
Towards a Classification of Non-interactive
Computational Assumptions in Cyclic Groups∗

Essam Ghadafi †1 and Jens Groth2

1 University of the West of England, Bristol, UK
Essam.Ghadafi@gmail.com

2 University College London, London, UK
j.groth@ucl.ac.uk

Abstract. We study non-interactive computational intractability as-
sumptions in prime-order cyclic groups. We focus on the broad class of
computational assumptions, which we call target assumptions, where the
adversary’s goal is to compute a concrete group element and investigate
the structure of this class.
Our analysis identifies two families of intractability assumptions, the
q-Generalized Diffie-Hellman Exponent assumptions and the q-Simple
Fractional assumptions that imply all other target assumptions. These
two assumptions therefore serve as Uber assumptions that can underpin
all the target assumptions where the adversary has to compute specific
group elements. We also study the internal hierarchy among members
of these two assumption families. We provide heuristic evidence that
both families are necessary to cover the full class of target assumptions,
and we show that the lowest level in the q-GDHE hierarchy (the 1-
GDHE assumption) is equivalent to the computational Diffie-Hellman
assumption.
We generalize our results to the bilinear group setting. For the base
groups our results translate nicely and a similar structure of non-interactive
computational assumptions emerges. We also identify Uber assumptions
in the target group but this requires replacing the q-GDHE assumption
with a more complicated assumption, which we call the Bilinar Gap As-
sumption.
Our analysis can assist both cryptanalysts and cryptographers. For crypt-
analysts, we propose the q-GDHE and the q-SDH assumptions are the
most natural and important targets for cryptanalysis in prime-order
groups. For cryptographers, we believe our classification can aid the
choice of assumptions underpinning cryptographic schemes and be used
as a guide to minimize the overall attack surface that different assump-
tions expose.

Keywords. Non-Interactive Assumptions, Computational Assumptions,
Target Assumptions, Prime-Order Groups, Bilinear Groups.

∗The research leading to these results has received funding from the European Re-
search Council under the European Union’s Seventh Framework Programme (FP/2007-
2013) / ERC Grant Agreement n. 307937 and EPSRC grant EP/J009520/1.
†The work was done while at University College London.

1 Introduction

Prime-order groups are widely used in cryptography because their clean mathe-
matical structure enables the construction of many interesting schemes. However,
cryptographers rely on an ever increasing number of intractability assumptions
to prove their cryptographic schemes are secure. Especially after the rise of
pairing-based cryptography, we have witnessed a proliferation of intractability
assumptions. While some of those intractability assumptions, e.g. the Discrete
Logarithm or the Computational Diffie-Hellman assumptions, are well-studied,
and considered by now “standard”, the rest of the assumption wilderness has
received less attention.

This is unfortunate both for cryptographers designing protocols and cryptan-
alysts studying the security of the underpinning assumptions. Cryptographers
designing protocols are often faced with a trade-off between performance and
security, and it would therefore be helpful for them to know how their chosen in-
tractability assumptions compare to other assumptions. Moreover, when they are
designing a suite of protocols, it would be useful to know whether the different
assumptions they use increase the attack surface or whether the assumptions are
related. Cryptanalysts facing the wilderness of assumptions are also faced with
a problem: which assumptions should they focus their attention on? One option
is to go for the most devastating attack and try to break the discrete logarithm
assumption, but the disadvantage is that this is also the hardest assumption to
attack and hence the one where the cryptanalyst is least likely to succeed. The
other option is to try to attack an easier assumption but the question then is
which assumption is the most promising target?

Our research vision is that a possible path out of the wilderness is to iden-
tify Uber assumptions that imply all the assumptions we use. An extreme Uber
assumption would be that anything that cannot trivially be broken by generic
group operations is secure, however, we already know that this is a too extreme
position since there are schemes that are secure against generic attacks but in-
secure for any concrete instantiation of the groups [Den02]. Instead of trying to
capture all of the generic group model, we therefore ask for a few concrete and
plausible Uber assumptions that capture the most important part of the assump-
tion landscape. Such a characterization of the assumption wilderness would help
both cryptographers and crypanalysts. The cryptographic designer may choose
assumptions that fall under the umbrella of a few of the Uber assumptions to
minimize the attack surface on her schemes. The cryptanalyst can use the Uber
assumptions as important yet potentially easy targets.

Our contribution. We focus on efficiently falsifiable computational assump-
tions in prime-order groups. More precisely, we define a target assumption as an
assumption where the adversary has a specific target element that she is trying to
compute. A well-known target assumption is the Computational Diffie-Hellman
assumption over a cyclic group Gp of prime order p, which states that given(
G,Ga, Gb

)
∈ G3

p, it is hard to compute the target Gab ∈ Gp. We define target
assumptions quite broadly and also include assumptions where the adversary
takes part in specifying the target to be computed. In the q-SDH assumption

2

[BB08] for instance, the adversary is given G,Gx, . . . , Gx
q

and has to output

(c,G
1

x+c) ∈ Zp \{−x}×Gp. Here c selected by the adversary is part of the speci-

fication of the target G
1

x+c . In other words, our work includes both assumptions
in which the target element to be computed is either uniquely determined a
priori by the instance, or a posteriori by the adversary. We note that the case
of multiple target elements is also covered by our framework as long as all the
target elements are uniquely determined. This is because a tuple of elements is
hard to compute if any of its single elements is hard to compute.

Our main contribution is to identify two classes of assumptions that im-
ply the security of all target assumptions. The first class of assumptions is
the Generalized Diffie-Hellman Exponent (q-GDHE) assumption [BBG05] that

says given (G,Gx, . . . , Gx
q−1

, Gx
q+1

, . . . , Gx
2q

) ∈ G2q
p , it is hard to compute

Gx
q ∈ Gp. The second class of assumptions, which is a straightforward gen-

eralization of the q-SDH assumption, we call the simple fractional (q-SFrac)
assumption and it states that given (G,Gx, . . . , Gx

q

) ∈ Gq+1
p , it is hard to out-

put polynomials r(X) and s(X) together with the target G
r(x)
s(x) ∈ Gp, where

0 ≤ deg(r(X)) < deg(s(X)) ≤ q. The assumption that the q-GDHE and q-SFrac
assumptions both hold when q is polynomial in the security parameter can there-
fore be seen as an Uber assumption for the entire class of target assumptions.

Having identified the q-GDHE and q-SFrac assumptions as being central
for the security of target assumptions in general, we investigate their internal
structure. We first show that q-SFrac is unlikely to be able to serve as an Uber
assumption for all target assumptions on its own. More precisely, we show that
for a generic group adversary the 2-GDHE assumption is not implied by q-
SFrac assumptions. Second, we show that the q-GDHE assumptions appear to
be strictly increasing as q grows, i.e., if the (q + 1)-GDHE holds, then so does
q-GDHE, but for a generic group adversary the (q+1)-GDHE may be false even
though q-GDHE holds. We also analyze the particular case where q = 1 and
prove that the 1-GDHE assumption is equivalent to the computational Diffie-
Hellman (CDH) assumption.

Based on these results we view the q-GDHE and q-SFrac assumptions as
a bulwark. Whatever type of target assumptions a cryptographer bases her
schemes on, they are secure as long as neither the q-GDHE nor the q-SFrac
assumptions are broken.3 Since the attacker has less leeway in the q-GDHE as-
sumptions, the cryptographer may choose to rely exclusively on target assumpi-
tons that are implied by the q-GDHE assumptions, and we therefore identify
a large class of target assumptions that only need the q-GDHE assumptions to
hold.

3We note the caveat that our reductions are not tight. So it may be for concrete
parameters a target assumption can be broken even if q-GDHE and q-SFrac hold for the
same parameters. For all reductions, the concrete loss is stated explicitly in our proofs
such that a cryptographer can work out a choice of parameters that yields security
from the q-GDHE and q-SFrac assumptions.

3

We also have advice for the cryptanalyst. We believe it is better to focus
on canary in a coal mine assumptions than the discrete logarithm problem that
has received the most attention so far. Based on our work the easiest target
assumptions to attack in single prime-order groups are the q-GDHE assumptions
and the q-SFrac assumptions. The class of q-SFrac assumptions allows more
room for the adversary to maneuver in the choice of polynomials r(X) and s(X)
and appears less structured than the q-GDHE assumptions. Pragmatically, we
note that within the q-SFrac assumptions it is almost exclusively the q-SDH
assumptions that are used. We therefore suggest the q-GDHE assumptions and
the q-SDH assumptions to be the most suitable targets for cryptanalytic research.

Switching from single prime-order groups Gp to groups with a bilinear map
e : G1×G2 → GT , a similar structure emerges. For target assumptions in the base
groups G1 and G2, we can again identify assumptions similar to the q-GDHE and
q-SFrac assumptions that act as a joint Uber assumption. In the target group GT ,
a somewhat more complicated picture emerges under the influence of the pairing
of source group elements. However, we can replace the q-GDHE assumption with
an assumption we call the q-Bilinear Gap (q-BGap) assumption, and get that
this assumption together with a natural generalization of the q-SFrac assumption
to bilinear groups, which we name the q-BSFrac assumption, jointly act as an
Uber assumption for all target assumptions in GT .

A natural question is whether our analysis extends to other assumptions
as well, for instance ”flexible” assumptions such as the q-HSDH assumption
[BW07], where the adversary can choose secret exponents and therefore the
target elements are no longer uniquely determined. Usually assumptions in the
literature involve group elements that have discrete logarithms defined by poly-
nomials in secret values in Zp chosen by a challenger and/or public values in Zp.
This gives rise to several classes of assumptions:

1. Non-interactive assumptions where the advesary’s goal is to compute group
elements defined by secret variables chosen by the challenger.

2. Non-interactive assumptions where the adversary’s goal is to compute group
elements defined by secret variables chosen by the challenger and public
values chosen by the adversary.

3. Non-interactive assumptions where the adversary’s goal is to compute group
elements defined by secret variables chosen by the challenger, and public and
secret values chosen by the adversary.

4. Interactive assumptions, where the challenger and adversary interact.

Target assumptions include all assumptions in classes 1 and 2. However, class
3 includes assumptions which are not falsifiable, e.g. knowledge-of-exponent as-
sumptions [BP04]. Since q-GDHE is in class 1 and q-SFrac is in class 2, both
of which only have falsifiable assumptions, we cannot expect them to capture
non-falsifiable assumptions in class 3. We leave it as an interesting open problem
which structure, if any, can be found in classes 3 and 4, and we hope our work
will inspire research on this question.

We stress that our aim has been to find concrete and precise reductions and
prove separations among the different classes of assumptions which encompass a

4

significant portion of existing assumptions in the literature. Thus, our approach
is different from previous works such as [BBG05,Boy08,EHK+13,MRV16] which
aimed at defining algebraic frameworks or templates in generic groups to capture
some families of assumptions. The closest work to ours is Abdalla et al. [ABP15],
which provided an Uber assumption for decisional assumptions in cyclic groups
(without a bilinear map, which invalidates many decisional assumptions). Other
works, discussed below, have mostly dealt with very specific relations among
assumptions, e.g., the equivalence of CDH and square-CDH as opposed to the
general approach we take.

Related work. The rapid development of cryptographic schemes has been
accompanied by an increase in the number and complexity of intractability
assumptions. Cryptographers have been in pursuit to study the relationship
among existing assumptions either by means of providing templates which en-
compass assumptions in the same family, e.g. [Kil01,BCP02,BLMW07], or by
studying direct implications or lack thereof among the different assumptions,
e.g. [Boe88,Mau94,MW96,BDZ03,JR13].

