Skip to main content

Artificial Flagellum Microrobot. Design and Simulation in COMSOL

  • Conference paper
  • First Online:

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 693))

Abstract

This paper presents a study of motion of an artificial flagellum microrobot in a viscous environment in COMSOL Multiphysics. The microrobot is essentially a body, consisting of a piezoelectric layered beam divided into several segments. Its actuation for propulsion relies on the creation of a non-reciprocal motion along the body. This requires that a voltage with the same frequency but different phases and amplitudes be applied to each segment. The motion pattern is analyzed theoretically and a control strategy in open loop is implemented to emulate a non-reciprocal motion. Simulations are given to demonstrate that a non-reciprocal motion is developed. Likewise, its propulsion can be verified from the drag force observed. Despite extreme size limitations using piezoelectric materials, the design proposed in this work may be able to swim in blood flow.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Correl, N., Martinoli, A.: Multirobot inspection of industrial machinery. IEEE Robot. Autom. Mag. 16(1), 103–112 (2009)

    Article  Google Scholar 

  2. Diller, E., Sitti, M.: Micro-scale mobile robotics. Found. Trends Robot. 2(3), 143–259 (2013)

    Article  Google Scholar 

  3. Gray, J., Hancock, G.J.: The propulsion of sea-urchin spermatozoa. J. Exp. Biol. 32(4), 802–814 (1955)

    Google Scholar 

  4. Hancock, G.J.: The self-propulsion of microscopic organisms through liquids. Proc. R. Soc. Lond. A Math. Phys. Eng. Sci. 217(1128), 96–121 (1953). https://doi.org/10.1098/rspa.1953.0048

    Article  MATH  MathSciNet  Google Scholar 

  5. Hunter, I.W., Doukoglou, T.D., Lafontaine, S.R., Charette, P.G., Jones, L.A., Sagar, M.A., Mallinson, G.D., Hunter, P.J.: A teleoperated microsurgical robot and associated virtual environment for eye surgery. Presence Teleoperators Virtual Environ. 2(4), 265–280 (1993)

    Article  Google Scholar 

  6. Kosa, G., Shoham, M., Zaaroor, M.: Propulsion method for swimming microrobots. IEEE Trans. Rob. 23(1), 137–150 (2007). https://doi.org/10.1109/TRO.2006.889485

    Article  Google Scholar 

  7. Kumar, V., Rus, D., Singh, S.: Robot and sensor networks for first responders. IEEE Pervasive Comput. 3(4), 24–33 (2004)

    Article  Google Scholar 

  8. Lighthill, M.J.: Note on the swimming of slender fish. J. Fluid Mech. 9(2), 305–317 (1960). https://doi.org/10.1017/S0022112060001110

    Article  MathSciNet  Google Scholar 

  9. Murphy, R.R., Kravitz, J., Stover, S.L., Shoureshi, R.: Mobile robots in mine rescue and recovery. IEEE Robot. Autom. Mag. 16(2), 91–103 (2009)

    Article  Google Scholar 

  10. Nelson, B.J., Kaliakatsos, I.K., Abbott, J.J.: Microrobots for minimally invasive medicine. Annu. Rev. Biomed. Eng. 12, 55–85 (2010)

    Article  Google Scholar 

  11. Paprotny, I., Bergbreiter, S.: Small-scale robotics: an introduction. In: Paprotny, I., Bergbreiter, S. (eds.) Small-Scale Robotics. From Nano-to-Millimeter-Sized Robotic Systems and Applications. Lecture Notes in Computer Science, vol. 8336, pp. 1–15. Springer, Heidelberg (2014)

    Chapter  Google Scholar 

  12. Piefort, V.: Finite element modelling of piezoelectric active structures. Ph.D. thesis. Université Libre de Bruxelles, Department of Mechanical Engineering and Robotics, Bruxelles, Belgium (2001)

    Google Scholar 

  13. Purcell, E.M.: Life at low Reynolds number. Am. J. Phys. 45(1), 3–11 (1977)

    Article  Google Scholar 

  14. Sitti, M.: Microscale and nanoscale robotics systems: characteristics, state of the art, and grand challenges. IEEE Robot. Autom. Mag. 14(1), 53–60 (2007)

    Article  Google Scholar 

  15. Stepanenko, D.A., Minchenya, V.T., Asimov, R.M., Zimmermann, K.: Possibility of application of small-size robots with vibratory piezoelectric actuators for inspection of physical state of surfaces. In: Proceedings of the 2011 International Congress on Ultrasonics - Gdansk, pp. 685–688 (2011)

    Google Scholar 

  16. Sudo, S.: Micro swimming robots based on small aquatic creatures. In: Biomimetics Learning from Nature, pp. 343–362. InTech (2010)

    Google Scholar 

  17. Traver, J.E., Tejado, I., Vinagre, B.M.: New waveforms for propulsion of planar artificial bacterial flagella microrobots. In: Proceedings of VI Spanish Chapter of the European Society of Biomechanics (2016)

    Google Scholar 

  18. Traver, J.E., Tejado, I., Vinagre, B.M.: A comparative study of planar waveforms for propulsion of a joined artificial bacterial flagella swimming robot. In: Proceedings of 4th International Conference on Control, Decision and Information Technologies (CoDIT 2017) (2017)

    Google Scholar 

  19. Veloso, M., Stone, P., Han, K., Achim, S.: The CMUnited-97 small robot team. In: Kitano, H. (ed.) Team Description Small-Size Robot Teams. RoboCup-97: Robot Soccer World Cup I. Lecture Notes in Computer Science, vol. 1395, pp. 242–256. Springer, Heidelberg (1998)

    Chapter  Google Scholar 

  20. Vinagre, B.M., Tejado, I., Traver, J.E.: There’s plenty of fractional at the bottom, I: Brownian motors and swimming microrobots. Fract. Calculus Appl. Anal. 19(5), 1282–1291 (2016)

    MATH  MathSciNet  Google Scholar 

  21. Voyles, R.M., Larson, A.C.: TerminatorBot: a novel robot with dual-use mechanism for locomotion and manipulation. IEEE/ASME Trans. Mechatron. 10(1), 17–25 (2005)

    Article  Google Scholar 

  22. Zin, R.A., Sahari, K.S.M., Saad, J.M., Anuar, A., Zulkarnain, A.T.: Development of a low cost small sized in-pipe robot. Procedia Eng. 41, 1469–1475 (2012)

    Article  Google Scholar 

Download references

Acknowledgments

This work has been partially supported by the Spanish Ministry of Economy and Competitiveness under the project DPI2016-80547-R and the FEDER Funds (Programa Operativo FEDER de Extremadura 2014–2020) through the grant “Ayuda a Grupos de Investigación” (ref. GR15178) of the Junta de Extremadura.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Blas M. Vinagre .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Mancha, E., Traver, J.E., Tejado, I., Prieto, J., Vinagre, B.M., Feliu, V. (2018). Artificial Flagellum Microrobot. Design and Simulation in COMSOL. In: Ollero, A., Sanfeliu, A., Montano, L., Lau, N., Cardeira, C. (eds) ROBOT 2017: Third Iberian Robotics Conference. ROBOT 2017. Advances in Intelligent Systems and Computing, vol 693. Springer, Cham. https://doi.org/10.1007/978-3-319-70833-1_40

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-70833-1_40

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-70832-4

  • Online ISBN: 978-3-319-70833-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics