
Efficient inspection of underground galleries
using k robots with limited energy ?

S. Bereg1, L.E. Caraballo2, and J.M. Dı́az-Báñez2

1 Univesity of Texas at Dallas, USA
besp@utdallas.edu

2 University of Seville, SPAIN
lcaraballo@us.es, dbanez@us.es

Abstract. We study the problem of optimally inspecting an under-
ground (underwater) gallery with k agents. We consider a gallery with a
single opening and with a tree topology rooted at the opening. Due to
the small diameter of the pipes (caves), the agents are small robots with
limited autonomy and there is a supply station at the gallery’s opening.
Therefore, they are initially placed at the root and periodically need to
return to the supply station. Our goal is to design off-line strategies to
efficiently cover the tree with k small robots. We consider two objective
functions: the covering time (maximum collective time) and the covering
distance (total traveled distance). The maximum collective time is the
maximum time spent by a robot needs to finish its assigned task (assum-
ing that all the robots start at the same time); the total traveled distance
is the sum of the lengths of all the covering walks. Since the problems are
intractable for big trees, we propose approximation algorithms. Both ef-
ficiency and accuracy of the suboptimal solutions are empirically showed
for random trees through intensive numerical experiments.

Keywords: Multirobot exploration, tree partition, path planning.

1 Introduction

Suppose we want to explore an underground (underwater) gallery by using k
small robots with limited power. Then, due to this autonomy constraint, they
need to periodically return outside to recharge battery. We can associate a graph
with the environment, and more concretely a tree rooted at the outside charge
station. We assume that all robots know the map road in advance and the goal
is to efficiently cover the tree (the tree is covered when all vertices are visited at

? The problem studied in this paper is in the framework of the project “Algorithms
for autonomous navigation of underground systems” funded by the Company SPT
(Stockholm Precision Tools, http://www.stockholmprecisiontools.com/). This re-
search has also received funding from the project GALGO (Spanish Ministry of
Economy and Competitiveness, MTM2016-76272-R AEI/FEDER,UE). It has also
received funding from the European Union’s Horizon 2020 research and innovation
programme under the Marie Sk lodowska-Curie grant agreement No 734922.

ar
X

iv
:2

20
9.

10
40

0v
1

 [
cs

.R
O

]
 2

1
Se

p
20

22

http://www.stockholmprecisiontools.com/

2 S. Bereg, L.E. Caraballo, and J.M. Dı́az-Báñez

least once). In this scenario we address several optimization problems that arise
when performing an inspection with two criteria: the total traveled distance and
the maximum collective time, i.e., respectively, the sum of the distances traveled
by all robots and the maximum time used by any robot from the team.

The motivation is the inspection of pipelines in mining with robots, the
exploration of submarine galleries by using robots or human divers, or rescue
tasks in underwater caves when the map road is known in advance. In Figure 1
a gallery with a tree topology is used in the context of the block caving strategy
in mining.

Fig. 1. An example of a tree in mining [6].

Our problems are related to multiple traveling salesman [2], or graph ex-
ploration problems [1]. The problem of exploring an environment modeled as a
graph has been widely studied, mainly when the environment is unknown (see
[8] for a survey). In the k-Traveling Salesman Problem, all nodes (and edges) of
a graph have to be visited (at least once) by one of the k robots initially placed
at some node of the graph, subject to minimize the maximum length route of
a robot. The paper [5] shows how to construct (in polynomial time in size of a
graph but exponential in k) optimal routes for an arbitrary k. The main differ-
ence in our problems is that the battery power is limited and the robots must
return to recharge at the root in at most a fixed amount of time.

The covering problems using robots with limited energy are NP-hard [3], so,
there is no efficient known algorithm to solve them. The main contributions of
this paper are the study properties of optimal trees and develop efficient sub-
optimal algorithms for these problems. Also we develop (non-efficient) optimal
algorithms in order to evaluate the results of our sub-optimal algorithms on
random trees (we developed an algorithm for generating random trees). Surpris-
ingly, these optimal algorithms have fast running time for trees up to 45 nodes.

Inspection of underground galleries using k robots with limited energy 3

From this study it turned out that our sub-optimal algorithms perform very well
producing covering strategies within a constant approximation.

2 Problems statement

Let T = (V,E) be a rooted tree with root r ∈ V . The height of T , denoted
by h(T), is the maximum distance (number of edges) from r to any node in T .
Suppose we have k robots to cover T , i.e. to visit all the nodes of T at least
once. Every agent starts at r and moves from a node to a neighboring one with
a unit cost (time or length). Then, we say T is unweighted. Assume that every
agent has a limited autonomy of p moves. Also, suppose that the root of T is
a supply station for the robots, therefore, every time a robot leaving the root
can make at most p moves. We assume that p ≥ 2h(T), so a robot can visit the
farthest node from r. We call a tour of an agent that starts and ends at r, an
immersion. We address the problem of finding (1) a set immersions covering T
and (2) an assignment of the immersions the agents such that some cost function
is minimized. In this work we consider two different cost functions: maximum
collective time, the maximum time used by any robot from the team, and cover
distance, total distance traveled by all the agents to cover (inspect) the tree.

Let I = {I1, . . . , Im} be a set of m immersions covering the tree T . Let Si ⊆ I
be an immersions assignment to an i-th agent. The cost in time and distance to
perform Si is denoted by C(Si) =

∑
I∈Si

C(I) where C(I) denotes the cost of
the immersion I (number of steps in the immersion). We are ready to formally
state the problems addressed in this paper.

Problem 1. The problem of inspecting an underground tree with k small agents
minimizing the maximum collective time:

Tree-Inspection Min-Time
Instance: A tree T = (V,E) rooted at r ∈ V, k, p ∈ N such that p ≥ 2 · h(T)
Solution: A set I of immersions covering T (∀I ∈ I : C(I) ≤ p)

and a partition {S1, . . . , Sk} of I
Goal: minimize maxk

i=1 {C(Si)}

Problem 2. The problem of inspecting an underground tree with k small agents
minimizing the total traveled distance:

Tree-Inspection Min-Distance
Instance: A tree T = (V,E), r ∈ V, k, p ∈ N such that p ≥ 2 · h(T)
Solution: A set I of immersions covering T (∀I ∈ I : C(I) ≤ p)

and a partition {S1, . . . , Sk} of I
Goal: minimize

∑k
i=1 C(Si) =

∑
I∈I C(I)

Remark 1. Note that a solution for the goal of Problem 2 is determined by the set
of immersions and it does not depend on the immersions assignment. Therefore,
given a tree T rooted at a node r and a battery power p, the optimal solution of
Problem 2 remains invariant for all k ≥ 1. So we will address this problem with
k = 1.

4 S. Bereg, L.E. Caraballo, and J.M. Dı́az-Báñez

Remark 2. It easy to see that problem 1 reduces to problem 2 when k = 1.
However, for k > 1, the problems are essentially different (see Section 3).

Now, we state an auxiliary problem that we will use to solve the problem 1
and a new optimization problem related with the classical set cover problem.

Problem 3. The problem of inspecting a tree with k agents minimizing the spent
time and using a given set of immersions:

Constrained Tree-Inspection Min-Time
Instance: A tree T = (V,E), r ∈ V, k ∈ N and p ∈ N such that p ≥ 2 · h(T);

A set I of immersions covering T (∀I ∈ I : C(I) ≤ p).
Solution: A partition {S1, . . . , Sk} of I

Goal: minimize maxk
i=1 {C(Si)}

Problem 4. Given a tree T and a battery power p, compute the minimum number
of immersions needed to cover T .

Tree-Inspection Min-Immersions
Instance: A tree T = (V,E), r ∈ V, k ∈ N and p ∈ N such that p ≥ 2 · h(T)
Solution: A set I of immersions covering T (∀I ∈ I : C(I) ≤ p)

and a partition {S1, . . . , Sk} of I
Goal: minimize |I|

3 Properties of optimal solutions

In this section we introduce some notation and properties that will be useful in
the design of our algorithms. First of all, it is easy to see that the problems 1
and 2 are essentially different. Consider the tree of Figure 2a and suppose that
we have a team of two agents with autonomy 6 or greater. The solution of
Problem 2 is shown in Figure 2b where we use just one agent covering the tree
with an immersion of length 6 in 6 time units. By other hand, the solution of
Problem 1 is shown in Figure 2c, where the two agents of the team are used
instead. Each agent performs an immersion of length 4, so the total traveled
distance is 8 and the maximum collective time is 4.