A particular class of assumptions which has received little attention are frac-
tional assumptions. Those include, for example, the q-SDH assumption [BB08]
and many of its variants, e.g. the modified q-SDH assumption [BW07], and the
hidden q-SDH (q-HSDH) assumption [BW07]. As posed by, e.g. [KM07], a subtle
question that arises is how such class of assumptions, e.g. the q-SDH assumption,
relate to other existing (discrete-logarithm related) computational and decisional
intractability assumptions. For instance, while it is clear that q-SDH assumption
implies the computational Diffie-Hellman assumption, it is still unclear whether
the q-SDH assumption is implied by the decisional Diffie-Hellman assumption.
Another intriguing open question is if there is a hierarchy between fractional
assumptions or the class of assumptions is inherently unstructured.

Sadeghi and Steiner [SS01] introduced a new parameter when defining discrete-
logarithm related assumptions they termed granularity. They argued that the
choice of such a parameter can influence the security of schemes based on such
assumptions and showed that such a parameter influences the implications be-
tween assumptions.

Naor [Nao03] classified assumptions based on the complexity of falsifying
them. Informally speaking, an assumption is falsifiable if it is possible to ef-
ficiently decide whether an adversary against the assumption has successfully
broken it. Very recently, Goldwasser and Kalai [GK16] provided another clas-
sification of intractability assumptions based on their complexity. They argued
that classifications based merely on falsifiability of the assumptions might be too
inclusive since they do not exclude assumptions which are too dependent on the
underlying cryptographic scheme/construct they support.

Boneh et al. [BBG05] defined a framework for proving that decisional and
computational assumptions are secure in the generic group model [Sho97,Mau05]
and formalized an Uber assumption saying that generic group security implies
real security for these assumptions. Boyen [Boy08] later highlighted extensions
to the framework and informally suggested how some other families which were

5

not encompassed by the original Uber assumption in [BBG05] can be cap-
tured. In essence, the Uber assumption encompasses computational and deci-
sional (discrete-logarithm related) assumptions with a fixed unique challenge.
Unfortunately, the framework excludes some families of assumptions, in partic-
ular, those where the polynomial(s) used for the challenge are chosen adaptively
by the adversary after seeing the problem instance. Examples of such assump-
tions include the q-SDH [BB08], the modified q-SDH [BW07], and the q-HSDH
[BW07] assumptions. The statement of the assumption of the aforementioned
yield exponentially many (mutually irreducible) valid solutions rather than a
unique one. Another distinction, from the Uber assumption is that the exponent
required for the solution involves a fraction of polynomials rather than a poly-
nomial. Joux and Rojat [JR13] proved relationships between some instances of
the Uber assumption [BBG05]. In particular, they proved implications between
some variants of the computational Diffie-Hellman assumption.

Cheon [Che06] observed that if some relation between the group prime order
p and the assumption parameter q, in particular, if either q | p − 1 or q | p +
1, holds, the computational complexity of the q-SDH assumption (and related
assumptions) is reduced by a factor of O(

√
q) from that of the discrete logarithm

problem and hence for such groups one must increase the key sizes accordingly
in order to maintain the same level of security. Jao and Yoshida [JY09] proved
equivalence between the unforgeability of the Boneh-Boyen signature scheme
[BB08] and the q-SDH assumption on which is it based.

Chase and Meiklejohn [CM14] showed that in composite-order groups some of
the so-called q-type assumptions can be reduced to the standard subgroup hiding
assumption. More recently, Chase et al. [CMM16] extended their framework to
cover more assumptions and get tighter reductions.

Barthe et al. [BFF+14] analyzed hardness of intractability assumptions in the
generic group model by reducing them to solving problems related to polynomial
algebra. They also provided an automated tool that verifies the hardness of a
subclass of families of assumptions in the generic group model. More recently,
Ambrona et al. [ABS16] improved upon the results of [BFF+14] by allowing
unlimited oracle queries.

Kiltz [Kil01] introduced the Poly-Diffie-Hellman assumption as a generaliza-
tion of the computational Diffie-Hellman assumption. Escala et al. [EHK+13]
proposed an algebraic framework as a generalization of Diffie-Hellman like deci-
sional assumptions. Analogously to [EHK+13], Morillo et al. [MRV16] extended
the framework to computational assumptions.

Paper Organization. Our research contribution is organized into three parts.
In Sec. 3, we define our framework for target assumptions in cyclic groups,
and progressively seek reductions to simpler assumptions. In Sec. 4, we study
the internal structure and the relationships among the families of assumptions
we identify as Uber assumptions for our framework. In Sec. 5, we provide a
generalization of our framework in the bilinear setting.

6

2 Preliminaries

Notation. We say a function f is negligible when f(κ) = κ−ω(1) and it is over-
whelming when f(κ) = 1 − κω(1). We write f(κ) ≈ 0, when f(κ) is a negligible
function. We will use κ to denote a security parameter, with the intuition that
as κ grows we expect stronger security.

We write y = A(x; r) when algorithmA on input x and randomness r, outputs
y. We write y ← A(x) for the process of picking randomness r at random and
setting y = A(x; r). We also write y ← S for sampling y uniformly at random
from the set S. We will assume it is possible to sample uniformly at random
from sets such as Zp. We write PPT and DPT for probabilistic and deterministic
polynomial time respectively.

Quadratic Residuosity. For an odd prime p and an integer a 6= 0, we say a is a
quadratic residue modulo p if there exists a number x such that x2 ≡ a (mod p)
and we say a is quadratic non-residue modulo p otherwise. We denote the set
of quadratic residues modulo p by QR(p) and the set of quadratic non-residues
modulo p by QNR(p). By Euler’s theorem, we have that |QR(p)| = |QNR(p)| =
p−1
2 .

2.1 Non-interactive assumptions

In a non-interactive computational problem the adversary is given a problem
instance and tries to find a solution. We say the adversary breaks the problem if
it has non-negligible chance of finding a valid solution and we say the problem
is hard if any PPT adversary has negligible chance of breaking it. We focus on
non-interactive problems that are efficiently falsifiable, i.e., given the instance
there is an efficient verification algorithm that decides whether the adversary
won.

Definition 1 (Non-Interactive Computational Assumption). A Non-int-
eractive Computational Assumption consists of an instance generator and a ver-
ifier (I,V).

(pub, priv)← I(1κ): I is a PPT algorithm that takes as input a security param-
eter 1κ, and outputs a pair of public/private information (pub, priv).

b← V(pub, priv, sol): V is a DPT algorithm that receives as input (pub, priv)
and a purported solution sol and returns 1 if it considers the answer correct
and 0 otherwise.

The assumption is that for all PPT adversaries A, the advantage AdvA is neg-
ligible (in κ), where

AdvA(κ) := Pr [(pub, priv)← I(1κ); sol← A(pub) : V(pub, priv, sol) = 1] .

Relations Among Assumptions. For two non-interactive assumptions A and
B, we will use the notation A⇒B when assumption B is implied (in a black-
box manner) by assumption A, i.e. given an efficient algorithm B for breaking
assumption B, one can construct an efficient algorithm A that uses B as an oracle
and breaks assumption A. The absence of implication will be denoted by A 6=⇒B.

7

2.2 Non-Interactive Assumptions over Cyclic Groups

We study non-interactive assumptions over prime-order cyclic groups. These
assumptions are defined relative to a group generator G.

Definition 2 (Group Generator). A group generator is a PPT algorithm G,
which on input a security parameter κ (given in unary) outputs group parameters
(Gp, G), where

• Gp is cyclic group of known prime order p with bitlength |p| = Θ(κ).
• Gp has a unique canonical representation of group elements, and polynomial

time algorithms for carrying out group operations and deciding membership.
• G is a uniformly random generator of the group.

In non-interactive assumptions over prime-order groups the instance gener-
ator runs the group setup (Gp, G) ← G(1κ) and includes Gp in pub. Sadeghi
and Steiner [SS01] distinguish between group setups with low, medium and high
granularity. In the low granularity setting the non-interactive assumption must
hold with respect to random choices of Gp and G, in the medium granularity
setting it must hold for all choices of Gp and a random G, and in the high
granularity setting it must hold for all choices of Gp and G. Our definitions al-
ways assume G is chosen uniformly at random, so depending on G we are always
working in the low or medium granularity setting.

We will use [x] to denote the group element that has discrete logarithm x
with respect to the group generator G. In this notation the group generator G
is [1] and the neutral element is [0]. We will find it convenient to use additive
notation for the group operation, so we have [x]+[y] = [x+y]. Observe that given
α ∈ Zp and [x] ∈ Gp it is easy to compute [αx] using the group operations. For
a vector x ∈ Znp we use [x1, . . . , xn] as a shorthand for the tuple ([x1] , . . . , [xn]).

There are many examples of non-interactive assumptions defined relative
to a group generator G. We list in Fig. 1 some of the existing non-interactive
computational assumptions.

Generic Group Model. Obviously, if an assumption can be broken using
the generic group operations, then it is false. The absence of a generic group
operations attack on an assumption does not necessarily mean the assumption
holds [Den02,JS12] but is a necessary precondition for the assumption to be
plausible.

We formalize the generic group model [Nec94,Sho97] where an adversary can
only use generic group operations as follows. Given Gp we let [·] be a random bi-
jection Zp → Gp. We give oracle access to the addition operation, i.e., O([x], [y])
returns [x+y]. We say an assumption holds in the generic group model if an ad-
versary with access to such an addition oracle has negligible chance of breaking
the assumption. Note that the adversary gets Gp as input and hence is capa-
ble of deciding group membership. Also, given an arbitrary [x] it can compute
[0] = [px] using the addition oracle. A generic adversary might be able to sample
a random group element from Gp, but since they are just random encodings

8

ICDH(1κ)
(Gp, [1])← G(1κ); x, y ← Zp
Return (pub = (Gp, [1], [x] , [y]), priv = (x, y))

VCDH(pub, priv = (x, y), sol = [z])
If [z] = [xy] return 1
Else return 0

Computational Diffie-Hellman (CDH) Assumption

ISCDH(1κ)
(Gp, [1])← G(1κ); x← Zp
Return (pub = (Gp, [1], [x]), priv = x)

VSCDH(pub, priv = x, sol = [z])

If [z] =
[
x2
]

return 1
Else return 0

Square Computational Diffie-Hellman (SCDH) Assumption [MW96]

Iq-DHE(1κ)
(Gp, [1])← G(1κ); x← Zp
Return (pub = (Gp, [1], [x] , . . . , [xq]), priv = x)

Vq-DHE(pub, priv = x, sol = [z])

If [z] =
[
xq+1

]
return 1

Else return 0

q-Diffie-Hellman Exponent (q-DHE) Assumption [ZSNS04]

Iq-GDHE(1κ)
(Gp, [1])← G(1κ); x← Zp
pub = (Gp, [1], [x] , . . . ,

[
xq−1

]
,
[
xq+1

]
, . . . ,

[
x2q
]
)

Return (pub, priv = x)

Vq-GDHE(pub, priv = x, sol = [z])
If [z] = [xq] return 1
Else return 0

q-Generalized Diffie-Hellman Exponent (q-GDHE) Assumption [BBG05,BGW05]

Iq-SDH(1κ)
(Gp, [1])← G(1κ); x← Zp
Return (pub = (Gp, [1], [x] , . . . , [xq]), priv = x)

Vq-SDH(pub, priv = x, sol = (c, [z]))

If [z] =
[

1
x+c

]
& c ∈ Zp \ {−x}

return 1 Else return 0

q-Strong Diffie-Hellman (q-SDH) Assumption [BB08]

Iq-DHI(1
κ)

(Gp, [1])← G(1κ); x← Z∗p
Return (pub = (Gp, [1], [x] , . . . , [xq]), priv = x)

Vq-DHI(pub, priv = x, sol = [z])

If [z] =
[
1
x

]
return 1

Else return 0

q-Diffie-Hellman Inversion (q-DHI) Assumption [MSK02]

ISRDH(1κ)
(Gp, [1])← G(1κ); x← Zp
Return

(
pub = (Gp, [1],

[
x2
]
), priv = x

) VSRDH(pub, priv = x, sol = [z])
If [z] = [±x] return 1
Else return 0

Square Root Diffie-Hellman (SRDH) Assumption [KMS04]

Fig. 1: Some existing non-interactive intractability assumptions

we may without loss of generality assume she only generates elements as linear
combinations of group elements it has already seen.

