Asymmetries

Bogdanov, Andrey; Vejre, Philip Søgaard

Published in:
ASIACRYPT 2017: Advances in Cryptology – ASIACRYPT 2017

Link to article, DOI:
10.1007/978-3-319-70694-8_7

Publication date:
2017

Document Version
Peer reviewed version

Link back to DTU Orbit

Citation (APA):
Bogdanov, A., & Vejre, P. S. (2017). Linear Cryptanalysis of DES with Asymmetries. In T. T., & T. P. (Eds.),
ASIACRYPT 2017: Advances in Cryptology – ASIACRYPT 2017 (pp. 187-216). Springer.
https://doi.org/10.1007/978-3-319-70694-8_7

https://doi.org/10.1007/978-3-319-70694-8_7
https://orbit.dtu.dk/en/publications/875c5837-30e1-4570-b5c0-20cb9fbb2189
https://doi.org/10.1007/978-3-319-70694-8_7


Linear Cryptanalysis of DES with Asymmetries

Andrey Bogdanov and Philip S. Vejre

Technical University of Denmark
{anbog,psve}@dtu.dk

Abstract. Linear cryptanalysis of DES, proposed by Matsui in 1993,
has had a seminal impact on symmetric-key cryptography, having seen
massive research efforts over the past two decades. It has spawned many
variants, including multidimensional and zero-correlation linear crypt-
analysis. These variants can claim best attacks on several ciphers, in-
cluding present, Serpent, and CLEFIA. For DES, none of these vari-
ants have improved upon Matsui’s original linear cryptanalysis, which
has been the best known-plaintext key-recovery attack on the cipher ever
since. In a revisit, Junod concluded that when using 243 known plain-
texts, this attack has a complexity of 241 DES evaluations. His analysis
relies on the standard assumptions of right-key equivalence and wrong-
key randomisation.
In this paper, we first investigate the validity of these fundamental as-
sumptions when applied to DES. For the right key, we observe that
strong linear approximations of DES have more than just one dominant
trail and, thus, that the right keys are in fact inequivalent with respect
to linear correlation. We therefore develop a new right-key model us-
ing Gaussian mixtures for approximations with several dominant trails.
For the wrong key, we observe that the correlation of a strong approx-
imation after the partial decryption with a wrong key still shows much
non-randomness. To remedy this, we propose a novel wrong-key model
that expresses the wrong-key linear correlation using a version of DES
with more rounds. We extend the two models to the general case of
multiple approximations, propose a likelihood-ratio classifier based on
this generalisation, and show that it performs better than the classical
Bayesian classifier.
On the practical side, we find that the distributions of right-key cor-
relations for multiple linear approximations of DES exhibit exploitable
asymmetries. In particular, not all sign combinations in the correlation
values are possible. This results in our improved multiple linear attack on
DES using 4 linear approximations at a time. The lowest computational
complexity of 238.86 DES evaluations is achieved when using 242.78 known
plaintexts. Alternatively, using 241 plaintexts results in a computational
complexity of 249.75 DES evaluations. We perform practical experiments
to confirm our model. To our knowledge, this is the best attack on DES.

Keywords: Linear cryptanalysis, DES, mixture models, right-key equivalence,
wrong-key randomisation, linear hull, multiple linear.



1 Introduction

Accepted as a standard in 1976 by the National Bureau of Standards (later
NIST), DES can now celebrate its fortieth birthday. Being a highly influential
cipher, it has inspired much cryptanalysis. Triple-DES is still massively deployed
in conservative industries such as banking. Moreover, it is used to secure about
3% of Internet traffic [1].

The first attack on the full DES came in 1992, where Biham and Shamir
demonstrated that differential cryptanalysis enabled a key recovery using 247

chosen plaintexts in time 237 [2]. The year after, in 1993, Matsui introduced a
new cryptanalytic technique, linear cryptanalysis, which DES proved especially
susceptible to. While the first iteration of the attack required 247 known plain-
texts [21], Matsui soon improved his attack to only require 243 known texts,
taking 243 time to recover the key. This complexity estimate was lowered to 241

by Junod in 2001 [17]. In [18], Knudsen and Mathiassen lower the complexity to
242 plaintexts, however this attack uses chosen plaintexts.

In this paper we present the first successful attack on full DES using multiple
linear approximations. By developing new models for the correlation distribu-
tions, and by exploiting asymmetries in the right-key distribution, we obtain an
improved key-recovery attack. Using 242.78 known plaintexts, the attack recovers
the key in time equal to 238.86 DES encryptions.

1.1 Previous Work and Problems

Linear cryptanalysis has proven to be widely applicable, and has spawned many
variants and generalisations. Amongst them are differential-linear cryptanaly-
sis [19], multiple linear cryptanalysis [16,3], multidimensional linear cryptanal-
ysis [15,14], zero-correlation linear cryptanalysis [5,6], multivariate linear crypt-
analysis [8], etc. These techniques have successfully been applied to a wide range
of ciphers, including Serpent [23,14], present [9,8], Camellia and CLEFIA [4],
and CAST-256 [27].

Matsui first introduced the concept of a linear approximation of a block
cipher in [21]. If we denote the encryption of a plaintext P using key K by
C = EK(P), then a linear approximation of this cipher is a pair of masks, (α, β),
which indicate some bits of the plaintext and ciphertext. The idea is to find α
and β such that the sum of plaintext bits indicated by α is strongly correlated to
the sum of ciphertext bits indicated by β. A measure of the strength of a linear
approximation is the linear correlation, defined by

CK(α, β) = 2 · Pr(⟨α, x⟩ ⊕ ⟨β,EK(x)⟩ = 0)− 1,

where ⟨·, ·⟩ is the canonical inner product. Matsui showed how an approximation
with linear correlation that deviates significantly from zero can be used to attack
the cipher, and found such approximations for DES. The attack procedure was
formalised as Algorithm 2, in which an attacker obtains plaintext-ciphertext
pairs over r rounds of a cipher. The attacker then guesses the outer round keys
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in order to encrypt/decrypt the outer rounds, and compute the correlation over
r − 2 rounds.

Standard assumptions for linear cryptanalysis on DES In [17] Junod
revisited Matsui’s attack, and concluded that Matsui’s original complexity was
slightly overestimated. Junod instead estimated that the attack could be per-
formed in time 241 using the same number of known plaintexts. Central to both
Matui’s and Junod’s analysis are two assumptions.

Assumption A (Right-Key Equivalence) For a linear approximation (α, β),
the magnitude of the correlation, |CK(α, β)|, does not deviate significantly from
its expected value over all keys, that is, |CK(α, β)| = E(|CK(α, β)|).

Problem 1: Insufficient Right-Key Distribution: The assumption of right-key
equivalence is usually the result of assuming that the magnitude of the linear
correlation is determined by a single dominant trail. This further implies that
the linear correlation only takes on two values over the key space. However, in
[24], Nyberg first introduced the concept of a linear hull, i.e. the collection of
all trails of a linear approximation, and showed that Assumption A is not true
in general. In [7], Bogdanov and Tischhauser gave a refined version of Assump-
tion A, which takes a larger part of the hull into account. However, to the best
of our knowledge, no thorough exploration of the right-key distribution for DES
has been conducted, and it is unclear how accurate Assumption A is in this
context.

Assumption B (Wrong-Key Randomisation) In the context of Algorithm 2,
the correlation of a linear approximation (α, β) is equal to 0 for all wrong guesses
of the outer round keys.

Problem 2: Unrealistic Wrong-Key Distribution: The assumption of wrong-key
randomisation implies that if an attacker guesses the wrong outer round keys in
Algorithm 2, the resulting texts pairs behave in a completely random way, i.e.
the linear correlation will be equal to zero. A refined version of this assumption
was given by Bogdanov and Tischhauser in [7], where the wrong-key distribution
was given as the Gaussian distribution N (0, 2−n), where n is the block size. This
distribution matches that of an ideal permutation. Neither of these assumptions
have been verified for DES. Indeed, DES exhibits very strong linear approxima-
tions, and it is not clear if a wrong key guess is sufficient to make the linear
correlation close to that of an ideal permutation.