1

2
3 4

5

6 1

2
3

4 1

2
3

4

(a) (b) (c)

Fig. 2. (a) Tree sample. (b) Immersion of a single agent to cover the tree. (c) The
immersions of two agents to cover the tree.

Inspection of underground galleries using k robots with limited energy 5

We need some notation. In a tree T = (V,E) rooted at r, every immersion
I determines a subtree (VI , EI) rooted at r where VI ⊆ V is the set of visited
nodes in the immersion I and EI ⊆ E is the set of traversed edges. Note that
2|EI | = C(I). In the following we denote an immersion I by the corresponding
subtree, that is, I = (VI , EI). The leaves nodes of a tree are the nodes implied
in only one edge. In the rest of this work, by convenience, we will only consider
the leaves in V \ {r}. We call inner node to every non-leaf node in V \ {r}.

The following properties hold for the stated problems.

Lemma 1. The leaves of each immersion I of an optimal solution for problem
Min-Distance are leaves in the original tree T . For problems Min-Time and
Min-Immersions, there is always an optimal solution with the same property.

Proof. Suppose that an immersion I (for one of the problems) has a leaf v which
is not a leaf of T . Let v′ be a leaf of T such that v is in the path from r to v′

and let I ′ be an immersion containing v′. Then I ′ contains v and we can remove
v from I. If the problem is Min-Distance, it is a contradiction. If the problem
is Min-Time or Min-Immersions, we repeat this argument to find a solution
with the desired property.

Lemma 2. Every leaf of T is in exactly one immersion of an optimal solution
for problem Min-Distance. For problems Min-Time and Min-Immersions,
there is always an optimal solution with the same property.

Proof. Suppose that two immersions I and I ′ (for one of the problems) have a
common leaf v and an edge {w, v}. We can remove node v and edge {w, v} from
I ′ (keeping the same I). If the problem is Min-Distance, it is a contradiction.
If the problem is Min-Time or Min-Immersions, we repeat this argument to
find a solution with the desired property.

The following corollary is deduced from Lemmas 1 and 2:

Corollary 1. Any problem Min-Distance, Min-Time or Min-Immersions
has a solution such that the leaves of the immersions form a partition of the set
of leaves of T .

In the following it is showed that we must be careful in designing algorithms
for the proposed optimization problems. Many natural properties fail. For ex-
ample, one can approach the Min-Distance problem by covering the leaves of
T by disjoint subtrees Ti of T such that the immersions will be formed by these
subtrees and the paths between the roots of Ti and T . Unfortunately, this ap-
proach does not work. For example, the tree shown in Figure 3a has only one
optimal solution (non-disjoint) for p = 28, shown in Figure 3b and 3c.

Even more, one can expect that all Min-Distance solutions for the same tree
must have the same number of immersions. To see a counterexample of this
property, we use the tree from Figure 3a with a modification that the length of
the top edge is 1 and take p = 26. The same 2 immersions shown in Figure 3b
and 3c make an optimal solution with total cost 26 + 26 = 52. But there exist
3 immersions with the same total cost: two trees of cost 2(1 + 1 + 6) = 16 each
and one tree of cost 2(1 + 1 + 4 + 4) = 20.

6 S. Bereg, L.E. Caraballo, and J.M. Dı́az-Báñez

2

(a)

1 1

46 4 6

(b) (c)

2 2

1 1 1 1

6 64 4

Fig. 3. (a) A tree T . (b) and (c) show two trees in the optimal solution of the Min-
Distance problem for T .