All the assumptions listed in Fig. 1 are secure in the generic group model.

3 Target Assumptions

The assumptions that can be defined over cyclic groups are legion. We will
focus on the broad class of non-interactive computational assumptions where
the adversary’s goal is to compute a particular group element. We refer to them
as target assumptions.

9

The CDH assumption is an example of a target assumption where the ad-
versary has to compute a specific group element. She is given ([1], [x], [y]) ∈ G3

p

and is tasked with computing [xy] ∈ Gp.
We aim for maximal generality of the class of assumptions and will therefore

also capture assumptions where the adversary takes part in specifying the target
element to be computed. In the q-SDH assumption for instance the adversary
is given ([1], [x], . . . , [xq]) ∈ Gq+1

p and is tasked with finding c ∈ Zp and [1
x+c] ∈

Gp. Here the problem instance in itself does not dictate which group element
the adversary must compute but the output of the adversary includes c, which
uniquely determines the target element to be computed.

We will now define target assumptions. The class will be defined very broadly
in order to capture existing assumptions in the literature such as CDH and q-
SDH as well as other assumptions that may appear in future works.

In a target assumption, the instance generator outputs pub that includes a
prime order group, a number of group elements, and possibly some additional
information. Often, the group elements are of the form [a(x)], where a is a
polynomial and x is chosen uniformly at random from Zp. We generalize this by

letting the instance generator output group elements of the form [a(x)b(x)], where

a(X) and b(X) are multi-variate polynomials and x is chosen uniformly at
random from Zmp . We will assume all the polynomials are known to the adversary,
i.e., they will be explicitly given in the additional information in pub in the form
of their coefficients. The adversary will now specify a target group element. She
does so by specifying polynomials r(X) and s(X) and making an attempt at

computing the group element [r(x)s(x)].

If the target element can be computed using generic group operations on
the group elements in pub, then the problem is easy to solve and hence the
assumption is trivially false. To exclude trivially false assumptions, the solution
verifier will therefore check that for all fixed linear combinations α1, . . . , αn ∈ Zp
there is a low probability over the choice of x that r(x)

s(x) =
∑
i αi

ai(x)
bi(x)

. The

solution tuple output by the adversary is sol =
(
r(X), s(X), [y], sol′

)
, where sol′

is some potential extra information the verifier may need to check, for instance
about how the polynomials r and s were constructed.

Definition 3 (Target assumption). Given polynomials d(κ),m(κ) and n(κ)
we say (I,V) is a (d,m, n)-target assumption for G if they can be defined by a
PPT algorithm Icore and a DPT algorithm Vcore such that

(pub, priv)← I(1κ): Algorithm I proceeds as follows:
• (Gp, [1])← G(1κ)

•

({
ai(X)
bi(X)

}n
i=1

, pub′, priv′
)
← Icore(Gp)

• x← Zmp conditioned on bi(x) 6= 0

• pub :=
(
Gp,

{[
ai(x)
bi(x)

]}n
i=1

,
{
ai(X)
bi(X)

}n
i=1

, pub′
)

• Return (pub, priv = ([1],x, priv′))
0/1← V

(
pub, priv, sol =

(
r(X), s(X), [y], sol′

))
: Algorithm V returns 1 if all of

the following checks pass and 0 otherwise:

10

• r(X)
∏n
i=1 bi(X) /∈ span

{{
s(X)aj(X)

∏
i 6=j bi(X)

}n
j=1

}
• [y] = r(x)

s(x) [1]
• Vcore(pub, priv, sol) = 1

We require that the number of indeterminates in X is m(κ) and each polynomial
a1(X), b1(X), . . . , an(X), bn(X), r(X), s(X) has total degree bounded by d(κ),
both of which can easily be checked by Vcore.

It is easy to see that all assumptions in Fig. 1 are target assumptions. For
CDH for instance, we have d = 2,m = 2, n = 3, a1(X1, X2) = 1, a2(X1, X2) =
X1, a3(X1, X2) = X2, and b1(X1, X2) = b2(X1, X2) = b3(X1, X2) = 1. Al-
gorithm Vcore then checks that the adversary’s output is r(X1, X2) = X1X2

and s(X1, X2) = 1, which means the adverary is trying to compute the target
[x1x2] ∈ Gp.

Algorithm IB(1κ)

- (Gp, [1])← G(1κ)

-
({

ai(X)
bi(X)

}n
i=1

, pub′A, priv
′
A

)
← IcoreA (Gp)

- For i = 1, . . . , n set ci(X) := ai
∏
j 6=i bj(X)

- x← Zmp
- pubB =

(
Gp, {[ci(x)]}ni=1 , {ci(X)}ni=1 , pub

′
B =

(
{ai(X), bi(X)}ni=1, pub

′
A

))
- Return (pubB, privB = ([1],x, priv′A))

Algorithm VB
(
pubB, privB = ([1],x, priv′A) , solB =

(
t(X), s(X), [y], sol′

))
- Check t(X) /∈ span {s(X)c1(X), . . . , s(X)cn(X)}
- Check [y] = t(x)

s(x) [1]

- Check t(X) = r(X)
∏n
j=1 bj(X) for a polynomial r(X) of total degree d

- Let pubA = (Gp, {[ci(x)]}ni=1 ,
{
ai(X)
bi(X)

}n
i=1

, pub′A)

- Let privA = ([
∏n
j=1 bj(x)],x, priv′A)

- Check Vcore
A

(
pubA, privA, solA = (r(X), s(X), [y], sol′)

)
= 1

Adversary B
(
Gp, {[ci(x)]}ni=1 , {ci(X)}ni=1 , {ai(X), bi(X)}ni=1 , pub

′
A

)
-
(
r(X), s(X), [y], sol′

)
← A

(
Gp, {[ci(x)]}ni=1 ,

{
ai(X)
bi(X)

}n
i=1

, pub′A

)
- Return solB =

(
t(X) = r(X)

∏n
j=1 bj(X), s(X), [y], sol′

)
Fig. 2: Simple target assumption B = (IB,VB) and adversary B against it

In q-SDH we have d = q, m = 1, n = q + 1, ai(X) = Xi−1, and bi(X) = 1
for i = 1, . . . , q + 1. Algorithm Vcore checks that the target polynomials are of

11

the form r(X) = 1 and s(X) = c + X for some c ∈ Zp, meaning the adversary
it is trying to compute the target [1

x+c] ∈ Gp.

3.1 Simple Target Assumptions

We now have a very general definition of target assumptions relating to the
computation of group elements. In the following subsections, we go through
progressively simpler classes of assumptions that imply the security of target
assumptions. We start by defining simple target assumptions, where the divisor
polynomials in the instance are trivial, i.e., b1(X) = · · · = bn(X) = 1.

Definition 4 (Simple Target Assumption). We say a (d,m, n)-target as-
sumption (I,V) for G is simple if the instance generator always picks polynomials
b1(X) = . . . = bn(X) = 1.

Next, we will prove that the security of simple target assumptions implies
the security of all target assumptions. The idea is to reinterpret the tuple the
adversary gets using the random generator [1] to having random generator
[
∏n
i=1 bi(x)]. Now all fractions of formal polynomials are scaled up by a fac-

tor
∏n
i=1 bi(X) and the divisor polynomials can be cancelled out.

Theorem 1. For any (d,m, n)-target assumption A = (IA,VA) there exists a
((n+ 1)d,m, n)-simple target assumption B = (IB,VB) such that B⇒A.

Proof. Given an assumption A = (IA,VA) and an adversary A against it, we
define a simple target assumption B = (IB,VB) and an adversary B (that uses
adversary A in a black-box manner) against it as illustrated in Fig. 2. The key
observation is that as long as

∏n
i=1 bi(x) 6= 0, the two vectors of group elements

([ci(x)], . . . , [cn(x)]) and
(

[a1(x)b1(x)
], . . . , [an(x)bn(x)

]
)

are identically distributed. By the

specification of assumption A, it follows that bi(X) 6≡ 0 for all ∈ {1, . . . , n}. By
the Schwartz-Zippel lemma, the probability that

∏n
i=1 bi(x) = 0 is at most dn

p .
Thus, if A has success probability εA, then B has success probability εB ≥
εA − dn

p . ut

3.2 Univariate Target Assumptions imply Multivariate Target
Assumptions

We will now show that security of target assumptions involving univariate poly-
nomials imply security of target assumptions involving multivariate polynomials.
The following theorem proves that given a multivariate target assumption, there
is a univariate target assumption whose intractability implies that of the former.

Theorem 2. For any (d,m, n)-simple target assumption A = (IA,VA) there
exists a ((n+ 1)d, 1, n)-simple target assumption B = (IB,VB) where B⇒A.

Proof. Given A = (IA,VA) and an adversary A with success probability εA
against it, we define a simple target assumption (IB,VB) with univariate poly-
nomials and construct an adversary B (that uses A in a black-box manner)
against it as illustrated in Fig. 3.

12

Algorithm I
B
(1κ)

- (Gp, [1])← G(1κ)

-
(
{ai(X)}ni=1 , pub

′
A, priv

′
A

)
← Icore

A
(Gp)

- Randomly choose c(X)← (Zp[X])m where deg(ci) = n+ 1
- For i = 1, . . . , n let bi(X) := ai(c(X))
- pub′B :=

(
{ai(X)}ni=1, c(X), pub′A

)
- x← Zp
- Return

(
pubB =

(
Gp, {[bi(x)]}ni=1 , {bi(X)}ni=1, pub

′
B

)
, privB = ([1], x, priv′A)

)
Algorithm VB

(
pubB, privB, solB =

(
r(X), s(X), [y], (rA(X), sA(X), sol′A)

))
- Check r(X) /∈ span {s(X)b1(X), . . . , s(X)bn(X)}
- Check [y] = r(x)

s(x) [1]

- Let pubA = (Gp, {[bi(x)]}ni=1 , {ai(X)}ni=1 , pub
′
A)

- Let privA = ([1], x, priv′A)
- Check Vcore

A

(
pubA, privA, solA = (rA(X), sA(X), [y], sol′A)

)
= 1

Adversary B
(
Gp, {[bi(x)]}ni=1 , {bi(X)}ni=1 , pub

′
B

)
-
(
rA(X), sA(X), [y], sol′A

)
← A

(
Gp, {[bi(x)]}ni=1 , {ai(X)}ni=1 , pub

′
A

)
- Return

(
rA(c(X)), sA(c(X)), [y], sol′B = (rA(X), sA(X), sol′A)

)
Fig. 3: Univariate simple target assumption B and adversary B against it

Without loss of generality we can assume a1(X), . . . , an(X) are linearly inde-
pendent, and therefore the polynomials rA(X) and sA(X)a1(X), . . . , sA(X)an(X)
are all linearly independent. By Lemma 1 below this means that with probabil-

ity 1 − d(n+1)
p the univariate polynomials r(c(X)) and s(c(X))a1(c(X)), . . .,

s(c(X))an(c(X)) output by B are also linearly independent since the only infor-
mation about c(X) that B passes on to A can be computed from (x, c(x)). This

means B has advantage εB ≥ εA − d(n+1)
p against assumption B.

ut

Lemma 1. Let a1(X), . . . , an(X) ∈ Zp[X] be linearly independent m-variate
polynomials of total degree bounded by d, and let (x,x) ∈ Zp×Zmp . Pick a vector
of m random univariate degree n polynomials c(X) ∈ (Zp[X])

m
that passes

through (x,x), i.e., c(x) = x. The probability that a1(c(X)), . . . , an(c(X)) are
linearly independent is at least 1− dn

p .

