
UTCP: compositional semantics for
shared-variable concurrency

Andrew Butterfield ?[0000−0002−2337−2101]

Lero@TCD
School of Computer Science and Statistics

Trinity College Dublin
butrfeld@tcd.ie

Abstract. We present a Unifying Theories of Programming (UTP) se-
mantics of shared variable concurrency that is fully compositional. Pre-
vious work was based on mapping such programs, using labelling of deci-
sion points and atomic actions, to action systems, which themselves were
provided with a UTP semantics. The translation to action systems was
largely compositional, but their dynamic semantics was based on having
all the actions collected together. Here we take a more direct approach,
albeit inspired by the action-systems view, based on an abstract notion
of label generation, that then exploits the standard use of substitution
in UTP, to obtain a fully compositional semantics.

The final publication is available at Springer via http://dx.doi.org/10.

1007/978-3-319-70848-5_16.

1 Introduction

In this paper we present a compositional semantics for a simple abstract shared-
variable concurrent language, called the “Command” language presented in
Figure 1 The Command language is very simple, with sequential composition

a ∈ Atom Atomic state-change actions
C ::= 〈a〉 Atomic Command

| C ;; C Sequential Compostion
| C + C Non-deterministic Choice
| C ‖ C Parallel Compostion
| C∗ Non-deterministic Iteration

Fig. 1. Command language syntax

? This work was supported, in part, by Science Foundation Ireland grants 10/CE/I1855
and 13/RC/2094 to Lero - the Irish Software Engineering Research Centre
(www.lero.ie)

http://dx.doi.org/10.1007/978-3-319-70848-5_16
http://dx.doi.org/10.1007/978-3-319-70848-5_16

(C1 ;; C2), and only non-deterministic choices, for alternative execution paths
(C1 + C2) or deciding when to terminate a loop (C∗). The parallel composition
(C1 ‖ C2) allows arbitrary interference by each side on any variables, all of which
are considered here to be global and shared. The semantics we present does not
itself need to deal explicitly with any shared variables, but simply assumes a
shared state s and the existence of atomic state-change actions a. This Com-
mand language corresponds directly to Concurrent Kleene Algebra (CKA)[14].

Our interest in this language stems from our general work within the Uni-
fying Theories of Programming (UTP) framework[13], in which we seek to find
ways to unify the semantics of a wide range of programming and specification
languages, and language features, in order to be able to reason formally about
systems built using a mix of such languages. The Command language in this
paper is based on that introduced in the “Views” paper[10], which describes
how a range of approaches to reasoning about shared-variable concurrency can
be mapped down onto CKA, and the Command language. Approaches covered
in [10] include various Separation logics[8], type-theories, Owicki-Gries[20], and
Rely-Guarantee[17], among others. Our intention in developing a UTP semantics
of the Command language is to be able to use it as a foundation on which to
build UTP theories of the above approaches that will be easy to link together. In
effect we hope to use the results of the Views paper as a conceptual architecture
to organise our work.

Another independent motivation for this work is a research collaboration that
led us to give a UTP semantics to a process modelling language called PML[1],
which has the notion of basic actions that require certain resources to run, and
which provide further resources as a result. Actions can be combined using se-
quencing, selection, branching and iteration. We published initial work on a UTP
semantics for PML[7], noting that it is essentially the same as the Command lan-
guage. The semantics we gave in [7] was not compositional, however, and finding
a fully compositional semantics was noted for future work.

Compositionality is important. By it we mean the property that the semantics
of a composite construct can determined from the semantics of its parts, so for
example, the meaning of the construct C1 ;; C2 would be determined by the
meanings of C1 and C2, combined with the meaning of ;;. This property is
desirable as without it both the semantics and any reasoning principle based on
it would not scale up to large programs or systems.

The structure of the rest of this paper is as follows: we describe some related
work (Sec. 2), followed by an introduction to the UTP methodology (Sec. 3).
We then explain various aspects of our UTP semantics, touching on labels (Sec.
4), observations (Sec. 5), atomic actions (Sec. 6), and healthiness conditions
(Sec. 7). We can then present the semantics in Section 8. Finally we discuss
some calculations that contribute to the validation of the semantics (Sec. 9) and
conclude in Section 10.

2 Related Work

Key work was done on concurrent semantics in the 80s and 90s, with a strong
focus on fully abstract denotational semantics. Notable work form this period
includes that by Stephen Brookes[5] and Frank de Boer and colleagues[3]. Both
looked at denotations based on the notion of sets of transition traces, these
being sequences of pairs of before-after states. In order to get compositional-
ity the traces of any program fragment had to have arbitrary “stuttering” and
“mumbling” state-pairs added to capture the notion of outside interference. Full
abstraction meant that the semantics had to identify programs like skip ;; skip
with skip, while distinguishing between x := 2 and x := 1 ;; x := x+ 1.