4 Algorithms

The stated optimization problems are all NP-hard, even the problem of minimiz-
ing the maximal distance traveled by a single robot in an unweighted tree[3]. In
this section we propose optimal and suboptimal algorithms based on the above
properties that enable to encode every feasible solution using a partition of the
set of leaves of T . Let L = {l1, l2, . . . } be the set of leaves in the given tree T .
Ours algorithms construct a solution from partitioning the set L (Corollary 1).
The immersion corresponding to the subset {li1 , li2 , . . . } of L is the tree rooted
at r formed by the nodes and edges in the paths from r to each one of the leaves
li1 , li2 , . . . (Lemma 1). For convenience, in the rest of this section we denote an
immersion I by its corresponding set of leaves.

4.1 Suboptimal algorithms for the total traveled distance

For this problem we have a studied and compared two heuristic algorithms. Also,
we compare their performance with the optimal solution. By Remark 1 we focus
on finding the optimal set of immersions for a single robot.

Algorithm 1: Heuristic algorithm sweepingLeaves.

Input : tree T = (V,E) rooted at r, autonomy value p
Output: set of immersions I
L← leaves of T in deep-first traversal order;
I ← {}; I ← {};
foreach l in L do

if immersion I ∪ {l} is feasible with autonomy p then
I ← I ∪ {l};

else
I ← I ∪ {I}; I ← {l};

return I ∪ {I};

Inspection of underground galleries using k robots with limited energy 7

Our first heuristic, sweepingLeaves, is based in the following ideas: Let L =
(l1, l2, . . . , ls) be a labeling of the leaves obtained from a deep-first traversal of T
(starting at the root r). Let I = {li, li+1, . . . , li+c} be an immersion determined
by a subsequence of consecutive leaves in L; the cost of I is C(I) = d(r, li) +
d(li, li+1) + · · · + d(li+c−1, li+c) + d(li+c, r) where d(v, w) denotes the distance
(number of edges) between the nodes v and w. We say that I is feasible if
C(I) ≤ p and it is not, otherwise.

The goal of sweepingLeaves is to construct a list of immersions of the form:
(I1 = {l1, l2, . . . , lc}, I2 = {lc+1, lc+2, . . . }, · · · , Im = {li, . . . , ls−1, ls}) where
the leaves of immersion Ij are consecutive to the leaves of Ij−1 and every immer-
sion is maximal, i.e., if Ij = {li, li+1, . . . , li+c} and li+c 6= ls then the immersion
with leaves {li, li+1, . . . , li+c, li+c+1} is not feasible due to the energy constraint.
Algorithm 1 shows a pseudo-code of this heuristic.

Algorithm 2: DFTN (deepest-first-then-nearest).

Input : tree T = (V,E) rooted at r, autonomy value p
Output: set of immersions I
NL ← set of leaves of T ;
I ← {}; I ← {};
while NL is not empty do

dl ← deepest leaf in NL;
I ← {dl}; NL ← NL \ {dl};
while NL is not empty do

l←nearest leaf in NL to the tree determined by I;
if immersion I ∪ {l} is feasible with autonomy p then

I ← I ∪ {l}; NL ← NL \ {l};
else

break;

I ← I ∪ {I};
return I;

The second heuristic, which we call DFTN (deepest-first-then-nearest),
is based in the following approach: Suppose that we have j − 1 computed im-
mersions and let NL be the set of the leaves of the tree that are no involved in
any of the computed immersions. If NL is not empty, starts the j-th immersion,
denoted by Ij , with the deepest leaf in NL and remove this leaf from NL. Then,
if NL is not empty, try to increase Ij by adding the nearest leaf l of NL to the
tree determined by Ij . If the immersion Ij∪{l} is feasible add the leaf l to Ij and
remove it from NL and repeat the process until NL is empty or there is no way
to increment Ij . After that, repeat the whole process to compute the j + 1-th
immersion and so on. Algorithm 2 shows a pseudo-code of this heuristic.

We can make implementations that take linear time for Algorithm 1 and
quadratic time for Algorithm 2. We do not include in this work the details of

8 S. Bereg, L.E. Caraballo, and J.M. Dı́az-Báñez

these implementations and the study on their time complexities due to the space
restriction.