Linear cryptanalysis of DES with multiple approximations While sev-
eral models for using multiple approximations for linear cryptanalysis have been
proposed, see e.g. [3,16,14,15,8,26], the application to DES has been very lim-
ited. In [16], Kaliski and Robshaw specifically note that their approach is limited
when applied to DES. In [26], Semaev presents an alternative approach, but does
not obtain better results than Matsui’s original attack.
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The most promising attempt was given in [3] by Biryukov et al. Under As-
sumption A, when using M approximations, the key space can be partitioned
into at most 2M key classes based on the signs of the M linear correlations.
This allowed Biyukov et al. to describe the correlation of each key class as an
M -variate normal distribution NM (µi, 1/N · I), where I is an M ×M identity
matrix, and the mean vector is given by

µi = (si,1|CK(T1)|, . . . , si,M |CK(TM )|)⊤,

where si,j ∈ {−1, 1} describes the sign combination of the i’th key class. Based
on this, they developed a Bayesian classifier, in order to decide between a correct
or incorrect guess of the round keys in Algorithm 2.

Problem 3: Applying Multiple Linear Cryptanalysis to DES: While Biryukov
et al. demonstrate that their method of using multiple approximations can poten-
tially reduce the complexity of Matsui’s attack, they also note that the structure
of DES makes it difficult to arbitrarily use a large number of approximations.
As such, they did not present a new attack on DES. Similar observations were
made by Kaliski and Robshaw in [16]. To the best of our knowledge, no other
variants of linear cryptanalysis which uses multiple approximations have been
able to outperform Matsui’s original attack.

1.2 Our Contributions

More Accurate Right-Key Model for DES. In Section 3 we consider Prob-
lem 1, i.e. the fundamental problem of the DES right-key distribution. We enu-
merated over 1000 trails for the linear approximation used by Matsui, and calcu-
lated the resulting correlation distribution for 1 million keys. We demonstrate in
Section 3.2 that while this distribution does have two modes symmetric around
zero, each mode does not consist of a single value, as predicted by Assumption A.
Indeed, it is not even the case that each mode takes on a simple Gaussian distri-
bution. As such, one cannot consider different keys to have equivalent behaviour.

We therefore develop a new model for the right-key distribution in Sec-
tion 3.3. This model is given below, and expresses the distribution as a mixture
of Gaussian components. An example of this model applied to DES is shown in
Figure 1.

Model A (Right-Key Equivalence for One Approximation) Consider a
linear approximation (α, β) of r rounds of DES. The distribution of the linear
correlation CK(α, β) over the key space is approximately given by a Gaussian
mixture for some weights λi and components N (µi, σ

2
i ), i = 1, . . . , ℓ.

Applying this model to the approximations used by Matsui, we show that it is
able to accurately describe the observed distribution. Moreover, it is interesting
to note that the component associated with the dominant trail only accounts
for 30% of the correlation, contrasting Assumption A. We furthermore apply
the mixture model to describe the full correlation distribution observed during
an attack. We note that when the number of texts used in the attack is small,
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Fig. 1: Our new models for the distributions of linear correlation over the key
space for DES. The distributions are expressed as Gaussian mixtures. The model
shows a deviation from the standard assumptions of right-key equivalence and
wrong-key randomisation.

the right-key distribution originally given by Matsui is a good approximation.
However, we stress that the cryptanalyst should carefully examine the right-key
distribution when this is not the case.

New Wrong-Key Model for DES. In Section 4 we consider Problem 2. In
order to obtain a wrong-key model that more accurately describes the case of a
wrong key guess in Algorithm 2, we propose the following new approach.

Model B (Non-Random Wrong-Key Distribution) Consider an Algo-
rithm 2 style attack on r rounds of DES using a linear approximation (α, β) over
r − 2 rounds. Let RK be the keyed round function of DES, and let E⋆

K denote
the r-round encryption function. For a wrong guess of the outer round keys, the
correlation will be distributed as for the cipher

E′
K(x) = R−1

Ka
(E⋆

K(R−1
Kb

(x))), (1)

where Ka and Kb are chosen uniformly at random.

This model accurately matches the situation of guessing the wrong outer
round keys in an Algorithm 2 attack. We enumerated over 900 trails for the lin-
ear approximation used by Matsui for the cipher E′, and calculated the resulting
correlation distribution for 1 million keys. The result is shown in Figure 1. While
the distribution has mean zero, the shape of the distribution does not match As-
sumption B, nor that of the revised version by Bogdanov and Tischhauser, as its
variance is much larger than 2−n. As is the case for the right-key distribution,
the wrong-key distribution is also not a simple Gaussian, but rather some Gaus-
sian mixture. Again, for low data complexities, we demonstrate that a Gaussian
model is sufficient to describe the wrong-key distribution observed during an
attack, but advise caution when the data complexity is close to full codebook.
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Symmetric right-key distribution Asymmetric right-key distribution

Fig. 2: An illustration of the difference between a symmetric and an asymmetric
joint distribution of linear correlation for two approximations over the key space.
The right-key distribution is blue, while the wrong-key distribution is red.

Multiple Linear Cryptanalysis with Asymmetries. In Sections 5 and 6
we remedy Problem 3. We develop a classifier for M approximations based on
the likelihood-ratio of the right-key and wrong-key distributions developed in
Section 3 and Section 4. This classifier is given by

Λ(x) =

∑ℓ
i=1 λiϕM (x;µi,Σi + (2−n + 1/N)I)

ϕM (x;0,ΣW + (2−n + 1/N)I)
,

where ϕ is the probability density function (PDF) of the Gaussian distribution.
The wrong-key distribution is a simple M -variate Gaussian. The right-key dis-
tribution is a mixture of at most 2M , M -variate components based on the signs
of the M correlations. In contracts to the work in [3], we do not partition the key
space, but express the correlation distribution over the entire key space. Also
in contrast to this work, our classifier directly takes the wrong-key distribution
into account. We demonstrate how this improves the classifier.

We make the interesting observation that if the right-key distribution is asym-
metric, that is, if the number of components is less than 2M , we obtain a stronger
classifier. This situation is demonstrated in Figure 2. From this example, one can
get an intuitive understanding of how an asymmetric distribution makes it easier
to distinguish between right-key and wrong-key. We therefore propose the term
symmetry factor, namely the ratio between number of components and 2M , and
conjecture that a lower symmetry factor will result in a stronger attack.

First Successful Multiple Linear Cryptanalysis of DES. By using the
asymmetric classifier in Section 6, we give the first attack on full DES using
multiple linear approximations which improves Matsui’s original attack. We use
two sets of four linear approximations. Using 242.78 known plaintexts, the attack
recovers the key in time equal to 238.86 encryptions, with a success probability of
85%. This is 4.4 times faster than Junod’s estimate of Matsui’s attack, and uses
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Technique Data
complexity

Time
complexity

Success
probability

Attack
scenario

Source

Differential 247.00 237.00 58% Chosen plaintext [2]
Linear 243.00 243.00 85% Known plaintext [22]
Linear 243.00 241.00 85% Known plaintext [17]
Multiple Linear 242.78 238.86 85% Known plaintext Section 6
Multiple Linear 241.00 249.76 80% Known plaintext Section 6

Table 1: Comparison of key-recovery attacks on full DES.

240.2 fewer texts. We confirm these results by measuring the actual correlation
distributions using this number of texts for 1300 random keys, and computing
the resulting advantage of our classifier. We find that the model fits our practical
results very well. Alternatively, we can lower the data complexity to 241, and
recover the key in time 249.76, with a success probability of 80%. Our attack is
compared to previous attacks on full DES in Table 1.

2 Linear Cryptanalysis of DES

In 1993, Matsui introduced the concept of linear cryptanalysis and applied it to
derive a key-recovery attack on the full 16-round DES [21,22]. In this section, we
briefly outline the attack. We then give an overview of the assumptions Matsui
made in his analysis, and show the resulting complexity of the attack. Moreover,
we show a variant of linear cryptanalysis due to Biryukov, de Cannière, and
Quisquater [3], which will be important for the remaining part of this work.

2.1 Basics of Linear Cryptanalysis

We consider a block cipher with block length n and key length κ. We denote the
encryption of plaintext P ∈ Fn

2 under key K ∈ Fκ
2 by EK(P). The idea of linear

cryptanalysis is to find a linear approximation (α, β) ∈ Fn
2 × Fn

2 such that the
magnitude of its linear correlation, defined by

CK(α, β) = 2 · Pr(⟨α, x⟩ ⊕ ⟨β,EK(x)⟩ = 0)− 1,

is large. Here, ⟨·, ·⟩ denotes the canonical inner product on Fn
2 . Thus, the corre-

lation is a measure of how often the parity bit ⟨α,P⟩ of the plaintext is equal to
the parity bit ⟨β, C⟩ of the ciphertext. We expect a strong cipher to only have
approximations with linear correlation close to 0, and hence a correlation value
that deviates significantly from 0 indicates a weakness of the cipher.