Proof. Take n random points x1, . . . ,xn ∈ Zmp and consider the matrix

M =

 a1(x1) · · · a1(xn)
...

...
an(x1) · · · an(xn)

 .

13

We will argue by induction that with probability 1 − dn
p the matrix is invert-

ible. For n = 1 it follows from the Schwartz-Zippel lemma that the probability
a1(x1) = 0 is at most d

p . Suppose now by induction hypothesis that we have prob-

ability 1− d(n−1)
p that the top left (n−1)×(n−1) matrix is invertible. When it is

invertible, the values an(x1), . . . , an(xn−1) uniquely determine α1, . . . , αn−1 such

that for j = 1, . . . , n− 1 we have an(xj) =
∑n−1
i=1 αiai(xj). Since the polynomi-

als a1(X), . . . , an(X) are linearly independent, by the Schwartz-Zippel lemma,

there is at most probability d
p that we also have an(xn) =

∑n−1
i=1 αiai(xn). So the

row (an(x1), . . . , an(xn)) is linearly independent of the other rows, and hence

we have M is invertible with at least probability 1− d(n−1)
p − d

p = 1− dn
p .

Finally, picking a vector of m random polynomials c(X) of degree n such
that c(x) = x and evaluating it in distinct points x1, . . . , xn ← Zp \ {x} gives
us n random points c(xj) ∈ Zmp . So the matrix a1(c(x1)) · · · a1(c(xn))

...
...

an(c(x1)) · · · an(c(xn))


has at least probability 1− dn

p of being invertible. If
∑n
i=1 αiai(c(X)) = 0, then

it must hold in the distinct points x1, . . . , xn, and we can see there is only the
trivial linear combination with α1 = · · · = αn = 0. ut

Having reduced target assumptions to simple univariate target assumptions
with m = 1, we will in the next two subsections consider two separate cases.
First, the case where the adversary’s polynomial s(X) is fixed, i.e., it can be
deterministically computed. Second, the case where the adversary’s polynomial
s(X) may vary.

3.3 Polynomial Assumptions

We now consider simple target assumptions with univariate polynomials where
s(X) is fixed. We can without loss of generality assume this means priv′ output
by the instance generator contains s(X) and the solution verifier checks whether
the adversary’s solution matches s(X). There are many assumptions where s(X)
is fixed, in the Diffie-Hellman inversion assumption we will for instance always
have s(X) = X and in the q-GDHE assumption we always have s(X) = 1. When
the polynomial s(X) is fixed, we can multiply it away as we did for the multivari-
ate polynomials b1(X), . . . , bn(X) when reducing target assumptions to simple
target assumptions. This leads us to define the following class of assumptions:

Definition 5 (Polynomial Assumption). We say a (d, 1, n)-simple target
assumption (I,V) for G is a (d, n) polynomial assumption if V only accepts a
solution with s(X) = 1.

We leave the proof of the following theorem to the reader.

14

Theorem 3. For any (d, 1, n)-simple target assumption A = (IA,VA) for G
where the polynomial s(X) is fixed, there is a (2d, n)-polynomial assumption
B = (IB,VB) where B⇒A.

We will now show that all polynomial assumptions are implied by the gen-
eralized Diffie-Hellman exponent (q-GDHE) assumptions (cf. Fig. 1) along the
lines of [GGPR13]. This means the q-GDHE assumptions are Uber assumptions
that imply the security of a major class of target assumptions, which includes
a majority of the non-interactive computational assumptions for prime-order
groups found in the literature.

Theorem 4. For any (d, n)-polynomial assumption A = (IA,VA) for G we have
that (d+ 1)-GDHE ⇒ A.

Proof. LetA be an adversary against the (d, n)-polynomial assumption. We show
how to build an adversary B, which uses A in a black-box manner to break the
(d+1)-GDHE assumption. Adversary B gets [1], [x] , . . . ,

[
xd
]
, [xd+2], . . . ,

[
x2d+2

]
from the (d+ 1)-GDHE instance generator and her aim is to output the element[
xd+1

]
∈ Gp. Adversary B uses algorithm Icore

A
to generate a simulated polyno-

mial problem instance as described below, which she then forwards to A.

Adversary B
(
Gp, [1], [x] , . . . ,

[
xd
]
,
[
xd+2

]
, . . . ,

[
x2d+2

])
-
(
{ai(X)}ni=1 , pub

′
A, priv

′
A

)
← IcoreA (Gp)

- Randomly choose c(X)← Zp[X] where deg(c) = d+ 1 and
no ai(X)c(X) includes the term Xd+1

- For all i compute [ai(x)c(x)] using the (d+ 1)-GDHE tuple
- Run (r(X), [y], sol′)← A

(
Gp, {[ai(x)c(x)]}ni=1, {ai(X)}ni=1 , pub

′
A

)
- Parse r(X)c(X) as

∑2d+1
i=0 tiX

i

- Return 1
td+1

(
[y]− [

∑
i 6=d+1 tix

i]
)

Assuming c(x) 6= 0, which happens with probability 1 − d+1
p , the input to A

looks identical to a normal problem instance for assumption A with generator
[c(x)]. Furthermore, if A finds a satisfactory solution to this problem, we then
have [y] = r(x)[c(x)]. By Lemma 2 below there is at most 1

p chance of returning

r(X) such that r(X)c(X) has coefficient 0 for Xd+1 and hence using the (2d+2)
elements from the (d+ 1)-GDHE tuple, we can recover [xd+1] from [y]. We now
get that if A has advantage εA against A, then B has advantage εB ≥ εA − d+2

p

against the (d+ 1)-GDHE assumption. ut

Lemma 2 (Lemma 10 from [GGPR13]). Let {ai(X)}ni=1 be polynomials of
degree at most d. Pick x ← Zp and c(X) as a random degree d + 1 polynomial
such that all products bi(X) = ai(X)c(X) have coefficient 0 for Xd+1. Given
({ai(X)}ni=1 , x, c(x)), the probability of guessing a non-trivial degree d polyno-
mial r(X) such that r(X)c(X) has coefficient 0 for Xd+1 is at most 1

p .

15

3.4 Fractional assumptions

We now consider the alternative case of simple target assumptions with uni-
variate polynomials, where s(X) is not fixed. When s(X)|r(X), we can without
loss of generality divide out and get s(X) = 1. The remaining case is when
s(X) - r(X), which we now treat.

Definition 6 ((d, n)-Fractional Assumption). We say a (d, 1, n)-simple tar-
get assumption (I,V) for G is an (d, n)-fractional assumption if V only accepts
the solution if s(X) - r(X).

Next we define a simple fractional assumption which we refer to for short as
q-SFrac, which says given the tuple ([1], [x], [x2], . . . , [xq]) it is hard to compute[
r(x)
s(x)

]
when deg(r) < deg(s). The simple fractional assumption is a straightfor-

ward generalization of the q-SDH assumption, where deg(r) = 0 since r(X) = 1
and deg(s) = 1. We prove in Appendix A that q-SFrac holds in the generic group
model.

Definition 7 (q-SFrac Assumption). The q-SFrac assumption is a simple
target assumption where n = q+1, ai(X) = Xi−1, and 0 ≤ deg(r) < deg(s) ≤ q.

We now prove the following theorem.

Theorem 5. For any (d, n)-fractional assumption A = (I,V) for G we have
d-SFrac⇒A.

Proof. Let A be an adversary against a (d, n)-fractional assumption A. We show
how to use A to construct an adversary B against the d-SFrac assumption.
Adversary B gets

(
Gp, [1], [x] , . . . ,

[
xd
])

and her aim is to output a valid solution

of the form
(
r′(X), s′(X),

[
r′(x)
s′(x)

])
where deg(r′) < deg(s′) ≤ d. Adversary

B uses the instance generator algorithm Icore of the fractional assumption as
described below to generate a problem instance, which she then forwards to A.

Algorithm B(Gp, [1], [x], . . . , [xd])

-
(
{ai(X)}ni=1 , pub

′, priv′
)
← Icore(Gp)

- For all i compute [ai(x)] using the d-SFrac tuple
(
[1] [x] , . . . ,

[
xd
])

- Run (r(X), s(X), [y])← A
(
Gp, {[ai(x)]}ni=1 , {ai(X)}ni=1 , pub

′)
- Let r′(X) = r(X) mod s(X) and write r(X) = t(X)s(X) + r′(X)
- Return (r(X)′, s(X), [y]− [t(x)])

The advantage of adversary B against the d-SFrac assumption is the same as
that of adversary A against the fractional assumption A.

ut

3.5 The q-SFrac and q-GDHE Assumptions Together Imply All
Target Assumptions in Cyclic Groups

We now prove that the q-SFrac and q-GDHE assumptions together constitute
an Uber assumption for all target assumptions in prime-order cyclic groups.

16

Theorem 6. There is a polynomial q(d,m, n) such that the joint q-SFrac and
q-GDHE assumption implies all (d,m, n)-target assumptions.

Proof. Let A be a (d,m, n)-target assumption. By Theorem 1, for any adversary
A with advantage εA against A, we can define a (d(n + 1),m, n)-simple target
assumption A1 and an adversary A1 with advantage εA1

≥ εA − dn
p against it.

By Theorem 2, using A1 against A1, we can define a (d(n + 1)2, 1, n)-simple
target assumption A2 and an adversary A2 against it with advantage εA2

≥
εA1
− d(n+1)2

p ≥ εA −
d(n+(n+1)2)

p . We now have two cases as follows:

• With non-negligible probability a successful solution has sA2(X) - rA2(X).
By Theorem 5, we can use A2 to construct an adversary A3 against the

(d(n+1)2)-SFrac assumption where advantage εA3
≥ εA2

≥ εA−
d(n+(n+1)2)

p .

Since by defintion d, n ∈ Poly(κ) and log p ∈ θ(κ), it follows that d(n+(n+1)2)
p

is negligible (in κ).
• With overwhelming probability a successful solution uses polynomials where
sA2(X)|rA2(X) which is equivalent to the case where sA2(X) = 1. By Theo-
rem 3, usingA2 we can define a (2d(n+1)2, n)-polynomial assumption A3 and

an adversary A3 with advantage εA3
≥ εA2

− 4d(n+1)2

p ≥ εA −
d(n+5(n+1)2)

p .
By Theorem 4, using adversary A3, we can construct an adversary A4

against the (2d(n+ 1)2 + 1)-GDHE assumption with advantage εA4
≥ εA3

−
2d(n+1)2+2

p . From which it follows that εA4
≥ εA −

d(7(n+1)2+n)+2
p . Since by

defintion d, n ∈ Poly(κ) and log p ∈ θ(κ), it follows that d(7(n+1)2+n)+2
p is

negligible (in κ).
ut

4 The Relationship between the GDHE and SFrac
Assumptions

Having identified the q-GDHE and q-SFrac assumptions as Uber assumptions
for all target assumptions, it is natural to investigate their internal structure
and their relationship to each other. One obvious question is whether a further
simplification is possible and one of the assumption classes imply the other. We
first analyze the case where q ≥ 2 and show that q-SFrac does not imply 2-GDHE
for generic algorithms. This means that we need the q-GDHE assumptions to
capture the polynomial target assumptions, the q-SFrac assumptions cannot act
as an Uber assumption for all target assumptions on their own.

We also look at the lowest level of the q-SFrac and q-GDHE hierarchies.
Observe that the 1-SFrac assumption is equivalent to the 1-SDH assumption.
We prove that the 1-GDHE assumption is equivalent to the CDH assumption.
This immediately also gives us that the 1-SFrac assumption implies the 1-GDHE
assumption since the 1-SDH assumption implies the CDH assumption. We sum-
marize the implications we prove in the diagram in Fig. 4.