4.2 Optimal algorithms for Min-Distance and Min-Immersions

Suppose that we want to compute an exact solution of the Min-Distance prob-
lem. One can think of using sweepingLeaves for all possible permutations of
the leaves of T . This algorithms may fail to find an exact solution (see Figure 3
for example). A correct way would be to test all partitions of |L| leaves. The
running time of this algorithm is O(B|L| · n) where Bm is the m-th Bell num-
ber 3. The Bell numbers grow very fast, for example B19 = 5, 832, 742, 205, 057.
Thus, it can only work for n < 19. For larger values of n, one needs a different
approach. In this Section we propose a faster algorithm using a branch-and-cut
paradigm. The pseudocode is shown in Algorithm 3. We can apply the same
approach to solve Min-Immersions. The only difference is that we store the
number of immersions instead of the distance.

4.3 Minimizing the maximum collective time

The heuristic proposed for this problem is a combination of heuristics for prob-
lems 2 and 3. We generate a sub-optimal solution with a heuristic for 2 and set
it as the input for problem 3. The output will be a sub-optimal solution for 1.

Problem 3 is exactly the so-called multiprocessor scheduling problem for
identical processors, one of the most challenging problems in parallel comput-
ing. Given a number of tasks, their execution times and a number of processors,
the goal of multiprocessor scheduling is to find an assignment to minimize the
overall execution time. In multiprocessor scheduling problem, a given program
is to be scheduled in a given multiprocessor system such that the program’s
execution time is minimized, that is, the last job must be completed as early as
possible. This problem is intractable and many heuristics have been proposed
to find sub-optimal solutions. See [7] for a comparison of heuristics and [4] for a
comprehensive survey on this topic. We use a pseudo-polynomial dynamic pro-
gramming algorithm for computing the optimal partition of the set of immersions
given by the heuristic DFTN. We omit the pseudocode in this version due to the
space constraint.

5 Computational results

All the implementations were performed in MATLAB R2016a (9.0.0.341360)
on Linux Mint Cinnamon 64-bit with 16Gb of RAM and a processor Core i7-
4720HQ. We implemented our algorithms from Section 4 and run them on ran-
dom trees generated as follows. Suppose that we want to generate a tree of n

3 In combinatorial mathematics, the Bell numbers count the number of partitions of
a set.

Inspection of underground galleries using k robots with limited energy 9

Algorithm 3: Algorithm B-and-C.

Input : tree T = (V,E) rooted at r, autonomy value p
Output: set of immersions I
Function main(T,p)

L← leaves of T sorted by depth in decreasing order;
I ← {}; bestI ← {};
foreach l in L do

l.covered←false;

optD ←∞; // optimal distance
newTree(L);
return bestI;

Procedure newTree(L)
Let l be the first uncovered leaf in L;
if l is null then

D ← the cost of current immersions in I;
if D < optD then

optD ← D; bestI ← I;
return;

I ← {l}; // new immersion
newNode(L,I,l.next);

Procedure newNode(L,I,l)
if l is null then

if optD > the cost of current immersions in I then
I ← I ∪ {I};
newTree(L);
I ← I \ {I};

return;

if C(I ∪ {l}) ≤ 2p then
l.covered←true; I ← I ∪ {l};
newNode(L,I,l.next);
l.covered←false; I ← I \ {l};

newNode(L,I,l.next);

nodes with labels {1, 2, . . . , n}. We start with the sets, V = {1}, S = {2, . . . , n}
and E = {} (empty set). Then we apply the following: randomly select an ele-
ment v ∈ V and another w ∈ S, then add {v, w} to E, remove w from S and
add it to V . Repeat this process until S is empty. The resulting graph is a tree
and we select node 1 as the root.

The computational results are shown in Table 1. DFTN heuristic shows bet-
ter performance in most cases for both Min-Distance and Min-Immersions.
Figure 4 depicts approximation ratios of these algorithms for n = 20, 25, .., 45.
The vertical interval for each n shows the best and the worst ratios over 100
random trees. The plotted function corresponds to the average ratio. Both al-
gorithms have approximation ratio at most 1.2 and the average ratio less than
1.05.