For Feistel ciphers, such as DES, the linear correlation of an approximation
(α, β) can be calculated by considering so called linear trails of the cipher. We
define a single-round linear trail of DES as the triple (u, t, v) ∈ Fn

2 × Fm
2 × Fn

2 ,
where m is the size of a single round key. The linear correlation of this single-
round trail is then defined as

CKr (u, t, v) = 2 · Pr(⟨u, x⟩ ⊕ ⟨v,RKr (x)⟩ = ⟨t,Kr⟩)− 1,

7



where RKr
is the DES round-function using the r’th round key Kr. We now

define a linear trail T over r rounds as a collection of single-round trails
(ui, ti, ui+1), i = 0, . . . , r − 1, as well as the correlation contribution of the
trail T as [12,11] CK(T ) =

∏r−1
i=0 CKi(ui, ti, ui+1). We will also make use of the

concept of an associated key trail T̄ of a trail T . The key trail is defined as the
concatenation of the ti, i = 0, . . . , r − 1.

Daemen and Rijmen demonstrated that the correlation contribution of a trail
can be written as [12,11]

CK(T ) = (−1)sT⊕⟨T̄ ,K̄⟩|CK(T )|, (2)

where sT is a sign bit specific to the trail T , and K̄ denotes the concatenation
of the round keys Ki. Moreover, under the assumption of independent round
keys, |CK(T )| is independent of the key. Thus, the correlation contribution of
a trail T has a fixed magnitude for all keys, but the sign is determined by the
round key bits indicated by the key trail T̄ . Finally, Daemen and Rijmen give
the correlation over all r rounds for some approximation (α, β) as [12,11]

CK(α, β) =
∑

u0=α,ur=β

CK(T ) =
∑

u0=α,ur=β

(−1)sT⊕⟨T̄ ,K̄⟩|CK(T )|, (3)

i.e. the sum of the correlation contributions of all trails from α to β.

2.2 Matsui’s approach
Matsui’s key observation was that DES exhibits linear trails where the corre-
lation contribution deviates significantly from zero. Consider the full 16-round
DES, let P be the plaintext, and let C be the ciphertext. Let [i0, . . . , iℓ] denote
an element in Fn

2 whose ij ’th components are 1, j = 0, . . . , ℓ, while all other
components are 0. Then, over 14 rounds of DES, the approximations

γ1 = ([7, 18, 24], [7, 18, 24, 29, 47]) and δ3 = ([15, 39, 50, 56, 61], [39, 50, 56]),

both have trails with correlation contribution CK(T ) = ±2−19.75 [22]. From
Equation (2) we can determine one bit of information if we know the sign of
CK(T ), namely the parity ⟨T̄ , K̄⟩ of the round key bits indicated by the key
trail T̄ . Let kf denote the key-bits of round key K0 required to partially encrypt
a plaintext P one round and calculate ⟨α,RK0

(P)⟩, and let kb denote the key-
bits of round key Kr−1 required to partially decrypt the ciphertext C one round
and calculate ⟨β,R−1

Kr−1
(C)⟩. Matsui developed the following general approach

in order to determine |kf |+ |kb|+ 1 key bits, formalised as Algorithm 2.

Algorithm 2
1. Obtain N plaintext-ciphertext pairs.
2. For each guess of the key-bits (kf , kb), partially encrypt/decrypt each

plaintext-ciphertext pair (P, C) and calculate the number of times Li the
input parity ⟨α,RR0

(P)⟩ is equal to the output partiy ⟨β,R−1
Rr−1

(C)⟩ for the
i’th guess, i = 1, . . . , 2|kf |+|kb|.
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3. For each counter Li, if Li > N/2, guess that the sign bit ⟨T̄ , K̄⟩ = sT ,
otherwise guess that ⟨T̄ , K̄⟩ = sT ⊕ 1.

4. For any counter Li with |Ti −N/2| > Γ , for a predetermined value Γ , guess
the remaining κ− (|kf |+ |kb|+ 1) bits of the master key K, and determine
the correct value of K through trial encryption.

For his attack on DES, Matsui performed Algorithm 2 once for γ1 and once
for δ3, determining 26 bits before guessing the remaining 30 bits of K. In his
analysis of the success rate and complexity of the attack, Matsui assumed that
the linear correlation of the approximations γ1 and δ3 were only determined
by a single trail T . The idea is that the correlation contribution of T is much
larger than that of all other trails – a so called dominant trail. We will call the
associated key trail T̄ of such a trail a dominant key trail. In the presence of
such a dominant trail, CK(α, β) only takes on two values over the key space.
This can be seen from Equation (3), as the case of a dominant trail implies
that this sum only has one term. Under this assumption, Matsui concluded that
when using 243 texts, there is an 85% probability of recovering the key at a time
complexity of 243 DES encryptions. In a later analysis of Matsui’s attack [17],
Junod concluded that the actual computational complexity is closer to 241 DES
encryptions.

2.3 Biryukov et al. – Multiple Approximations

A natural extension of Matsui’s linear cryptanalysis is to attempt to use multi-
ple linear approximations simultaneously. The first attempt at developing such a
framework was by Kaliski and Robshaw in [16]. This work has the limitation that
all linear approximations must have the same dominant key trail, and the ap-
proximations were assumed to be statistically independent. Moreover, as Kaliski
and Robshaw note, the application of this method to DES is very limited.

Another approach was undertaken by Biryukov et al. in [3]. Here, the approx-
imations can in principle be picked arbitrarily, but the framework still requires
the assumption of one dominant trail for each approximation, and independence
between approximations. Due to these restrictions, the foundations of multidi-
mensional linear cryptanalysis was developed in e.g. [14,15]. While this approach
has been applied with great success to a large range of ciphers, no results have
been shown on DES. Thus, Matsui’s single linear cryptanalysis still provides the
best results on this cipher.

Let us briefly reconsider the method by Biryukov et al., assuming the use of
M linear approximations. The idea is to partition the key space into at most 2M
classes based on the parity of the ⟨T̄i, K̄⟩, where T̄i is the dominant key trail of
the i’th approximation. An Algorithm 2 type attack is then performed: For each
guess of the key-bits (kf , kb), the vector (Li,1, . . . , Li,M ) is calculated, and the
likelihood of that vector belonging to each of the key classes is computed. The
right guess of (kf , kb) should yield one class with high likelihood, and the class
then indicates at most M parity bits, ⟨T̄i, K̄⟩. Central to the analysis of [3] are
the following two assumptions:
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Assumption 1 (Right-Key Equivalence). For a linear approximation
(α, β), the magnitude of the correlation, |CK(α, β)|, does not deviate signif-
icantly from its expected value over all keys, that is, |CK(α, β)| = E(|CK(α, β)|).

Assumption 2 (Wrong-Key Randomisation). For Algorithm 2, the corre-
lation of a linear approximation (α, β) is 0 for all wrong guesses of (kf , kb).

The assumption of right-key equivalence implies that the linear approxima-
tion has one dominant trail, say T , and consequently the distribution of the cor-
relation over the key space only takes on two values, namely ±|CK(T )|. Thus, the
natural partitioning of the key space for M approximations is the partitioning in-
duced by the sign of the correlations, i.e. the vector ((−1)⟨T̄1,K̄⟩, . . . , (−1)⟨T̄M ,K̄⟩).
In practice however, the correlations are calculated from the counters Li,j . The
joint distribution of the resulting measured correlations, for some specific key
class, is given in [3] as an M -variate normal distribution, described in the fol-
lowing model.

Model 1 (Right-Key Partitioning for Multiple Approximations [3]).
Consider a set of linear approximations (α1, β1), . . . , (αM , βM ) of r rounds of
DES. Then, the key space can be partitioned into at most 2M key classes based
on the signs of the correlations. The undersampled distribution of the linear
correlation vector, using N texts and restricted to the i’th key class, denoted by
CN

i (α,β), is an M -variate normal distribution

CN
i (α,β) ∼ NM (µi, 1/N · I).

The mean vector of the i’th key class is given by µi[j] = si,j |CK(Ti)|, where
si,j ∈ {−1, 1} describes the sign combination of the i’th key class, j = 1, . . . ,M .