17

q-GDHE (q − 1)-GDHE . . . 1-GDHE

CDH

q-SDH (q − 1)-SDH . . . 1-SDH

Lemma 4 Lemma 4

Lemma 5

Lemma 4

Lemma 5

E
asyLemma 5

Theorem
8

Easy

T
h
e
o
re
m

7

T
h
e
o
re
m

7

Easy

T
h
e
o
re
m

7

Easy

T
h
e
o
re
m

8

Fo
llo
w
s
[M

au
94
]

Fig. 4: Summary of Reductions

4.1 The SFrac Assumptions Do Not Imply the 2-GDHE Assumption

We prove here that the i-GDHE assumption for i ≥ 2 is not implied by any

q-SFrac assumption for generic adversaries, i.e. q-SFrac
GGM

6=⇒i-GDHE for all i ≥
2. More presicely, we show that providing an unbounded generic adversary A
against a q-SFrac assumption with a 2-GDHE oracle O2-GDHE , which on input
([a] , [b] , [c] , [d]) where b = az, c = az3, d = az4 returns the element

[
az2
]
, and

returns the symbol ⊥ if the input is malformed, does not help the adversary.

Theorem 7. The q-SFrac assumption does not imply the 2-GDHE assumption
in generic groups.

Proof. Consider a generic adversary A which gets input ([1] , [x] , . . . , [xq]) and

is tasked with outputting
(
r(X)
s(X) ,

[
r(x)
s(x)

])
, where 0 ≤ deg(r) < deg(s) ≤ q. We

give A access to an oracle O
2-GDHE

(·, ·, ·, ·) as above, which can be queried poly-
nomially many times.

Since A is generic, the queries ([a], [b], [c], [d]) she makes to the O
2-GDHE

oracle
must be constructed using generic group operations. To have any chance of
making a non-trivial query, she must therefore pick the queries as known linear
combinations of the elements [1], [x], . . . , [xq]. Thus, we have

a =

q∑
j=0

αjx
j b =

q∑
j=0

βjx
j c =

q∑
j=0

γjx
j

for known αj , βj , γj . Let the corresponding formal polynomials be a(X), b(X)
and c(X), respectively. We have that deg(a),deg(b),deg(c) ∈ {0, . . . , q}. By def-
inition, for the input to the oracle O2-GDHE to be well-formed, we must have
b = az and c = az3 for some z. In the generic group model this has negligible
probability of holding unless z corresponds to some (possibly rational) function
z(X) and we have b(X) = a(X)z(X) and c(X) = a(X)z(X)3 when viewed as
formal polynomials.

18

If the adversary submits a query where a(X) ≡ 0 or b(X) ≡ 0, the oracle will
just return [0], which is useless to the adversary. So from now on let’s assume
that a(X) 6≡ 0, b(X) 6≡ 0 and c(X) 6≡ 0.

We now have

c(X) = a(X)z(X)3 = a(X)

(
b(X)

a(X)

)3

=
b(X)3

a(X)2
.

This means a(X)2|b(X)3, which implies a(X)|b(X)2. The answer returned by

the oracle on a well-formed input corresponds to a(X)z(X)2 = a(X)
(
b(X)
a(X)

)2
=

b(X)2

a(X) . Since a(X)|b(X)2, the answer corresponds to a proper polynomial.

If deg(b) ≤ deg(a), we have 2 deg(b) − deg(a) ≤ deg(b) ≤ q, and if deg(b) ≥
deg(a), we have 2 deg(b) − deg(a) ≤ 3 deg(b) − 2 deg(a) = deg(c) ≤ q. Thus,
the answer the oracle returns corresponds to a known polynomial of degree in
{0, . . . , q} which could have been computed by the adversary herself using generic
group operations on the tuple [1], [x], . . . , [xq] without calling the oracle. ut

Since as we prove later the GDHE assumptions family is strictly increasingly
stronger, we get the following corollary.

Corollary 1. For all i ≥ 2 it holds that q-SFrac
GGM

6=⇒i-GDHE.

4.2 CDH Implies the 1-GDHE Assumption

Since having access to a CDH oracle allows one to compute any polynomial in
the exponent [Mau94] (in fact, such an oracle provides more power as it allows
computing even rational functions in the exponent for groups with known order
[Mau94]), it is clear that 1-GDHE⇒CDH and hence q-SDH⇒CDH. We prove in
this section the implication CDH⇒1-GDHE, which means that the assumptions
CDH and 1-GDHE are equivalent. As a corollary q-SFrac ⇒1-GDHE for all q.

We start by proving that the square computational Diffie-Hellman assump-
tion (SCDH) (cf. Fig. 1), which is equivalent to the CDH assumption [BDZ03,JR13],
implies the the square root Diffie-Hellman (SRDH) assumption [KMS04] (cf. Fig. 1)
4. Note that given a SCDH oracle, one can solve any CDH instance by making
2 calls to the SCDH oracle. Let ([1], [a], [b]) ∈ G3

p be a CDH instance, then

[ab] = 1
2 ([(a+ b)2]− ([(a− b)2])).

We remark here that Roh and Hahn [RH12] also gave a reduction from the
SCDH assumption to the SRDH assumption. However, their reduction relies on
two assumptions: that the oracle will always (i.e. with probability 1) return a
correct answer when queried on quadratic-residue elements and uniformly ran-
dom elements when queried on quadratic non-residue elements, and that the
prime order of the group p has the special form p = 2tq+1 where 2t = O(κO(1)).

4The SRDH assumption differs from the 1-GDHE assumption in that while the
former accepts either [−x] or [x] as a valid answer, the latter only accepts [x] as a valid
answer.

19

Our reduction is more general since we do not place any restrictions on t or q
and more efficient since it uses 4t + 2|q| oracle queries, whereas their reduction
uses O(t(2t + |q|)) oracle queries. Later on, we will also show how to boost an
imperfect 1-GDHE oracle to get a SCDH oracle.

The Perfect Oracle Case. We prove that a perfect SRDH oracle OSRDH which
on input a pair ([a], [az]) ∈ G2

p returns the symbol QNR (which for convenience
we denote by [0]) if z /∈ QR(p) and [±a

√
z] otherwise, leads to a break of the

SCDH assumption. The role of the exponent a is to allow queries on pairs w.r.t. a
different group generator than the default one. Let p = 2tq+1 for an odd positive
integer q be the prime order of the group Gp. Note that when p ≡ 3 (mod 4) (this
is the case when −1 ∈ QNR(p)), we have t = 1, and in the special case where p
is a safe prime, q is also a prime. On the other hand, when p ≡ 1 (mod 4) (this
is the case when −1 ∈ QR(p)), we have t > 1.

In the following let ω ∈ QNR(p) be an arbitrary 2t-th root of unity of Z×p , i.e.,

ω2t−1 ≡ −1 mod p− 1 and ω2t ≡ 1 mod p− 1. Note that there are φ(2t) = 2t−1

roots of unity and finding one is easy since for any generator g of Z×p , gq is a
2t-th root of unity. We observe that all elements in Z×p can be written in the

form ωiβ, where β has odd order k|q. The quadratic residues are those where i
is even, and the quadratic non-residues are the ones where i is odd.

Theorem 8. Given a perfect OSRDH oracle, we can solve any SCDH instance
using at most 4t + 2|q| oracle calls when the group order is p = 2tq + 1 for odd
q.

Proof. Given a SCDH instance ([1], [x]) ∈ G2
p, our task is to compute

[
x2
]
∈ Gp.

The task is trivial when x = 0, so let’s from now on assume x 6= 0. Since any
x ∈ Z×p can be written as x = ωiβ where ω ∈ Z×p is a 2t-th root of unity and

β ∈ Z×p has an odd order k where k|q, our task is to compute
[
x2
]

=
[
ω2iβ2

]
. In

the following, we will first describe an algorithm FindExpi that uses the square-
root oracle to determine i. Next, we describe an algorithm Square that computes
[y] =

[
ωjβ2

]
for some j, and then use FindExpi to clean it up to get

[
x2
]

=[
ω2i−jy] = [ω2iβ2

]
. Both of these algorithms are given in Fig. 5.

Recall the perfect SRDH oracle responds with QNR, i.e. [0], whenever it gets
a quadratic non-residue as input, i.e., whenever it gets input ([1], [ωiβ]) for an
odd i and β has an odd order. When it gets a quadratic residue as input, i.e.,

when i is even, it returns
[
±ω i

2 β
1
2

]
. Since ω2t−1

= −1 this means it returns

either
[
ω

i
2 β

1
2

]
or
[
ω2t−1+ i

2 β
1
2

]
.

Let the binary expension of the exponent be i = it−1it−2 . . . i0. In the
FindExpi algorithm we use the oracle to learn the least significant bit and also to
right-shift the bits. Consider running the oracle on ([1], [x]) and on ([1], [ω−1x]).
If i0 = 0, then i is even and on the first input the oracle returns a new element
with exponent itit−1 . . . i1. If i1 = 1 then i is odd, and the oracle returns a new
element with exponent itit−1 . . . i1 on the second input. Which call returns a
non-trivial group element tells us what i0 is and in both cases we get a new

20

� �
1 Algorithm FindExpi([1], [x], ω)

2 [y]← [x]

3 i← 0

4 For j = 0 to t− 1 :

5 [z]← OSRDH([1], [y])

6 I f [z] = [0] /∗OSRDH returned QNR∗/
7 i← i + 2j

8 [y]← OSRDH([1], [ω−1y])

9 Else

10 [y]← [z]

11 Return i� �� �
1 Algorithm Square([1], [x], ω) :

2 [y]← OSRDH([1], [x])

3 I f [y] = [0] /∗OSRDH returned QNR∗/
4 [y]← OSRDH([1], [ωy])

5 h← q+1
2

6 While h > 2 :

7 I f h i s even

8 [z]← OSRDH([1], [y])

9 I f [z] = [0] /∗OSRDH returned QNR∗/
10 [y]← OSRDH([1], [ωy])

11 Else

12 [y]← [z]

13 h← h
2

14 Else /∗If h is odd∗/
15 [z]← OSRDH([x], [y])

16 I f [z] = [0] /∗OSRDH returned QNR∗/
17 [y]← OSRDH([x], [ωy])

18 Else

19 [y]← [z]

20 h← h+1
2

21 i← FindExpi([1], [x], ω)

22 j ← FindExpi([1], [y], ω)

23 Return [ω2i−jy]� �
Fig. 5: Algorithms FindExpi and Square used in proof of Theorem 8

element where the bits have been shifted right and a new most significant bit it
has been added. Repeating t times allows us to learn all of i = it−1 . . . i0.

Next we describe the Square algorithm. The idea behind this algorithm is
that given [ωiβ] we want to compute [ωjβ2] for some j, but we do not care
much about the root of unity part, i.e., what j is, since we can always determine

21

that by calling FindExpi and clean it up later. As a first step one of the inputs
([1], [x]) or ([1], [ωx]) will correspond to a quadratic residue and the square root

oracle will return some [y] = [ωjβ
1
2] = [ωjβ

q+1
2]. Let’s define h = q+1

2 , which is
a positive integer, so we have [y] = [ωjβh].

The idea now is that we will use repeated applications of the SRDH oracle
to halve h until we get down to h = 2. If h is even this works fine. One of the
pairs ([1], [ωjβh]) or ([1], [ωj+1βh]) will correspond to a quadratic residue and
we get a new element of the form [ωj

′
βh
′
], where h′ = h

2 .
If h is odd this strategy does not work directly. However, when h is odd

we can use [x] as generator instead of [1]. One of the pairs ([ωiβ], [ωjβh]) and
([ωiβ], [ωj+1βh]) will be a quadratic residue and applying the square-root oracle
we get a new element of the form [ωj

′
βh
′
], where h′ = h+1

2 .
Repeated application of these two types of calls, depending on whether h is

even or odd, eventually gives us an element of the form [ωjβ2]. At this stage
we can use the FindExpi algorithm to determine i and j, which makes it easy to
compute [x2] = ω2i−j [ωjβ2].