10 S. Bereg, L.E. Caraballo, and J.M. Dı́az-Báñez

autonomy value p = 2 ∗ h autonomy value p = 2 ∗ (h + 1)
B&C MD B&C MI DFTN Swp.L B&C MD B&C MI DFTN Swp.L

l h Dist Im Dist Im Dist Im Dist Im mT Dist Im Dist Im Dist Im Dist Im mT

17 6 84 9 84 9 88 10 94 11 42 74 8 78 8 78 8 78 8 38
13 7 80 6 82 6 80 6 82 7 42 76 5 78 5 76 5 80 6 44
14 5 86 11 86 11 86 11 88 12 44 74 9 74 9 76 9 76 10 38
15 5 66 8 66 8 66 8 66 8 34 64 7 64 7 64 7 64 7 32
16 6 80 8 80 8 80 8 80 8 40 70 6 76 6 72 6 72 6 36
16 7 76 6 82 6 76 6 82 7 42 74 5 74 5 74 5 76 5 42
14 6 70 9 70 9 74 10 70 9 36 66 9 68 9 70 9 66 9 34
18 7 88 11 90 11 90 11 94 11 44 74 9 74 9 74 9 76 9 38
18 6 128 11 128 11 128 11 138 13 68 96 8 98 8 96 8 102 8 48
12 9 66 4 70 4 68 4 72 5 36 66 4 68 4 68 4 66 4 34
16 6 72 7 72 7 80 8 76 8 36 68 6 68 6 74 7 72 7 38
14 6 78 9 80 9 80 9 80 9 40 70 7 70 7 70 7 72 8 38
14 6 64 7 64 7 64 7 68 8 32 64 7 68 7 66 7 66 7 32
11 5 70 8 70 8 70 8 70 8 36 66 6 66 6 68 7 68 7 34
17 4 70 11 70 11 70 11 74 12 36 68 10 70 10 70 10 70 10 34

Table 1. Table of results of our algorithms on random trees with 30 nodes. One
row corresponds to a single tree; l: number of leaves, h: height of the tree, B&C MD:
optimal algorithm (branch and cut) for Min-Distance, B&C MI: optimal algorithm
(branch and cut) for Min-Immersions, DFTN: deep-first-then-nearest heuristic
and Swp.L: sweepingLeaves heuristic. For each one of these algorithms, the columns
Dist and Im show the traveled distance and number of immersions, respectively. The
column mT shows the suboptimal value of Problem 1 for k = 2 robots by using the
heuristic proposed in subsection 4.3.

Figure 5 shows the average running time of DFTN, deepest-first-then-
nearest and B-and-C. The algorithm B-and-C exhibits a non-polynomial run-
ning time but still is capable of solving the exact problem for n up to 45. Finally,
Figure 6 shows approximation ratios of DFTN, deepest-first-then-nearest
and B-and-C using the number of immersions.

6 Discussion and Open Problems

In all our computations the approximation factor of min-Distance is always
smaller than 1.2. The worst example that we found (not the sweepingLeaves

program) is shown in Figure 7a. The tree has a central vertex which the par-
ent of all the leaves. We assume that p = 2a in this example where a ≥ 2 is
an integer. The optimal solution has a trees with one leaf and one tree with
a leaves. The cost of each tree is 4a. The total cost is a(4a + 4). The solution
computed by sweepingLeaves contains 2a trees, each corresponding to one leaf.
The cost of these trees is a(2a+2)+a(4a) = a(6a+2). The approximation ration
is 6a+2

4a+4 = 3a+1
2a+2 = 3

2 −
1

a+1 . If a is large enough then the approximation ratio
tends to 1.5. Based on our computational results (Figure 4) and preliminary
investigation we conjecture that the approximation ratio is always at most 1.5.

Inspection of underground galleries using k robots with limited energy 11

15 20 25 30 35 40 45 50
number of nodes

0.95

1

1.05

1.1

1.15

1.2

ra
tio

 D
F

T
N

/o
pt

im
um

15 20 25 30 35 40 45 50
number of nodes

0.95

1

1.05

1.1

1.15

1.2

ra
tio

 s
w

ee
pi

ng
Le

av
es

/o
pt

im
um

Fig. 4. Approximation ratio of deepest-first-then-nearest (left) and
sweepingLeaves (right) respect to covering distance.