Based on this model, a Bayesian classifier is constructed. We refer to Section 5
for the details. While the approach presented by Biryukov et al. seems promising,
it has yet to result in an improved attack on DES. To the best of our knowledge,
no other variants of linear cryptanalysis which uses multiple approximations
have been able to outperform Matsui’s original attack. Moreover, while updated
versions of Assumption 1 and Assumption 2 have been applied to other ciphers,
no such work exists for DES. In the following, we address these concerns. We
consider the right-key distribution in Section 3, and the wrong-key distribution
in Section 4. Using the results obtained in these sections, we develop an improved
linear attack on DES in Sections 5 and 6.

3 Right-Key Correlation for DES: Key Inequivalence

In this section, we consider the correlation distribution of DES approximations
over the key space. In Section 3.1, we consider current models for this distribu-
tion, as well as the undersampled distribution. In Section 3.2, we enumerate a
large number of trails for DES, and show that, contrary to Assumption 1, the
absolute value of the correlation does vary significantly as the key changes. In
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fact, the correlation distribution has a complicated structure. In Section 3.3, we
develop a new model for this correlation based on Gaussian mixtures, which is
able to accurately describe this structure. Moreover, we extend the model to
describe the full undersampled correlation distribution over keys for multiple
approximations.

3.1 The Correlation Distribution of a Single Approximation
As mentioned, most linear cryptanalysis of DES assumes that each linear ap-
proximation has one dominant trail, determining the magnitude of the absolute
correlation. This idea is effectively expressed by Assumption 1. Consider, for
example, one of the approximations used by Matsui, γ1. This approximation
has a primary trail TA over 14 rounds of DES with correlation contribution
CK(TA) = ±2−19.75. In [24], Nyberg first introduced the concept of a linear hull,
i.e. the collection of all trails of a linear approximation, and showed that As-
sumption 1 is not true in general. For γ1, the trail with second largest correlation
contribution, T ′, has contribution CK(T ′) = ±2−25.86. While the contribution
from this trail is not large enough to change the sign of the linear correlation
CK(γ1), or increase/decrease the magnitude of the correlation much, it does not
match the model given in Assumption 1. When including the second trail, the
correlation distribution does not take on only two distinct values, but four.

Signal/noise decomposition. In order to refine Assumption 1, Bogdanov and
Tischhauser considered a signal/noise decomposition of the hull in [7]. Consider
a situation in which d dominant trails of an approximation (α, β) are known.
We call this collection of trails the signal, and define the signal correlation as
the sum of their correlation contributions

C ′
K(α, β) =

d∑
i=1

(−1)sTi
⊕⟨T̄i,K̄⟩|CK(Ti)|.

The remaining part of the hull is unknown, and is modelled as noise, with the
distribution N (0, 2−n). Then, the refined right-key equivalence assumption of [7]
states that the correlation of (α, β) is given by the sum of the signal correlation
and the noise:

CK(α, β) = C ′
K(α, β) +N (0, 2−n).

Since the approximations we will typically consider in the context of DES have
quite high correlation, the addition of the noise term will not make a significant
difference. However, we include it for completeness.

Undersampling. The cryptanalyst is most often not interested in having to
obtain the full codebook to exactly measure the linear correlation CK(α, β).
Therefore, the undersampled distribution is of great interest. Let

CN
K (α, β) =

2

N
#{xi, i = 1, . . . , N |⟨α, xi⟩ ⊕ ⟨β,EK(xi)⟩ = 0} − 1
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be the empirical value of CK(α, β) measured using N text pairs. Here, we assume
that xi is drawn uniformly at random with replacement from Fn

2 . Matsui first con-
sidered the distribution of CN

K (α, β) over the key space under Assumption 1. In
this case, Matsui used the Gaussian distribution CN

K (α, β) ∼ N (CK(α, β), 1/N).
While no proof is given in [21], one can show this result via a Gaussian approx-
imation to the binomial distribution, assuming that |CK(α, β)| is small.

3.2 Exploring the Signal Distribution of DES

On the basis of the signal/noise model, we now turn our attention to the signal
distribution of DES approximations. By computing the signal correlation C ′

K for
a large number of trails, we are able to get a good idea of the actual distribution
of the correlation CK . We first describe how the signal trails were enumerated.

Our trail enumeration algorithm. We implemented a bounded breadth-
first search in order to enumerate trails of DES approximations over 14 rounds.
The algorithm consists of two search phases and a matching phase. Consider an
approximation (α, β). The first search phase searches for trails in the forward
direction, from round one to round seven. The search starts with α as an input
mask to the first round, and then finds t and v such that the single round trails
(α, t, v) has non-zero correlation. This process is then repeated for each trail with
v as input mask to the second round, etc. The second search phase is similar,
but searches backwards from β.

The searches are bounded in two ways. First, we only consider trails that
activate at most three S-Boxes in each round. Second, we limit the number of
trails which are kept in each round. This is done in such a way that only the
trails with largest absolute correlation contribution are kept. This ensures a
locally optimal choice, although no such guarantee can be made globally. The
number of trails kept is determined by the branching factor B, such that in the
i’th round of the search, i ·B trails are kept.

After the two search phases, each trail found in the forward direction is
matched to any trail in the backwards direction which shares the same mask
in the middle. In this way, we obtain a number of trails of (α, β) over 14
rounds. Globally optimal trails will have a good chance of being enumerated
if the branching factor B is chosen sufficiently large. In the following, we set
B = 1 million, which means that we can find at most 7 million trails in each
search direction. Note that the number of trails eventually discovered by the
algorithm highly depends on the number of rounds and the approximation un-
der consideration. We performed the enumeration for the eight approximations
given in Table 2 using 20 Intel Xeon Processor E5-2680 cores. The enumeration
took about 8 CPU hours.

Computing the Signal Distribution. Using the algorithm described above,
we enumerated 1126 trails of the approximation γ1 over 14 rounds, and calculated

12
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Fig. 3: The signal distribution of linear correlation for the approximation γ1 over
14 rounds of DES. The signal correlation was calculated using 1126 trails and
1 million randomly drawn keys. The trails had an absolute correlation contri-
bution between 2−43.61 and 2−19.75. The left plot shows the two main modes,
symmetric around zero. The right plot shows only the positive half of the distri-
bution.

the signal correlation

C ′
K(γ1) =

1126∑
i=1

(−1)sTi
⊕⟨T̄i,K̄⟩|CK(Ti)|,

for 1 million randomly drawn keys. The trails we found have an absolute corre-
lation contribution between 2−43.61 and 2−19.75, and include the dominant trail
used by Matsui in [22]. The resulting distribution can be seen in Figure 3.

The left part of the figure shows the full distribution over the key space. At
this scale, the distribution resembles the one described in Section 2; there are
two very prominent modes symmetric around zero, with peaks around ±2−19.75,
corresponding to the correlation contribution of the dominant trail. However,
the right part of the plot, showing the positive half of the distribution, largely
contradicts Assumption 1 of key equivalence. While the mean of the distribution
is 2−19.75, it also has a non-negligible standard deviation of 2−24.71. Moreover,
the distribution is not Gaussian. The correlations cluster around three values,
namely 2−19.79, 2−19.75, and 2−19.68. Interestingly, the probability density is
larger around the cluster with the lowest correlation value.

Under the signal/noise model, adding the noise distribution N (0, 2−n) gives
us a good estimate of the actual distribution of the correlation CK(γ1). However,
due to the large variance of the signal distribution, the effect of the noise term is
negligible in this case. Thus, the distribution in Figure 3 should be quite close to
the actual distribution. This poses a fundamental problem, as none of the anal-
ysis of linear cryptanalysis applied to DES accounts for this type of distribution.
Indeed, it is not clear how the distribution of the undersampled correlation,
CN

K , looks, which is essential to know when determining the complexity of linear
attacks.
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Fig. 4: A Gaussian mixture fitted to the correlation distribution of the linear
approximation γ1 over 14 rounds of DES. The individual components are shown
in red, the mixture density is shown in green, and the measured distribution is
shown in blue. Under this model, only 30% of the distribution is attributed to
the Gaussian component associated with the dominant trail.

3.3 A New Mixture Model for Single and Multiple Approximations

To relieve the problems discussed in Section 3.2, we now propose a model for the
correlation distribution based on Gaussian mixtures. Consider a distribution in
which each sample is drawn from one of ℓ Gaussian distributions. Each Gaussian
is called a component. The probability of the sample being drawn from the i’th
component is λi, usually called the weights, with

∑
λi = 1. The probability

density function (PDF) of such a distribution is given by

f(x) =

ℓ∑
i=1

λiϕ(x;µi, σ
2
i ),

where ϕ(x;µi, σ
2
i ) is the PDF of the i’th Gaussian distribution, having mean µi

and variance σ2
i [20]. We will denote the distribution itself by M(λi, µi, σ

2
i , ℓ).