Let’s now analyse the time complexity of the algorithms. Algorithm FindExpi
makes at most 2t oracle calls. Algorithm Square makes at most 2|q| oracle calls
in addition to two invocations of FindExpi, i.e., at most 4t + 2|q| oracle calls in
total.

ut

Using an Adversarial O∗1-GDHE Oracle. In Theorem 8, we assumed the
reduction had a perfect OSRDH oracle. Here we weaken the assumption used in
the reduction and consider anO∗1-GDHE oracle that returns a correct answer with
a non-negligible probability ε when queried on a quadratic residue element. More
precisely, let ([a], [b]) ∈ G2

p be the input we are about to query the O∗1-GDHE

oracle on. Since we can easily detect if b = 0, we can assume that we never need to
query to oracle on any input where b = 0. When queried on ([a], [b]) ∈ G×p ×G×p ,
the oracle will return either the symbol QNR, i.e. [0] ∈ Gp or [c] ∈ Gp for some
c ∈ Z×p . Our assumption about correctness is

Pr
[
(Gp, [1])← G(1κ); a, z ← Z×p : O∗1-GDHE([a], [az2]) = ±[az]

]
≥ ε(κ).

The oracle can behave arbitrarily when it does not return a correct answer or
when the input is not a quadratic residue.

We will now show that we can rectify the adversarial behaviour of the oracle
so that it cannot adapt its answer based on the instance input. The idea is to
randomize the inputs to be queried to the oracle so that they are uniformly dis-
tributed over the input space and we get ε chance of getting a correct square-root
when the input is a quadratic residue. To check the solution, we then randomize
an element related to the answer, which we can use to detect when the ora-
cle is misbehaving. The result is a Monte Carlo algorithm described in Fig. 6,
which with probability ε′ ≥ ε2 returns a correct square-root when queried on a
quadratic residue and ⊥ in all other cases.

22

� �
1 Algorithm MOracle([a], [b]) :

2 Sample α, β, γ, δ, r, s← Z×p
3 [y]← O∗1-GDHE(α[a], αβ2[b])

4 [z]← O∗1-GDHE(γ[a], γδ2(r2[a] + 2rs 1
αβ [y] + s2[b]))

5 I f 1
γδ [z] = ±(r[a] + s

αβ [y])

6 Return 1
αβ [y]

7 Else

8 Return ⊥� �
Fig. 6: Monte Carlo Algorithm using O∗1-GDHE

Lemma 3. Using O∗1-GDHE which returns a correct answer with probability ε,
algorithm MOracle returns a correct answer with probability ε′ ≥ ε2 when queried
on a well-formed pair ([a], [b]) ∈ G×p ×G×p and ⊥ otherwise.

Proof. If b
a ∈ QR(p), we also have β2b

a ∈ QR(p), and when b
a /∈ QR(p), we

also have β2b
a /∈ QR(p). We have probability ε that the answer [y] is a correct

answer when b
a ∈ QR(p) in which case y = ±αβa

√
b
a , we can thus recover

[±a
√

b
a = ±

√
ab] by computing 1

αβ [y]. Let y′ = y
αβ = ±

√
ab. We have probability

ε that [z] is a correct answer. Now let z′ = z
γδ .

Note that r2a+ 2rsy′ + s2b = (ra+ sy′)2 + s2(b− y′2) and if [z] is a correct
answer then we have z′ = ±(ra + sy′). Thus, we have probability at least ε2

that algorithm MOracle will return a correct square root when the input is well-
formed.

We now argue that if y′ 6= ±
√
ab, with overwhelming probability the algo-

rithm will return ⊥. Let τ = a(r2a+ 2rsy′ + s2b) = r2a2 + 2arsy′ + s2ab.
Since a(r2a+2rsy′+s2b) = (ra+sy′)2 +s2(ab−y′2), the query to the oracle

is determined by a and τ , and there are roughly p2 pairs (r, s) mapping into a
maximum of p choices of τ . Therefore, for the same oracle query there are many
possible values s could have. Now if y′ 6= ±

√
ab, i.e. y is an incorrect answer, then

the oracle has negligible chance of passing the test z′ = ±(ra+ sy′) in line 5. If
the test passes, then z′2 = (ra+ sy′)2 = r2a2 + 2arsy′+ s2ab = τ − s2(ab− y′2).
Since s is information theoretically undetermined from a and τ , there is negligible
chance over the choice of s that this equality holds unless ab− y′2 = 0. ut

Since ε is non-negligible (in the security parameter), there must be a constant
c > 0 such that for infinitely many κ we have ε′ ≥ κ−c. We can use repetitions
to boost the oracle to give the correct answer with overwhelming probability
on these κ values, i.e., on quadratic residues it returns square-roots and on
quadratic non-residues it returns ⊥ or equivalently [0]. Chernoff-bounds ensure

23

we only need κ
ε2 polynomially iterations of the Monte Carlo algorithm to build

a good SRDH oracle.

4.3 The q-GDHE Family Structure

We say a family of assumptions {q-A} is a strictly increasingly stronger family
if for all polynomials q ≤ q′ it holds that q′-A⇒q-A but q-A 6=⇒(q′ + 1)-A.

We prove the following theorem regarding the structure of q-GDHE family.

Theorem 9. The q-GDHE family is a strictly increasingly stronger family.

Proof. The following two lemmeta prove the theorem.

Lemma 4. For all polynomials q, we have (q + 1)-GDHE⇒q-GDHE.

Proof. Using an adversary A against the q-GDHE assumption in a black-box
manner, we build an adversary B against the (q+ 1)-GDHE assumption. Adver-
sary B who is tasked with outputting [xq+1] ∈ Gp, gets the tuple ([1], [x], . . . ,
[xq], [xq+2], . . . , [x2q+2]) ∈ G2q+2

p . She can easily test whether x = 0 using generic
group operations, and if this is the case she returns [0]. If x 6= 0, she initiates
adversary A on input ([x] , . . . , [xq] ,

[
xq+2

]
, . . . ,

[
x2q+1

]
) ∈ G2q

p , i.e. the input
tuple given to A is now w.r.t. the generator [x] rather than [1].

First we argue that since we are working with groups of prime order, [x] is a
valid group generator of Gp and hence the tuple given to A is a valid q-GDHE
tuple. Eventually, whenA halts with her answer [y], B returns the same answer in
her game. If [y] is a valid solution to the q-GDHE problem w.r.t. group generator
[x] ∈ Gp (on which A is challenged), it is also a valid solution to the (q + 1)-
GDHE problem w.r.t. group generator [1] ∈ Gp (on which B is challenged). Thus,
B wins her game with at least the same advantage as adversary A.

Lemma 5. For all polynomials q, we have q-GDHE
GGM

6=⇒(q + 1)-GDHE.

Proof. Consider a generic adversary A against the q-GDHE assumption. Ad-
versary A gets ([1] , [x] , . . . ,

[
xq−1

]
,
[
xq+1

]
, . . . ,

[
x2q
]
) and is tasked with out-

putting [xq]. We grant A access to an oracle O
(q + 1)-GDHE

(·, ·, ·, ·) which on input

a tuple
(
[a] , [b = az] ,

[
c = azq+2

]
,
[
d = azq+3

])
returns

[
azq+1

]
if the input is

well-formed and the special symbol ⊥ otherwise, i.e. if the input tuple is not
in the above form. Clearly, with the help of this oracle, it is easy to break the
(q + 1)-GDHE assumption.

Since the adversary is generic, the queries ([a], [b], [c], [d]) she makes to the
oracle must be constructed using generic group operations. Thus, the corre-
sponding polynomials are linear combinations of the group elements ([1] , [x] ,
. . . ,

[
xq−1

]
,
[
xq+1

]
, . . . ,

[
x2q
]
) and hence we have

a =

2q∑
j=0,j 6=q

αjx
j b =

2q∑
j=0,j 6=q

βjx
j c =

2q∑
j=0,j 6=q

γjx
j d =

2q∑
j=0,j 6=q

δjx
j

24

Let the corresponding formal polynomials be a(X), b(X), c(X) and d(X). We
have that deg(a),deg(b),deg(c),deg(d) ∈ {0, . . . , 2q} and none of those polyno-
mials have the monomial Xq.

In the generic group model this has negligible probability of holding un-
less we have we have b(X) = a(X)z(X), c(X) = a(X)z(X)q+2 and d(X) =
a(X)z(X)q+3 as formal polynomials for some (possibly rational) function z(X).

If the adversary submits a query where a(X) ≡ 0, b(X) ≡ 0, the oracle will
just return [0] which is useless to the adversary. So from now on let’s assume
that a(X) 6≡ 0, b(X) 6≡ 0, c(X) 6≡ 0 and d(X) 6≡ 0.

If the input tuple is well-formed, we have z(X) = b(X)
a(X) , where a(X) and b(X)

are both proper polynomials, and c(X) = a(X)z(X)q+2 = a(X)
(
b(X)
a(X)

)q+2

=

a(X) b(X)
a(X)

(
b(X)
a(X)

)q+1

which corresponds to a proper polynomial. We also have

d(X) = a(X)
(
b(X)
a(X)

)q+3

= a(X)
(
b(X)
a(X)

)2 (
b(X)
a(X)

)q+1

which also corresponds to

a proper polynomial.

From the above, it is clear that a(X)q+1|b(X)q+2 and a(X)q+2|b(X)q+3 and
deg(c),deg(d) ∈ {0, . . . , 2q} and neither of those polynomials has the term Xq.

Let t(X) = a(X)
(
b(X)
a(X)

)q+1

. We have that b(X)
a(X) t(X) is a proper polynomial

and so is
(
b(X)
a(X)

)2
t(X) which would not hold if a(X) - b(X) as in the latter

case we can write b(X) = s(X) + r(X)
a(X) for some polynomials r(X) and s(X)

where deg(r) < deg(a) and by substituting b(X), it is easy to see that c(X) and
d(X) cannot be both proper polynomials if a(X) - b(X) and hence we must have
a(X)|b(X).

The element returned by the oracle corresponds to c(X)
z(X) . It follows that

a(X)q|b(X)q+1 and hence c(X)
z(X) does not contain the monomial Xq.

Thus, it follows that the element returned by the oracle could have been
computed by the adversary herself without calling the oracle.

ut

5 Target Assumptions over Bilinear Groups

We now turn our attention to prime order bilinear groups. Our reductions from
the cyclic group setting translate into a bilinear framework that captures existing
computational bilinear assumptions where the adversary’s task is to compute a
specific group element in the base groups or the target group. For instance,
the bilinear variants of the matrix computational Diffie-Hellman assumption in
[MRV16] (which implies the (computational bilinear) k-linear assumptions), the
(bilinear) q-SDH assumptions, and the bilinear assumptions studied in [JR13]
are all examples of target assumptions in bilinear groups.

25

Definition 8 (Bilinear Group Generator). A bilinear group generator is
a PPT algorithm BG, which on input a security parameter κ (given in unary)
outputs bilinear group parameters (G1,G2,GT , G1, G2), where

• G1,G2,GT are cyclic groups of prime order p with bitlength |p| = Θ(κ).
• G1,G2,GT have polynomial-time algorithms for carrying out group opera-

tions and unique representations for group elements.
• There is an efficiently computable bilinear map (pairing) e : G1×G2 → GT .
• G1 and G2 are independently chosen uniformly random generators of G1 and

G2, respectively, and e(G1, G2) generates GT .

Again, we will be working in the low/medium granularity setting so we always
assume uniformly random generators of the base groups.

According to [GPS08], bilinear groups of prime order can be classified into 3
main types depending on the existence of efficiently computable isomorphisms
between the groups. In Type-1, G1 = G2. In Type-2 G1 6= G2 and there is an
isomorphism ψ : G2 → G1 that is efficiently computable in one direction, whereas
in Type-3 no efficient isomorphism between the groups in either direction exists.
Type-3 bilinear groups are the most efficient and hence practically relevant and
we therefore restrict our focus to this type, although much of this section also
applies to Type-1 and Type-2 bilinear groups.