The first UTP theory in this area was presented in the UTPP paper[23]. This
combined guarded commands[9] with the idea of action systems[2], interpreted
in UTP as non-deterministic choice over guarded atomic actions, where disabled
actions behave like the unit for that choice. This basic lattice-theoretic archi-
tecture for the UTPP semantics forms the foundation and inspiration for the
UTCP semantics presented here.

More recently, also inspired by [10], the “UTP Views” paper by van Staden[21],
starts algebraically, looking at Kleene algebras over languages. Languages here
are sets of strings over an alphabet A. He then takes A = Σ×Σ, which in effect
encodes the Brookes model[5]. His semantics fits with the usual UTP approach
to concurrency, in that it is based on traces as sequences of some notion of event.

All the compositional semantic frameworks we have discussed in this section
are based on this notion of sets of transition traces, but we are seeking a semantics
based on direct relations between before- and after-program states, without any
explicit notion of traces. The reason for this is that the resulting UTP theory
will have a form that will make it easier to link to concurrency approaches such
as rely-guarantee, or separation logic, that are used with languages that are
imperative and program-variable based.

There is however a semantics for shared-variable concurrency that is much
closer in form to the one developed in this paper. This is the “actions with ax-
ioms” approach of Lamport [18]. In this, the semantics of each language construct
is given by a set of axioms, that are predicates over both program variables, and
additional “auxiliary” variables that manage flow of control. The meaning of a
composite is given by taking the axioms that describe each of its components, and
combining them with appropriate renamings. This requires being able to identify
specific sub-components of any given component, and a syntactical method for
doing this is described.

We were not aware of this work when we developed the UTCP theory in this
paper, but there are very strong parallels between the features of our semantics
and those in [18]. In some sense our semantics is a re-working of his within UTP.
We shall point out specific correspondences as we proceed with our presentation.

3 UTP

The Unifying Theories of Programming framework [13] uses predicate calculus to
define before-after relationships over appropriate collections of free observation
variables. The before-variables are undashed, while after-variables have dashes.
A simple approach would be to simply observe the values of program variables,
in which case the before- and after-values of program variable v would be repre-
sented by observational variables v and v′ respectively. For example, the meaning
of an assignment statement might be given as follows:

x := e =̂ x′ = e ∧ ν′ = ν

The definition says that the assignment terminates, with the final value of vari-
able x set equal to the value of expression e in the before-state, while the other
variables, denoted collectively here by ν, remain unchanged. This leads to a
theory of partial correctness for imperative programs.

The theory can be extended to cover total correctness by introducing Boolean
observations of program starting (ok) and termination (ok′). In this case, we
find that we need a technique that allows us to identify predicates whose inter-
pretation is nonsense, and eliminate them from any semantic theory we might
construct. For example, the predicate ¬ok ∧ ok′ describes a situation in which a
program has not started, but has terminated.

In UTP we use the concept of healthiness conditions to specify which predi-
cates are meaningful in the context of our theory. For the total correctness theory
to work, we need to ensure that all predicates have the form ok∧P =⇒ ok′∧Q,
where P and Q do not refer to ok or ok′. This is interpreted as saying, if the pro-
gram is started and P holds true at the start, then the program will terminate
with Q being satisfied at the end.

A standard UTP approach is to define healthy predicates as being fixed-
points of suitable idempotent, monotonic predicate transformers. For example,
in the total correctness theory, we can define a predicate transformer H(P) =̂
ok =⇒ P . A predicate D that satisfies D = (ok =⇒ D) is one that only
asserts its behaviour once it is started (ok = true). Our healthiness conditions
(Sec. 7) are expressed in this fashion.

An important characteristic of both the UTP theories referred to above, is
that their predicates are interpreted as a relation between the before-state and
after-state of a complete program execution.

The “standard” treatment of concurrency in UTP[13, Chps. 7,8], is focussed
on local-state concurrency, without any mutable state variables. Here it becomes
necessary to observe the program state at intermediate points in its execution,
typically when the program is waiting for external events to occur. This neces-
sitates another pair of Boolean observations, wait and wait′ that indicate such
waiting. We do not give any further details regarding these theories, but instead
mention them simply to make the observation that here the predicates are inter-
preted as a relation between the before-state, and some subsequent intermediate
or final state of the complete execution.

Our focus in this introduction on how the predicates are interpreted in terms
of program state is important, because the theory presented in this paper involves
yet more adjustments in interpretation, as explained in Sections 5 and 9.

In order to present our UTP semantics of shared-variable concurrency, we
have to address an issue that Lamport’s semantics[18] faced, namely how to refer
to sub-components and their semantics from within a composite. In particular
he enunciates a number of principles at the start of his semantics. One identifies
the need to know “who” carries out a specific action, while another says that
we need to be able to transform a statement about command C into one about
command C within the context of some enclosing construct.