We then propose the following model.

Model 2 (Right-Key Inequivalence for One Approximation). Consider
a linear approximation (α, β) of r rounds of DES. The distribution of the linear
correlation CK(α, β) over the key space is approximately given by a Gaussian
mixture for some weights λi and components N (µi, σ

2
i ), i = 1, . . . , ℓ. That is,

CK(α, β) ∼ M(λi, µi, σ
2
i , ℓ).

We note that the signal/noise decomposition easily applies to this model. If we
determine that the signal correlation follows a Gaussian mixture, i.e. C ′

K(α, β) ∼
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M(λ′
i, µ

′
i, σ

2′
i , ℓ′) for some appropriate parameters, then we can approximate the

actual correlation distribution by adding the noise distribution:

CK(α, β) ∼ M(λ′
i, µ

′
i, σ

2′
i , ℓ′) +N (0, 2−n).

We apply Model 2 to the distribution obtained in Section 3.2. The result of
fitting a Gaussian mixture model with three components to the positive part
of the signal distribution is shown in Figure 4. We first note that the mixture
model fits the measured signal distribution quite well. The parameters are

λ1 = 0.45, µ1 = 2−19.79, σ2
1 = 2−52.40,

λ2 = 0.30, µ2 = 2−19.75, σ2
2 = 2−52.37,

λ3 = 0.25, µ3 = 2−19.68, σ2
3 = 2−52.68.

The second mixture component has mean equal to the correlation contribution
of the dominant trail, but this component only contributes to 30% of the full
distribution. In fact, the main part of the contribution, 45%, can be attributed
to the first component, which has a slightly lower mean. This demonstrates that
considering only the contribution of the dominant trail can be misleading, even
when the remaining trails have a far lower correlation contribution. In general,
one should consider as large a part of the hull as possible. Nevertheless, for
attacks with relatively low data complexity, the actual distribution can easily be
hidden, as we shall see next.

The undersampled mixture. In Section 3.2, we recalled that under the as-
sumption of a dominant trail, the distribution of the undersampled correlation
CN

K is given by the Gaussian N (CK , 1/N). We state the following equivalent
result in the setting of Model 2 and give an outline of the proof.

Theorem 1 (Undersampled distribution). Assuming Model 2, the under-
sampled correlation distribution of an approximation (α, β) obtained using N
random text pairs is given by

CN
K (α, β) ∼ M(λi, µi, σ

2
i , ℓ) +N (0, 1/N).

Proof. For any fixed key k, CN
k is distributed as Bin(N,Ck) over the random

text sample, which can be approximated by N (Ck, 1/N) if Ck is small. That is,
CN

K | K = k ∼ N (Ck, 1/N). The PDF of the compound distribution CN
K , i.e.

without the conditioning on K, is given by

pCN
K
(y) =

∫
ϕ(y;x, 1/N) ·

ℓ∑
i=1

λiϕ(x;µi, σ
2
i )dx,

which can be shown to be equal to

pCN
K
(y) =

ℓ∑
i=1

λiϕ(y;µi, σ
2
i + 1/N).
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Fig. 5: The distribution of the undersampled linear correlation of γ1, C ′
K +

N (0, 2−n)+N (0, 1/N), over 14 rounds of DES, with N = 243. C ′
K was measured

using 1126 trails over 1 million randomly drawn keys. A Gaussian mixture with
two components have been fitted to the distribution. The components are shown
in red, while the full distribution is shown in green.

This is a Gaussian mixture where each component can be written as N (µi, σ
2
i )+

N (0, 1/N). But since we add the second distribution with probability one, the
same distribution can be obtained by first drawing from the original mixture,
and then adding the distribution N (0, 1/N), finishing the proof. ⊓⊔

If the number of texts N is relatively large, the model can be somewhat
simplified. If we wanted to apply Model 2 and Theorem 1 directly to the case of
γ1, we would model the measured correlation as

CN
K (γ1) = M(λi, µi, σ

2
i , 6) +N (0, 2−n) +N (0, 1/N), (4)

using six components for the Gaussian mixture. However, the details of the
mixture are easily lost at high levels of undersampling, as can be seen in Figure 5.
Here, we have shown the distribution

C ′
K(γ1) +N (0, 2−n) +N (0, 1/N),

where N = 243. The resulting distribution can be described as a Gaussian mix-
ture with two components, instead of six. Each component has variance roughly
equal to 1/N , and the means are ±2−19.75, i.e. the correlation contribution of the
dominant trail. This agrees with the models used by e.g. Matsui and Biryukov,
et al., but we stress that this is only true when N is relatively small compared
to the linear correlation. In particular, for ciphers with strong dominant trails,
1/N needs to be larger than the variance of the positive/negative part of the
distributions. For values of N close to the full codebook, this is not true (unless
the approximation is extremely weak), and the distribution of CK cannot be ig-
nored. However, this simplification will help greatly when we consider the joint
distribution of multiple approximations in the next subsection.

The Gaussian mixture of multiple approximations. Model 2 and the re-
sults of Section 3.3 can be generalised to consider the case of multiple linear
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approximations. Let CK(α,β) denote the vector of correlations of M linear ap-
proximations, (CK(α1, β1), . . . , CK(αM , βM ))⊤. In the following, we will restrict
ourselves to the case where the signal distributions, C ′

K(αi, βi), each have two
distinct modes: one positive and one negative. This allows us to split the joint
signal distribution, C ′

K(α,β), into at most 2M components determined by the
signs of C ′

K(α,β). In the case of relatively low values of N , we propose the
following model.

Model 3 (Right-Key Mixture for Multiple Approximations). Consider
a set of linear approximations (α1, β1), . . . , (αM , βM ) of r rounds of DES. The
undersampled distribution of the linear correlation vector over the key space,
CN

K (α,β), is approximately given by an M -variate Gaussian mixture, namely

CN
K (α,β) ∼ MM (1/ℓ,µi,Σi + 1/N · I, ℓ),

where ℓ ≤ 2M . Moreover, the parameters of the mixture components are given by

µi = E(CK(α,β)|si,j · CK(αi, βi) > 0, j = 1, . . . ,M),

Σi = Cov(CK(α,β)|si,j · CK(αi, βi) > 0, j = 1, . . . ,M),

where si,j ∈ {−1, 1} describes the sign combination of the i’th component.

As for the case of a single approximation, the signal/noise decomposition
applies to this model, resulting in an undersampled distribution of the form

CN
K (α,β) ∼ MM (1/ℓ,µ′

i,Σ
′
i + (2−n + 1/N)I, ℓ).

The signal parameters, µ′
i and Σ′

i, can be estimated by enumerating an appro-
priate number of trails and then calculating C ′

K(α,β) for a large number of
keys.

This model bears some resemblance to the one given by Biryukov et al. in [3].
While both models use the signs of the correlation vector to split the distribution
into several Gaussians, our model captures the entire key space in one distribu-
tion, whereas the model in [3] partitions the key space into at most 2M parts
which are considered separately. Additionally, we do not make any assumption
about the independence of the linear approximations. As such, Σi need not be
diagonal matrices, and not all 2M sign combinations need to be present. While
the possibility of ℓ < 2M is briefly mentioned in [3], all experiments were done
such that ℓ = 2M . As we shall see in Section 5, the case of ℓ < 2M allows for
stronger attacks. Moreover, an improved attack on full DES was not presented
in [3] . We apply our model to obtain a key-recovery attack on full DES in
Section 6. First, however, we turn our attention to the wrong-key distribution.

4 Wrong-Key Correlation for DES: Non-Random
Behaviour

In this section, we consider the correlation distribution of DES approximations in
the case of a wrong key guess in Algorithm 2. This distribution is essential, as the
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effectiveness of the algorithm is determined by how different the right-key and
wrong-key distributions are. In Section 4.1, we consider the current models for
the wrong-key distribution. In Section 4.2, we develop a new model for the wrong-
key distribution of DES, and show that the distribution obtained under this
model deviates significantly from that considered in Section 4.1. Nevertheless,
as for the right-key in Section 3, we show that the deviation has little impact
when the number of texts used in the attack is relatively small.