We will use [x]
1
, [y]

2
, [z]

T
to denote the group elements in the respective

groups and as in the previous sections use additive notation for all group oper-
ations. This means the generators are [1]1 , [1]2 and e([1]

1
, [1]

2
) = [1]

T
. We will

often denote the pairing with multiplicative notation, i.e., [x]
1
· [y]

2
= [xy]

T
.

A bilinear group generator can be seen as a particular example of a cyclic
group generator generating G1,G2 or GT . All our results regarding non-interactive
computational assumptions therefore still apply in the respective groups but in
this section we will also cover the case where exponents are shared between the
groups. The presence of the pairing e makes it possible for elements in the base
groups G1,G2 to combine in the target group GT , so we can formulate assump-
tions that involve several groups, e.g., that given [1]

1
, [1]

2
, [x]

T
it is hard to

compute [x]
1
. In the following sections, we define and analyze non-interactive

target assumptions in the bilinear group setting.

5.1 Target Assumptions in Bilinear Groups

We now define and analyze target assumptions, where the adversary’s goal is
to compute a group element in Gj , where j ∈ {1, 2, T}. When we defined the
cyclic group target assumption, we gave the adversary group elements of the

form
[
a(x)
b(x)

]
. In the bilinear group setting, the adversary may get a mix of group

elements in all three groups. We note that if the adversary has
[
a(1)(x)
b(1)(x)

]
1

and[
a(2)(x)
b(2)(x)

]
2

she can obtain
[
a(1)(x)a(2)(x)
b(1)(x)b(2)(x)

]
T

via the pairing operation. When we

define target assumptions in bilinear groups, we will therefore without loss of
generality assume the fractional polynomials the instance generator outputs for

26

the target group GT include all products
a
(1)
i (X)a

(2)
j (X)

b
(1)
i (X)b

(2)
j (X)

of fractional polynomials

for elements in the base groups.

Definition 9 (Bilinear Target Assumption in Gj). Given polynomials d(κ),
m(κ), n

1
(κ), n

2
(κ), and n

T
(κ) we say (I,V) is a (d,m, n

1
, n

2
, n

T
)-bilinear target

assumption in Gj for BG if it works as follows:

(pub, priv)← I(1κ): There is a PPT algorithm Icore defining I as follows:
1.
(
G1,G2,GT , [1]

1
, [1]

2

)
← BG(1κ); bgp := (G1,G2,GT)

2.

({
a
(1)
i (X)

b
(1)
i (X)

}n1

i=1

,

{
a
(2)
i (X)

b
(2)
i (X)

}n2

i=1

,

{
a
(T)
i (X)

b
(T)
i (X)

}n
T

i=1

, pub′, priv′
)
← Icore(bgp)

3. x← Zmp conditioned on b
(j)
i (x) 6= 0 for all choices of i and j

4. pub :=

G1,G2,GT ,

{{[
a
(j)
i (x)

b
(j)
i (x)

]
j

}n
j

i=1

,

{
a
(j)
i (X)

b
(j)
i (X)

}n
j

i=1

}
j=1,2,T

, pub′


5. Return (pub, priv :=

(
[1]

1
, [1]

2
,x, priv′

)
)

b← V
(
pub, priv, sol =

(
r(X), s(X), [y]

j
, sol′

))
: There is a DPT algorithm Vcore

such that V returns 1 if all of the following checks pass and 0 otherwise:

1. r(X)
∏n

j

i=1 b
(j)
i (X) /∈ span

({
s(X)a

(j)
i (X)

∏
` 6=i b

(j)
` (X)

}nj

i=1

)
2. [y]

j
= r(x)

s(x) [1]
j

3. Vcore(pub, priv, sol) = 1

We require that the number of variables in X is m(κ), the total degrees of the
polynomials are bounded by d(κ), and that all products of polynomial fractions
in G1 and G2 are included in the polynomial fractions in GT .

Also, since the pairing function allows one to obtain the product of any two
polynomials from the opposite source groups in the target group, for assumptions
where the required target element is in GT , the degree of the polynomials r(X)
and s(X) the adversary specifies is upper bounded by 2d instead of d.

Similarly to the cyclic group case, we can reduce any bilinear target assump-

tion to a simple bilinear target assumption, where all b
(1)
i (X) = b

(2)
i (X) =

b
(T)
i (X) = 1. Also, we can reduce bilinear target assumptions with multivariate

polynomials to bilinear target assumptions with univariate polynomials.
We can then consider two cases depending on whether or not the adversary’s

polynomial s(X) divides r(X). Just as in the cyclic group case, we get that all
bilinear target assumptions can be reduced to the following two assumptions.

Definition 10 (Bilinear Polynomial Assumption in Gj). We say a (d, 1,
n1 , n2 , nT

)-simple bilinear target assumption (I,V) in Gj for BG is a (d, n1 , n2 , nT
)-

bilinear polynomial assumption in Gj if V only accepts solutions where s(X) = 1.

Definition 11 (Bilinear Fractional Assumption in Gj (BFracj)). We say
a (d, 1, n

1
, n

2
, n

T
)-simple bilinear target assumption (I,V) in Gj for BG is a

(d, n
1
, n

2
, n

T
)-bilinear fractional assumption in Gj if V only accepts solutions

where s(X) - r(X).

27

It is straightforward to prove the following theorem, which states that the
(d, n

1
, n

2
, n

T
)-BFraci assumption can be further simplified to only consider the

target group case.

Theorem 10. If the (d, n
1
, n

2
, n

T
)-BFracT assumption over BG holds, then the

assumptions (d, n1 , n2 , nT
)-BFrac1 and (d, n1 , n2 , nT

)-BFrac2 over BG also hold.

5.2 Bilinear Target Assumptions in the Base Groups

All the results in this section are assuming a Type-3 bilinear group. Intuitively,
bilinear target assumptions in G1 and G2 are very similar to the cyclic group case
because the generic computations one can do in a base group are not affected
by group elements in the other groups. We will now formalize this intuition by
generalizing the q-GDHE and the q-SFrac assumptions to the bilinear setting.

Definition 12 (q-Bilinear GDHE Assumption in G1 (q-BGDHE1)). The
q-BGDHE assumption in G1 over BG is that for all PPT adversaries A

Pr

[
(G1,G2,GT , [1]

1
, [1]

2
)← BG(1κ);x← Zp :

[xq]
1
← A

(
G1,G2,GT ,

[
1, x, . . . , xq−1, xq+1, . . . , x2q

]
1
,
[
1, x, . . . , x2q

]
2

)] ≈ 0.

The q-BGDHE assumption in G2 (q-BGDHE2) over BG is defined similarly.

Definition 13 (q-Bilinear SFrac in Gi Assumption (q-BSFraci)). The
q-BSFraci for i ∈ {1, 2, T} over BG is that for all PPT adversaries A

Pr

 (G1,G2,GT , [1]
1
, [1]

2
)← BG(1κ);x← Zp;(

r(X), s(X), [y]
i

)
← A

(
G1,G2,G, [1, x, . . . , xq]1 , [1, x, . . . , x

q]
2

)
:

q ≥ deg(s) > deg(r) ≥ 0 and [y]
i

=
[
r(x)
s(x)

]
i

 ≈ 0.

Similarly to Theorem 4, we can prove that all bilinear polynomial assump-
tions in the base group Gj for j ∈ {1, 2} are implied by the q-BGDHEj as-
sumption. Also, similarly to Theorem 5, we can show that all bilinear fractional
assumptions in the base group Gj for j ∈ {1, 2} are implied by the q-BSFracj
assumption. For bilinear target assumptions in the base groups, we therefore get
a situation very similar to the single cyclic group case, which we express in the
following theorem:

Theorem 11. For j ∈ {1, 2} there is a polynomial q(d,m, n1, n2, nT) such that
the joint q-BSFracj and q-BGDHEj assumption imply all (d,m, n1, n2, nT) bi-
linear target assumptions in Gj.

The theorem means that the joint q-BGDHEj and q-BSFracj assumption serves
as an Uber assumption for all bilinear target assumptions in the base group Gj .

28

5.3 Bilinear Target Assumptions in the Target Group

We now consider bilinear target assumptions in the target group GT . Unlike the
case of bilinear target assumptions in the base groups where computations in the
rest of the groups do not affect the concerned base group, here it is a different
story as computations in any of the 3 groups can be mapped into the target
group.

Consider a polynomial assumption. We can use matrices A and B to represent
the polynomials in G1 and G2 as [1, X, . . . ,Xd]1A and [Xd, . . . , X, 1]2B. Given
group elements with evaluations of these polynomials one may use the pairing to
compute products of the polynomial evaluations in the target group GT . Observe
that ATB represents the coefficients of the Xd terms in all the possible pairings
of two elements in G1 and G2. We will use this to formulate a target group
analogue of the q-BGDHE assumptions.

Definition 14 (q-Bilinear Gap Assumption (q-BGap)). We say the q-BGap
assumption holds when for all PPT A

Pr


(G1,G2,GT , [1]

1
, [1]

2
)← BG(1κ); (A,B)← A(G1,G2,GT); x← Zp

: [xq]
T
← A

(
[1, x, . . . , xq]

1
A, [xq, . . . , 1]

2
B,[

1, x, . . . , xq−1
]
T
,
[
xq+1, . . . , x2q

]
{1,2,T}

)
and ATB = 0 and rank(A) + rank(B) = q + 1

 ≈ 0 ·

Let A ∈ Z(q+1)×n1
p and B ∈ Z(q+1)×n2

p where without loss of generality we can
assume their ranks are n1 and n2, respectively, and n1 + n2 = q + 1. Note that
for smaller dimensions we can always add a column in the null space of AT to
B and still have ATB = 0.

Theorem 12. For any (d, n1, n2, nT)-polynomial assumption A = (IA,VA) in
GT over BG, we have that (3d+ 1)-BGap⇒A.

Proof. Let A be an adversary against the (d, n1, n2, nT)-polynomial assumption.
We build an adversary B against the (3d + 1)-BGap assumption which uses A
in a black-box manner. Adversary B runs IcoreA (G1,G2,GT) to get the tuple({{

a
(j)
i (X)

}nj

i=1

}
j=1,2,T

, pub′A, priv
′
A

)
. Now, B randomly chooses a polynomial

c(X)← Zp[X] where deg(c) ≤ 2d+ 1 conditioned on all a
(T)
i (X)c(X)Xd having

coefficient 0 in the term for X3d+1.
Write the polynomials as

a
′(1)
i (X) = a

(1)
i (X)c(X) =

3d+1∑
j=0

αi,jX
j

a
′(2)
i (X) = a

(2)
i (X)Xd =

2d∑
j=0

βi,jX
j

a
′(T)
i (X) = a

(T)
i (X)c(X)Xd =

5d+1∑
j=0

γi,jX
j

29

and define the matrices A ∈ Z(3d+2)×n1
p and B ∈ Z(3d+2)×(3d+2−n1)

p as follows:

A =

 α1,0 · · · αn1,0

...
...

α1,3d+1 · · · αn1,3d+1

 and B =

β1,3d+1 · · · βn2,3d+1 · · ·
...

...
... β′i,j

...
β1,0 · · · βn2,0 · · ·

 ,

where the values β′i,j ∈ Zp are chosen as an arbitrary extension to give us

rank(A) + rank(B) = 3d + 2 in a way such that we still have ATB = 0.
Adversary B now forwards A,B to her environment and gets back the tuple[
1, x, . . . , x3d+1

]
1
A,
[
x3d+1, . . . , x, 1

]
2
B, and

[
1, x, . . . , x3d

]
T
,
[
x3d+2, . . . , x6d+2

]
{1,2,T}

using which she can compute all of the group elements [a
′(1)
i (x)]1, [a

′(2)
i (x)]2, and

[a
′(T)
i (x)]T . Adversary B now starts A on the tuple

pub :=

({{[
a
′(j)
i (x)

]
j

}n
j

i=1

,
{
a
(j)
i (X)

}n
j

i=1
,

}
j=1,2,T

, pub′A

)

and gets (r(X), [y]T , sol
′) as an answer, where r(X) /∈ span

({
a
(T)
i (X)

}nT

i=1

)
.