15 20 25 30 35 40 45 50
number of nodes

0

2

4

6

8

10

12

14

16

18

20

ru
nn

in
g

tim
e

in
 s

ec
on

ds

B-and-C
DFTN
sweepingLeaves

15 20 25 30 35 40 45 50
number of nodes

0

2

4

6

8

10

12

14

16

18

20

ru
nn

in
g

tim
e

in
 s

ec
on

ds

B-and-C
DFTN
sweepingLeaves

Fig. 5. Average running time of deepest-first-then-nearest, sweepingLeaves and
B-and-C, Min-Distance on the left and Min-Time on the right.

Conjecture 1 The algorithm sweepingLeaves is an 1.5-approximation algo-
rithm for Min-Distance.

Now we elaborate on the relation between Min-Distance and Min-Immer-
sions. Based on our experiments one can conjecture that there is always a
common solution to both Min-Distance and Min-Immersions. Surprisingly,
we found an example illustrated in Figure 7b where Min-Distance and Min-
Immersions have different solutions. Indeed, suppose that the input of both
Min-Distance and Min-Immersions is the tree T shown in Figure 7b and
p = 16. Then there is only one optimal solution for Min-Distance that con-
tains 3 trees of total cost 15, see Figure 7c. Also, there is only one optimal
solution for Min-Immersions that contains 2 trees, see Figure 7d. Notice that
the total cost of these two trees is 16. We believe that a different conjecture can
be stated.

Conjecture 2 Any optimal solution of Min-Immersions has a constant ap-
proximation factor of an optimal solution of Min-Distance.

12 S. Bereg, L.E. Caraballo, and J.M. Dı́az-Báñez

15 20 25 30 35 40 45 50
number of nodes

0.95

1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

1.4

ra
tio

 D
F

T
N

/o
pt

im
um

15 20 25 30 35 40 45 50
number of nodes

0.95

1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

1.4

ra
tio

 s
w

ee
pi

ng
Le

av
es

/o
pt

im
um

Fig. 6. Approximation ratio of deepest-first-then-nearest (left) and
sweepingLeaves (right) respect to number of immersions.

(c) (d)

︷ ︸
︸ ︷

︷ ︸︸ ︷
a

. . .

a1

a

a a

(a) (b)

1

11

11

11

2

2

2

Fig. 7. (a) Approximation of sweepingLeaves. (b) An example of a tree T such that
Min-Distance and Min-Immersions have different solutions, (c) the solution of Min-
Distance, and (d) the solution of Min-Immersions.

References

1. E. M. Arkin, R. Hassin, and A. Levin. Approximations for minimum and min-max
vehicle routing problems. Journal of Algorithms, 59(1):1–18, 2006.

2. T. Bektas. The multiple traveling salesman problem: an overview of formulations
and solution procedures. Omega, 34(3):209–219, 2006.

3. L.E. Caraballo and J.M. Dı́az-Báñez. Covering problems for underground robot
systems. Working paper, 2017.

4. Robert I. Davis and Alan Burns. A survey of hard real-time scheduling for multi-
processor systems. ACM computing surveys (CSUR), 43(4):35, 2011.

5. M. Dynia, M. Korzeniowski, and C. Schindelhauer. Power-aware collective tree
exploration. In Int. Conf. on Archit. of Computing Systems, pages 341–351, 2006.

6. P. Hem and J. Caldwell. Block caving. Mining Technology, InfoMine, 2012.
7. A.A. Khan, C.L. McCreary, and M.S. Jones. A comparison of multiprocessor

scheduling heuristics. In Parallel Processing, volume 2, pages 243–250, 1994.
8. N.S.V. Rao, S. Kareti, W. Shi, and S.S. Iyengar. Robot navigation in un-

known terrains: Introductory survey of non-heuristic algorithms. Technical report,
ORNL/TM-12410, Oak Ridge National Laboratory, 1993.

	Efficient inspection of underground galleries using k robots with limited energy