4.1 The Current Ideal Wrong-Key Distribution
The assumption of wrong-key randomisation, Assumption 2, used by Matsui in
[22] and by Biryukov et al. in [3], predicts that a wrong guess of the outer round
keys in Algorithm 2 should result in an approximation with correlation zero. This
is motivated by the idea that if we encrypt/decrypt using the wrong key, we are
doing something equivalent to encrypting two extra rounds. This should result
in a linear correlation much closer to zero, as we are essentially considering the
correlation over r+4 rounds instead of r rounds. However, as shown by Daemen
and Rijmen in [13], even a linear approximation of an ideal permutation will
approximately have the correlation distribution

CK(α, β) ∼ N (0, 2−n),

where n is the blocksize. Since we intuitively cannot do ”worse” than an ideal
cipher, the correlation of a wrong guess should follow this distribution. This
consideration led Bogdanov and Tischhauser to present an updated wrong-key
randomisation hypothesis in [7], in which the wrong key correlation follows this
ideal Gaussian distribution. However, if we consider the case of DES where, even
over 14 rounds, strong linear approximations exist, the wrong-key correlation
might not be close to the ideal distribution. We consider this problem next.

4.2 A New Non-Random Wrong-Key Distribution
Consider the scenario in which an attacker obtains a plaintext-ciphertext pair
computed over r rounds of a cipher, and attempts to encrypt the plaintext one
round, and decrypt the ciphertext one round, in order to calculate the correlation
of an approximation over r−2 rounds. If the attacker uses the wrong round keys
for the encryption/decryption, she essentially obtains a plaintext/ciphertext pair
of some related cipher with r + 2 rounds. Motivated by this, we propose the
following wrong-key model for linear cryptanalysis on DES.
Model 4 (Non-Random Wrong-Key Distribution). Consider an Algo-
rithm 2 style attack on r rounds of DES using a linear approximation (α, β)
over r − 2 rounds. Let RK be the keyed round function of DES, and let E⋆

K

denote the r-round encryption function. For a wrong guess of the outer round
keys, the correlation will be distributed as for the cipher

E′
K(x) = R−1

Ka
(E⋆

K(R−1
Kb

(x))), (5)

where Ka and Kb are chosen uniformly at random.
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Fig. 6: The distribution of linear correlation for the approximation γ1 over 18
rounds of DES with randomly chosen outer round keys. The correlation was
calculated using 954 trails and 1 million randomly drawn keys. The distribution
is close to zero, but the variance is 2−56.08. To the right, the distribution is
compared to that of an ideal permutation, i.e the Gaussian N (0, 2−64).

For DES, where encryption and decryption are similar, this can reasonably be
simplified to E′

K(x) = Er+2
K , where the outer round keys are randomly chosen.

In light of this, we considered the approximation γ1 over 18 rounds of DES,
with randomly chosen outer round keys. Using the algorithm described in Sec-
tion 3.2, with B = 1 million, we enumerated 954 trails of this approximation.
Using 20 Intel Xeon Processor E5-2680 cores, the enumeration took about 15
CPU hours. We then calculated the resulting signal correlation for 1 million keys.
The trails had an absolute correlation contribution between 2−45.84 and 2−28.75.
The distribution is shown in Figure 6. We note that the result is similar for the
other approximations given in Table 2.

As was the case for the right-key distribution, this wrong-key distribution
appears to be approximately a Gaussian mixture. More importantly, while the
distribution is symmetric around zero, the variance is much larger than that
of an ideal permutation: 2−56.08 compared to 2−64. This shows that, while the
added four rounds make the correlation weaker, the assumption of a resulting
ideal distribution is optimistic. For attacks that use a data complexity close to
the full codebook, this assumption could result in a overestimate of success prob-
ability or an underestimate of attack complexity. Moreover, if the cryptanalyst
only appends/prepends one round to the approximation, this effect could be
significant.

The undersampled distribution. While the distribution in Figure 6 is far
from ideal, the actual distribution of the correlation matters little if the level of
undersampling is significant. If we apply signal/noise decomposition and Theo-
rem 1 to our estimate of the wrong-key distribution, with the number of texts
N = 243, we obtain the result shown in Figure 7. We see here that it is sufficient
to use a single Gaussian distribution to approximate the undersampled wrong-
key correlation distribution. If this distribution is similar for other approxima-
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Fig. 7: Undersampled right-key (blue) and wrong-key (red) distributions for the
approximation γ1 with N = 243. The signal distributions were measured using
1 million randomly drawn keys. A Gaussian mixture has been fitted to the right-
key distribution (green), while a single Gaussian distribution was fitted to the
wrong-key distribution (black).

tions, it will be sufficient to model the joint wrong-key correlation distribution
of M approximations as an M -variate Gaussian distribution. Thus, if ΣW is the
covariance matrix of the signal correlation of the M approximations over E′

K ,
then the undersampled wrong-key distribution will approximately be given by

CN
K (α,β) ∼ N (0,ΣW + (2−n + 1/N)I),

if 1/N is sufficiently large.
Using Model 3 for the right-key and Model 4 for the wrong-key distribution,

we develop a classifier that uses both these distributions in the following section.

5 Classifying Keys using Asymmetric Distributions

In Section 3, we developed a model for the linear correlation distribution of
a correct key-guess in Algorithm 2, namely a multivariate Gaussian mixture
model. In Section 4, we similarly developed a simple multivariate Gaussian model
for the linear correlation distribution of a wrong key-guess. Using these two
distributions, we now develop a classifier based on the likelihood-ratio, which can
be used in Algorithm 2 to decide between potential right and wrong key guesses.
We first present the classifier given in [3] in Section 5.1. We then introduce
our new classifier in Section 5.2, and compare the performance of the two in
Section 5.3.

In the following, we will consider the two sets of four linear approximations
over 14 rounds of DES given in Table 2. While it is difficult to visualise the joint
distribution of more than three approximations, Figure 8 shows the pairwise joint
distributions of the approximations γ1, γ2, γ3, and γ4, as well as the marginal
distributions, for N = 243. Note that the joint distributions of γ1 and γ3, as well
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Linear approximation Dominant key trail |CK(T·)| sT·

γ1 = ([7, 18, 24], [7, 18, 24, 29, 47]) T̄A 2−19.75 1
γ2 = ([7, 18, 24], [7, 18, 24, 29, 44, 48]) T̄B 2−20.48 1
γ3 = ([7, 18, 24, 29], [7, 18, 24, 47]) T̄A 2−20.75 0
γ4 = ([7, 18, 24, 29], [7, 18, 24, 44, 48]) T̄B 2−20.07 1

δ1 = ([15, 39, 50, 56], [39, 50, 56, 61]) T̄C 2−20.75 0
δ2 = ([12, 16, 39, 50, 56], [39, 50, 56, 61]) T̄D 2−20.07 1
δ3 = ([15, 39, 50, 56, 61], [39, 50, 56]) T̄C 2−19.75 1
δ4 = ([12, 16, 39, 50, 56, 61], [39, 50, 56]) T̄D 2−20.48 1

Key trail Non-zero key mask bits Key trail Non-zero key mask bits
T̄A {t221 , t442 , t223 , t225 , t446 , t227 , t229 , t4410, t

22
11, t

22
13} T̄B T̄A\t2213 ∪ {t1913, t2313}

T̄C {t220 , t222 , t443 , t224 , t226 , t447 , t228 , t2210, t
44
11, t

22
12} T̄D T̄C\t220 ∪ {t190 , t230 }

Table 2: The top table specifies two sets of four linear approximations over 14
rounds of DES, and gives the correlation contribution of their dominant trail, as
well as the sign bit of that trail. The bottom table specifies the set of non-zero
bits of the associated dominant key trails, where tji is the j’th bit of ti.

as that of γ2 and γ4, only have two components. We will explore this phenomenon
in Section 5.4, and show that such distributions can improve our classifier.

5.1 The Bayesian Classifier of Biryukov et al.
Consider an Algorithm 2 style attack using M linear approximations. Let KR

denote the space of correct guesses of the key-bits (kf , kb), and let KW denote the
space of wrong guesses. We have to classify each key-guess as either an incorrect
guess or a potential correct guess, based on the measured linear correlation vector
x. Let fR(x) = Pr(x | (kf , kb) ∈ KR) be the PDF of the right-key correlation
distribution. We define the Bayesian classifier, BC, as the following decision rule

BC(x) =

{
If B(x) > Γ , decide that (kf , kb) ∈ KR,
otherwise, decide that (kf , kb) ∈ KW ,

where B(x) = fR(x). Under Model 3, B(x) is given as the Gaussian mixture

B(x) =

ℓ∑
i=1

λiϕM (x;µi,Σi + (2−n + 1/N)I).