Parse r(X)c(X)Xd as
∑5d+1
i=0 γiX

i. Using the tuple available to her, B can re-
cover [x3d+1]

T
by computing 1

γ
3d+1

([y]
T
− [
∑
i6=3d+1 γix

i]
T

).

Assume c(x) 6= 0, which happens with probability 1 − 2d+1
p , and xd 6= 0,

which happens with probability 1− d
p . The instance A sees is indistinguishable

from an instance she gets directly from the instance generator with generators
[c(x)]

1
, [xd]

2
and [c(x)xd]

T
. By Lemma 2, the probability that r(X)c(X)Xd has

a 0 coefficient of X3d+1 is 1
p . Thus, if A has probability εA against assumption

A, we have εB = εA − 3d+2
p is the probability of B against the (3d + 1)-BGap

assumption.
ut

We conclude our analysis of target assumptions in GT with the following
theorem.

Theorem 13. There is a polynomial q(d,m, n1, n2, nT) such that the joint q-
BSFracT and q-BGap assumption imply all (d,m, n1, n2, nT) bilinear target as-
sumptions in GT .

References

[ABP15] M. Abdalla, F. Benhamouda, and A. Passelègue. An algebraic framework
for pseudorandom functions and applications to related-key security. In
Advances in Cryptology – CRYPTO 2015, vol. 9215 of Lecture Notes in
Computer Science. Springer, 2015.

[ABS16] M. Ambrona, G. Barthe, and B. Schmidt. Automated unbounded analysis
of cryptographic constructions in the generic group model. In Advances in
Cryptology – EUROCRYPT 2016, vol. 9666 of Lecture Notes in Computer
Science. Springer, 2016.

30

[BB08] D. Boneh and X. Boyen. Short signatures without random oracles and the
SDH assumption in bilinear groups. Journal of Cryptology, 21(2):149, 2008.

[BBG05] D. Boneh, X. Boyen, and E.-J. Goh. Hierarchical identity based encryption
with constant size ciphertext. In Advances in Cryptology – EUROCRYPT
2005, vol. 3494 of Lecture Notes in Computer Science. Springer, 2005.

[BCP02] E. Bresson, O. Chevassut, and D. Pointcheval. The Group Diffie-Hellman
Problems. In Selected Areas in Cryptography, vol. 2595 of Lecture Notes in
Computer Science. Springer, 2002.

[BDZ03] F. Bao, R. Deng, and H. Zhu. Variations of Diffie-Hellman problem. In
Information and Communications Security, vol. 2836 of Lecture Notes in
Computer Science. Springer, 2003.

[BFF+14] G. Barthe, E. Fagerholm, D. Fiore, J. Mitchell, A. Scedrov, and B. Schmidt.
Automated analysis of cryptographic assumptions in generic group models.
In Advances in Cryptology – CRYPTO 2014, vol. 8616 of Lecture Notes in
Computer Science. Springer, 2014.

[BGW05] D. Boneh, C. Gentry, and B. Waters. Collusion resistant broadcast encryp-
tion with short ciphertexts and private keys. In Advances in Cryptology –
CRYPTO 2005, vol. 3621 of Lecture Notes in Computer Science. Springer,
2005.

[BLMW07] E. Bresson, Y. Lakhnech, L. Mazaré, and B. Warinschi. A generalization of
DDH with applications to protocol analysis and computational soundness.
In Advances in Cryptology – CRYPTO 2007, vol. 4622 of Lecture Notes in
Computer Science. Springer, 2007.

[Boe88] B. Boer. Diffie-Hellman is as strong as discrete log for certain primes.
In Advances in Cryptology – CRYPTO 1988, vol. 403 of Lecture Notes in
Computer Science. Springer, 1988.

[Boy08] X. Boyen. The uber-assumption family. In Pairing-Based Cryptography –
Pairing 2008, vol. 5209 of Lecture Notes in Computer Science. Springer,
2008.

[BP04] M. Bellare and A. Palacio. The knowledge-of-exponent assumptions and
3-round zero-knowledge protocols. In Advances in Cryptology – CRYPTO
2004, vol. 3152. Springer, 2004.

[BW07] X. Boyen and B. Waters. Full-domain subgroup hiding and constant-size
group signatures. In Public Key Cryptography – PKC 2007, vol. 4450 of
Lecture Notes in Computer Science. Springer, 2007.

[Che06] J. Cheon. Security analysis of the strong Diffie-Hellman problem. In Ad-
vances in Cryptology – EUROCRYPT 2006, vol. 4004 of Lecture Notes in
Computer Science. Springer, 2006.

[CM14] M. Chase and S. Meiklejohn. Déjà Q: using dual systems to revisit q-type
assumptions. In Advances in Cryptology – EUROCRYPT 2014, vol. 8441
of Lecture Notes in Computer Science. Springer, 2014.

[CMM16] M. Chase, M. Maller, and S. Meiklejohn. Déjà Q all over again: Tighter
and broader reductions of q-type assumptions. In Advances in Cryptology
– ASIACRYPT 2016, vol. 10032 of Lecture Notes in Computer Science.
Springer, 2016.

[Den02] A. W. Dent. Adapting the weaknesses of the random oracle model to the
generic group model. In Advances in Cryptology – ASIACRYPT 2002, vol.
2501 of Lecture Notes in Computer Science. Springer, 2002.

[EHK+13] A. Escala, G. Herold, E. Kiltz, C. Ràfols, and J. Villar. An algebraic
framework for Diffie-Hellman assumptions. In Advances in Cryptology –

31

CRYPTO 2013, vol. 8043 of Lecture Notes in Computer Science. Springer,
2013.

[GGPR13] R. Gennaro, C. Gentry, B. Parno, and M. Raykova. Quadratic span pro-
grams and succinct nizks without pcps. In EUROCRYPT, vol. 7881 of
Lecture Notes in Computer Science. 2013.

[GK16] S. Goldwasser and Y. T. Kalai. Cryptographic assumptions: A position
paper. In Theory of Cryptography - TCC 2016-A, vol. 9562. Springer, 2016.

[GPS08] S. D. Galbraith, K. G. Paterson, and N. P. Smart. Pairings for cryptogra-
phers. Discrete Applied Mathematics, 156(16):3113, 2008.

[JR13] A. Joux and A. Rojat. Security ranking among assumptions within the
Uber assumption framework. In Information Security, vol. 7807 of Lecture
Notes in Computer Science. Springer International Publishing, 2013.

[JS12] T. Jager and J. Schwenk. On the analysis of cryptographic assumptions in
the generic ring model. Journal of Cryptology, 26(2):225, 2012.

[JY09] D. Jao and K. Yoshida. Boneh-Boyen signatures and the strong Diffie-
Hellman problem. In Pairing-Based Cryptography – Pairing 2009. Springer,
Berlin, Heidelberg, 2009.

[Kil01] E. Kiltz. A tool box of cryptographic functions related to the Diffie-Hellman
function. In Progress in Cryptology – INDOCRYPT 2001, vol. 2247 of
Lecture Notes in Computer Science. Springer, 2001.

[KM07] N. Koblitz and A. Menezes. Another look at generic groups. Advances in
Mathematics of Communications, 1(1):13, 2007.

[KMS04] C. Konoma, M. Mambo, and H. Shizuya. Complexity analysis of the cryp-
tographic primitive problems through square-root exponent. IEICE TRANS-
ACTIONS, E87-A(5):1083, 2004.

[Mau94] U. M. Maurer. Towards the equivalence of breaking the Diffie-Hellman
protocol and computing discrete logarithms. In Advances in Cryptology –
CRYPTO 1994. Springer, Berlin, Heidelberg, 1994.

[Mau05] U. Maurer. Abstract models of computation in cryptography. In IMA Cryp-
tography and Coding, vol. 3796. Springer, 2005.

[MRV16] P. Morillo, C. Ràfols, and J. L. Villar. The kernel matrix Diffie-Hellman
assumption. In Advances in Cryptology – ASIACRYPT 2016, vol. 10031.
Springer Berlin Heidelberg, 2016.

[MSK02] S. Mitsunari, R. Sakai, and M. Kasahara. A new traitor tracing. IEICE
TRANSACTIONS, E85-A(2):481, 2002.

[MW96] U. M. Maurer and S. Wolf. Diffie-Hellman oracles. In Advances in Cryp-
tology – CRYPTO. Springer, 1996.

[Nao03] M. Naor. On cryptographic assumptions and challenges. In Advances in
Cryptology – CRYPTO, vol. 2729. Springer, 2003.

[Nec94] V. I. Nechaev. Complexity of a determinate algorithm for the discrete log-
arithm. Mat. Zametki, 55(2):91, 1994.

[RH12] D. Roh and S. G. Hahn. The square root Diffie-Hellman problem. Designs,
Codes and Cryptography, 62(2):179, 2012.

[Sho97] V. Shoup. Lower bounds for discrete logarithms and related problems. In
EUROCRYPT, vol. 1233 of Lecture Notes in Computer Science. 1997.

[SS01] A. Sadeghi and M. Steiner. Assumptions related to discrete logarithms:
Why subtleties make a real difference. In Advances in Cryptology – EURO-
CRYPT, vol. 2045 of Lecture Notes in Computer Science. Springer, 2001.

[ZSNS04] F. Zhang, R. Safavi-Naini, and W. Susilo. An efficient signature scheme
from bilinear pairings and its applications. In Public Key Cryptography –
PKC 2004, vol. 2947 of Lecture Notes in Computer Science. Springer, 2004.

32

A Generic Intractability of the q-SFrac Assumption

Theorem 14. The q-SFrac assumption holds in the generic group model.

Proof. The adversary gets the tuple ([1], . . . , [xq]) and if successful she outputs

a tuple (r(X), s(X), [r(x)s(x)] ∈ Gp) satisfying 0 ≤ deg(r) < deg(s) ≤ q. Let t(X) =
r(X)
s(X) . Since the adversary is generic, she has negligible chance of success unless

she computes her output group element as a known linear compbination of her
inputs, i.e., [t(x)] for a known polynomial t(X). If the answer of the adversary
is correct, we have

t(x)s(x) = r(x) (1)

First we argue that (1) does not hold identically for formal polynomials, i.e.,
t(X)s(X) 6= r(X). The group operation queries the adversary is allowed in the
game do not result in any polynomials whose degree is not in {0, . . . , q} since
they correspond to polynomial additions/subtractions, so t(X) has degree at
most q. By the definition of the assumption, we have 0 ≤ deg(r) < deg(s) ≤ q
thus equality t(X)s(X) ≡ r(X) will only hold if deg(t) < 0 or deg(ts) = p − 1
and deg(r) = 0. Since by definition q is polynomial in the security parameter κ
whereas log p ∈ Θ(κ), we have that both cases do not happen.

We now bound the probability that the simulation fails. At the end of the
game, we have that the number of group elements the adversary has seen is
` ≤ q + 1 + qGp

where qGp
is the number of group operation queries made by

the adversary. The probability that any two different polynomials corresponding
to these group elements evaluate to the same value at a random point x ← Zp
is ε1 ≤

(
`
2

)
q
p . Also, the probability that (1) holds at a random point x ← Zp is

ε2 ≤ 2q
p . Thus, it follows that

ε = ε1 + ε2 ≤
`2q

p
.

From which it follows that the advantage of the generic adversary against

the assumption is ε = O(
q3+q2Gp

q

p). ut

33