This exact classifier is not described in [3], but it is essentially identical to the one
developed there. The difference is that in [3], each component of fR is considered
separately, and so ℓ scores are produced for each key guess. The classifier BC
should be functionally equivalent to this approach, but this representation allows
for easy comparison to the likelihood-ratio classifier we propose next.

5.2 Our Likelihood Classifier
We now propose a new classifier based in the likelihood-ratio. As opposed to the
Bayesian classifier, the likelihood classifier directly takes the wrong-key distri-
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Fig. 8: Histograms and pairwise distributions of the undersampled correlations
of approximations γ1, . . . , γ4 given in Table 2. The right-key distributions are
shown in blue, the wrong-key distributions are shown in red. The number of
texts is N = 243. Note that since γ1 and γ3 have the same dominant key trail,
their joint distribution only has two components. Likewise for γ2 and γ4.

bution into account. To this end, let fW (x) = Pr(x | (kf , kb) ∈ KR) be the PDF
of the wrong-key correlation distribution. Then the likelihood-ratio is defined as
Λ(x) = fR(x)/fW (x). For the right-key and wrong-key distributions described
in Sections 3 and 4, this is equal to

Λ(x) =

∑ℓ
i=1 λiϕM (x;µi,Σi + (2−n + 1/N)I)

ϕM (x;0,ΣW + (2−n + 1/N)I)
,

where x is an observed value of correlations for M approximations. A large
value of Λ(x) will then indicate a likely correct key guess, while a low value will
indicate a wrong key guess. Thus, we define the likelihood classifier LC as the
following decision rule

LC(x) =

{
If Λ(x) > Γ , decide that (kf , kb) ∈ KR,
otherwise, decide that (kf , kb) ∈ KW .

In light of this definition, two important concepts are the success probability
and advantage of the classifier. Formally, we define the success probability and
advantage, respectively, as

PS = 1− Pr(Λ(x) < Γ | (kf , kb) ∈ KR), (6)
a = − log2(Pr(Λ(x) ≥ Γ | (kf , kb) ∈ KW )), (7)
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in accordance with the usual definition [25]. We usually choose Γ such that we
achieve a certain success probability. Under our proposed model, the involved
probabilities cannot be explicitly stated. Thus, we must rely on simulations to
calculate these values. Since simulating values from a Gaussian distribution is
easy, this is not a problem. Using this approach, we now compare the performance
of the likelihood classifier and the Bayesian classifier.

5.3 Decision Boundaries

The likelihood classifier LC divides the M -dimensional cube [−1, 1]M into two
regions separated by the decision boundary, namely where Λ(x) = Γ . On one
side of the decision boundary, observations are classified as belonging to the
right-key distribution, while observations from the other side are classified as
belonging to the wrong-key distribution. By visualising this decision boundary,
we can get a better understanding of the classifier.

In the following, we consider the eight approximations given in Table 2,
over 14 rounds of DES. We enumerated between 1100 and 1400 trails for each
approximation and calculated the signal correlations for 1 million random keys,
in order to estimate µi and Σi. The same was done over E′

K , where between 950
and 1100 trails were enumerated, in order to estimate ΣW . For each data point,
we added noise drawn from NM (0, (2−n +1/N)I), according to the signal/noise
decomposition and Theorem 1. This allows us to simulate Λ(x) and B(x) for
varying values of N and calculate the resulting decision boundary and advantage.

Consider the pair of approximations γ1 and δ1 and let N = 243. We simulate
Λ(x) and B(x) for each data point as described above, and then fix a threshold
value for each classifier such that PS = 0.90, cf. Equation (6). The resulting
decision boundaries, as well as the related probability distributions, are shown
in Figure 9. In this case, the likelihood classifier obtains an advantage of 5.5 bits,
while the Bayesian classifier only has an advantage of 3.1 bits. By considering
the decision boundary, it is clear why this is the case. Since the Bayesian clas-
sifier only uses information about the right-key distribution, it simply creates a
decision boundary around each component of the mixture which is large enough
to obtain the desired success probability. In view of the information that is avail-
able to the classifier, this makes sense, since observations close to the mean of
component have a larger chance of being a correct key guess. Because of this,
the parts of the right-key distribution which is farthest away from the wrong-
key distribution is also discarded as unlikely candidates. This in turn requires
the decision boundary to be wider than actually needed, and the advantage is
therefore quite low due to an increased number of false positives.

The likelihood classifier on the other hand does use information about the
wrong-key distribution. The decision boundary is created such that there is
a good boundary between each component and the wrong-key distribution.
Any observation that is sufficiently far away from the wrong-key distribution
is deemed a likely correct key guess, no matter how extreme the observation is
in the right-key distribution. Thus, extreme points in the right-key distribution
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Fig. 9: Left: The joint distribution of CN
K (γ1) and CN

K (δ1), with N = 243, are
shown for both a right key guess (blue) and a wrong key guess (red). The decision
boundaries for a success probability of 90% are drawn for the likelihood-ratio
classifier (top) and the Bayesian classifier (bottom). Right: The corresponding
probability distributions of Λ(x) (top) and B(x) (bottom) as well as the thresh-
old value. The likelihood ratio classifier obtains an advantage of 5.5 bits, while
the Bayesian classifier obtains an advantage of 3.1 bits.

are not ”wasted”, allowing for a tight decision boundary around the wrong-key
distribution, yielding a larger advantage.

For the approximations used here, all sign combinations of the correlation
vector are possible. In terms of the mixture model, the number of components
is ℓ = 2M . We now turn our attention to the case where ℓ < 2M .

5.4 Observations on the Asymmetric Distribution

As shown in Section 3.2, the sign of the signal correlation C ′
K(γ1) for a given key

is determined by the parity ⟨T̄A, K̄⟩, where T̄A is the dominant key trail. Con-
sider the two approximations γ1 and γ3 given in Table 2. Both approximations
have the same dominant key trail, and since their sign bits sT are different, the
sign of their correlation will therefore always be opposite. In the terminology of
Section 3.3, the number of components ℓ of the Gaussian mixture is strictly less
than 2M . We will call such a distribution asymmetric. On the other hand, the
two approximations γ1 and δ1 have different dominant key-trails, and therefore
all four sign combinations of their correlations are possible. In this case, ℓ = 2M ,
and we call such a distribution symmetric.
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Fig. 10: Left: The joint distribution of CN
K (γ1) and CN

K (γ3), with N = 243, are
shown for a right key guess (blue) and a wrong key guess(red). The decision
boundaries for a success probability of 90% are drawn for the likelihood-ratio
classifier. Right: The probability distributions of Λ(x) as well as the threshold
value. The classifier obtains an advantage of 6.2 bits.
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Fig. 11: A comparison of the advantage obtained by using the Bayesian classifier
and the likelihood ratio classifier on both symmetric and asymmetric correla-
tion distributions. The symmetric distribution uses the set of approximations
{γ1, γ2, δ1, δ2} while the asymmetric distribution uses the set {γ1, γ2, γ3, γ4}.

For γ1 and δ1, the decision boundary for the likelihood classifier was shown in
Figure 9. For γ1 and γ3, the decision boundary is shown in Figure 10. Here, the
”missing” components in the first and third quadrant are clearly shown, while
the wrong-key distribution is still symmetric around zero. We note that, all else
being equal, the classifier on the asymmetric distribution achieves an increased
advantage of 0.7 bits. Moreover, the comparison here is fair, since the strength
of δ1 is the same as that of γ3. The reason for this increase is apparent when
we compare the two decision boundaries. For the asymmetric distribution, the
decision boundary is such that even extreme points in the wrong-key distribution
towards the first and third quadrant are easily classified as wrong key guesses.
This decreases the number of false positives, increasing the advantage.

This improvement in the classifier for asymmetric distributions generally ex-
tends to higher dimensions, where the effect can be even more pronounced.
Indeed, for larger M , ℓ can be much smaller than 2M . In the example above, we
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had ℓ = 2 while 2M = 4. Consider now the set of approximations {γ1, γ2, γ3, γ4}.
A shown in Table 2, these approximations only have two distinct dominant key
trails, implying that the set has an asymmetric distribution with ℓ = 4 < 2M =
16. Figure 11 compares the advantage of this set of approximations to the set
{γ1, γ2, δ1, δ2}, which has a symmetric distribution, i.e. ℓ = 2M = 16. In general,
we observe that the classifiers are stronger for the asymmetric distribution, with
an increase in advantage of 1.4 bits for N = 243. Additionally, the better per-
formance of the likelihood classifier is quite clear, consistently obtaining a larger
advantage over the Bayesian classifier. For N = 243, the likelihood classifier has
an advantage 4.9 bits higher than the Bayesian classifier on both the symmetric
and asymmetric distribution. Due to these observations, we propose the term
symmetry factor for these types of distributions, defined as ℓ/2M . A distribution
with symmetry factor one is a symmetric distribution, while a symmetry factor
less than one indicates an asymmetric distribution. We conjecture that, all else
being equal, a lower symmetry factor will result in a stronger classifier.

6 Improved Attack on DES

Using the results from the previous sections, we now mount a key-recovery attack
on DES using eight linear approximations. We will use two sets of four linear
approximations, {γ1, γ2, γ3, γ4} and {δ1, δ2, δ3, δ4} over 14 rounds, as given in
Table 2. The attack is mostly identical to Matsui’s Algorithm 2. As such, we
obtain N plaintext-ciphertext pairs over 16 rounds, guess the key-bits required
to partially encrypt/decrypt the texts and compute the linear correlations, and
then use the likelihood classifier to categorise each guess as a likely wrong or
right key guess. For each guess, we further gain some parity bits of the key
based on the signs of the correlations.

6.1 Attack Description

Table 3 shows the key- and text-bits relevant to the attack. For both sets of
approximations, we need to know 29 bits of the plaintext/ciphertext, designated
tf,· / tb,·, and we will guess 24 bits of the first/last round key, designated kf,·/kb,·.
Moreover, the signs of CN

K (γ1), CN
K (γ4), CN

K (δ3), and CN
K (δ2), will allow us to

deduce the parity bits pA, pB , pC , and pD. Thus, the attacker will learn a total
of 52 bits of the master key, and will have to guess the remaining 4 bits. In the
following, we assume that the distribution parameters µi,·, Σi,·, and ΣW,· have
been determined before the attack, as described in Section 3.3. Moreover, we
assume that λi = 1/ℓ for all i. The attack is then given as follows:

– Distillation
1. Obtain N plaintext-ciphertext pairs.
2. Create two vectors tγ and tδ of size 229 each. tγ [i] (similarly tδ) is equal

to the number of text pairs such that the bits (tf,γ , tb,γ) are equal to i.
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Forward key bits guessed #bits
kf,γ {K18

0 , . . . ,K23
0 } kf,δ {K24

0 , . . . ,K35
0 ,K42

0 , . . . ,K47
0 } 6+18

Backward key bits guessed #bits
kb,γ {K24

15 , . . . ,K
35
15 ,K

42
15 , . . . ,K

47
15} kb,δ {K18

15 , . . . ,K
23
15} 18+6

Plaintext bits stored #bits
tf,γ {P11, . . . ,P16,P39,P50,P56} 9
tf,δ {P0,P7,P15, . . . ,P24,P27, . . . ,P31,P44,P47,P48} 20

Ciphertext bits stored #bits
tb,γ {C0, C7, C15, . . . , C24, C27, . . . , C31, C44, C47, C48} 20
tb,δ {C11, . . . , C16, C39, C50, C56} 9

Parity bits obtained from signs
pA K22

1 ⊕K44
2 ⊕K22

3 ⊕K22
5 ⊕K44

6 ⊕K22
7 ⊕K22

9 ⊕K44
10 ⊕K22

11 ⊕K22
13

pB pA ⊕K22
13 ⊕K19

13 ⊕K23
13

pC K22
0 ⊕K22

2 ⊕K44
3 ⊕K22

4 ⊕K22
6 ⊕K44

7 ⊕K22
8 ⊕K22

10 ⊕K44
11 ⊕K22

12

pD pC ⊕K22
0 ⊕K19

0 ⊕K23
0

Table 3: This table specifies the key/text bits involved in the attack, as well as
the parity key bits derived. Xi denotes the i’th bit of X.

– Analysis
1. For each guess of (kf,γ , kb,γ), calculate the vector

cγ = (CN
K (γ1), C

N
K (γ2), C

N
K (γ3), C

N
K (γ4))

⊤,

by partially encrypting/decrypting the data in tγ . Do similarly for the
δ-approximations to calculate cδ.

2. Calculate

Λ(cγ) =
1
4

∑4
i=1 ϕM (cγ ;µi,γ ,Σi,γ + (2−n + 1/N)I)

ϕM (cγ ;0,ΣW,γ + (2−n + 1/N)I)
,

for each guess of (kf,γ , kb,γ). If Λ(cγ) ≤ Γγ , discard the key guess. Like-
wise, calculate Λ(cδ) for each guess of (kf,δ, kb,δ). If Λ(cδ) ≤ Γδ, discard
the key guess.

3. For each surviving key guess, determine the four bits pA, pB , pC , pD
based on the signs of cγ and cδ.

– Search
1. For each remaining guess of (kf,γ , kbγ , kf,δ, kb,δ), guess the last 4 bits of

the master key, and verify the guess by trial encryption.

6.2 Attack Complexity

In the following, we assume that one computational unit is the time it takes
to perform one round of DES. The computational complexity of the distilla-
tion phase is O(N), while the memory complexity is O(2 · 229). For the anal-
ysis phase, each CN

K can be calculated for all key guesses in time O((|kf,·| +
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Fig. 13: Top: Combined advantage of the two likelihood classifiers using approx-
imations in Table 2. The success probabilities include the probability of guessing
the four parity bits correctly. Bottom: The computational complexity of our key-
recovery attack on DES. Each curve has a clear minimum where the trade-off
between the data complexity and the strength of the classifiers is optimal.

|kb,·|)2|kf,·|+|kb,·|+1.6) using the FFT method presented in [10]. In total, step 1
of the analysis phase can be completed in time O(2 · 4 · 24 · 225.6) ≈ O(233.18).
Step 2 requires the calculation of ℓ + 1 terms for each key-guess of the type
(x−µ)⊤Σ−1(x−µ), to calculate the normal probabilities. Each term can be com-
puted in time O(2M3). Thus, step 2 takes a total of O(2 ·224 ·5 ·43) ≈ O(233.32)
time. Step 3 takes O(2 · 224−aγ +2 · 224−aδ) time, where aγ and aδ is the advan-
tage of the classifiers in step 2. The analysis step requires O(224−aγ + 224−aδ)
memory to store the surviving key guesses. The search phase requires O(16 ·
248−(aγ+aδ) · 256−52) = O(16 · 256−(aγ+aδ+4)) time and negligible memory. Di-
viding everything by 16 to get the total number of full DES encryptions, the
computational complexity is approximately

O(N · 2−4 + 229.18 + 229.32 + 221−aγ + 221−aδ + 252−(aγ+aδ)).

Thus, the attack complexity depends on the advantage of the two classifiers,
which in turn depends on the choice of Γγ and Γδ. Note that step 3 of the
analysis phase is not guaranteed to succeed, so the threshold values must be
chosen such that the overall success probability of the attack is PS . Namely, if
Pγ and Pδ is the success probabilities of the two classifiers, and Qγ and Qδ is
the success probabilities of determining the parity bits, then we fix Γγ and Γδ

such that Pγ · Pδ · Qγ · Qδ = PS . Using the data obtained in Section 5.3, we
calculated the total advantage aγ + aδ + 4 for different N and different values
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of the success probability PS . The results are shown in Figure 13, along with
the corresponding attack complexities. For low data complexities, the search
phase is dominant, and so the 252−(aγ+aδ) term determines the time complexity.
For high data complexities, however, the N · 2−4 term is dominant. This gives
each complexity curve a clear minimum. In a comparison to Matsui’s attack,
we see that for PS = 85%, the minimum is achieved at N = 242.775 where the
computational complexity is 238.86 DES encryptions. This is 17.6 times faster
than Matsui’s attack estimate (or 4.4 times faster than Junod’s estimate of the
attack in [17]) using 240.2 fewer texts.

6.3 Experimental Verification

While it would be possible to carry out the attack in practice, we would need
to do this for many keys to get an idea of the actual advantage, making the
experiment infeasible. Instead, we measured the actual values of cγ and cδ over
14 and 18 rounds of DES (the right key and wrong key, respectively) with N42.78

for randomly chosen keys. This can be done in a bitsliced manner, and is therefore
faster than performing the actual attack, while giving us all the information we
need to verify our model. Using several months of CPU time, we collected 1300
data points for the right key and wrong key distributions. We first note that
the observed distributions closely match those predicted by the model in e.g.
Figure 8. Moreover, we obtain the advantages aγ = 6.72 and aδ = 10.31, which
would give us a complexity of 238.88 – very close to that predicted by our model.
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