In the next section we introduce labels and their generators, which are our
approach to addressing these concerns. We then follow-up with a description of
the observation variables for our theory, how we handle atomic actions, healthi-
ness conditions, and then the semantic definitions.

4 Labels

In order to manage flow-of-control, we need to be able to identify when every
construct starts, is running, and ends. In some approaches in the literature, the
program syntax allows for and requires explicit labels which are used for this
purpose. In our semantics, and that in [19], these identifying labels are generated
in a systematic way from the abstract syntax tree. We adopt the idea from [23]
that flow of control is managed by an auxiliary variable whose value is the set
of all labels of constructs that are able to execute.

We adopted the idea of a label-generator Given some notion of labels (l ∈
Lbs), we want a notion of a generator (g ∈ Gen) that supports two operations:
new : Gen → Lbl ×Gen that produces a new label and a new generator; while
split : Gen → Gen × Gen splits a generator into two new ones. In all cases we
require that any labels obtained from new generators will not have been obtained
previously from any of their parent generators.

To avoid long nested calls of new, split and projections π1, π2, we define the
following terse label and generator expression syntax:

g ∈ GV ar Generator variables

G ∈ GExp ::= g | G: | G1 | G2

L ∈ LExp ::= `G

Here G: denotes the generator left once new has been run on G, with `G denoting
the label so generated. Expressions G1 and G2 denote the two outcomes of
applying split to G. We use labs(G) to denote all the labels that G can generate
and we require the following laws to hold:

labs(G) = {`G} ∪ labs(G:) ∪ labs(G1) ∪ labs(G2)

`G /∈ labs(G:)

∅ = labs(G1) ∩ labs(G2)

The simplest model for a generator that satisfies the above constraints is one that
represents the label `G by the expression G itself. The reason for this shorthand
is that without it we would have to write something like the following1

π1(new(π2(new(π2(split(π2(new(π1(split(g)))))))))).

instead of `g1:2: . This notation is compact, and may appear very contrived.
However it has one very strong advantage: it makes generators and their labels
“relocatable”, in much the same way as some program code can be so consid-
ered. The variable g can be viewed as a sort of “base”, with all of the labels
generated from it being relative to that base. We can do this, in one way only,
by substituting any generator expression for g. If we replace g with something
different, then we “shift” all the associated labels accordingly. If γ and σ range
over sequences of :, 1 and 2, then

(`gγ)[gσ/g] = `gσγ (1)

In effect the substitution “relocates” generator g by running new and split on
it as specified by σ, and any labels are in effect generated by this relocated
generator using their γ specification. This simple use of substitution gives us
a really easy way to compose program fragments in terms of their semantics.
In fact this ability to “relocate” is how we manage Lamport’s principle that we
must be able to talk about command C in the context of an enclosing construct.

5 Observations

Any UTP theory has to clearly define its alphabet, that is, the set of observa-
tional variables that define its domain of discourse. The theory presented here
is inspired by UTPP[23] and uses some of the observations presented there: the
values associated with all (shared) variables are not mentioned individually, but
instead are lumped together; and we assume that all actions are labelled and
that we can observe the set of labels that are considered to be “active”.

s, s′ : State (2)

ls, ls′ : P Lbl (3)

Here s and s′ denote the before- and after-values of the shared (variable) state,
while ls and ls′ denote the before- and after-values of the active label-set used
for control-flow. In Lamport’s semantics[18] a series of temporal logic axioms are
provided to track the dynamics of which constructs are starting, in progress, or
finishing. We achieve the same effect using the label-sets.

The role of label-generators is rather different, however. They will be used
to generate labels for statements, and we do not want these to change during
the lifetime of the program. We will also want to be able to refer in a general

1 “ split g, take the first one, generate a label and take the resulting generator, split
it and take the second, take two new labels and give me the last one ”

way to two key labels associated with any language construct, namely the label
(in) that is used to enable the starting of a construct, and the label (out) that
is used to signal that the construct has just terminated.

in, out : Lbl (4)

g : Gen (5)

These observations are static, in that their values do not change during program
execution. Instead, these variables record context-sensitive information about
how a language construct is situated with respect to its “neighbours”, in a way
that permits a compositional approach. For details of how this works, see Section
8.3.

In effect we are exploiting the fact that our language is block-structured with
only one entry and exit point for each construct, in order to be able to decouple
the semantics of an atomic action from whatever might come next. Dealing with
that is the responsibility of the semantics of language composites.

To summarise, our semantics is will be built using observable variables s, s′, ls, ls′, g, in, out
to describe basic atomic state-change actions that modify global shared state s.
The concurrent flow of control will be managed using the global dynamic label-
set ls and the static association of a label generator g and two distinguished
labels in, out, with every language construct.

This brings us to an important distinction between the usual approach taken
by UTP regarding the distinction between syntax and semantics. The usual
approach, inspired by the slogan “programs are predicates”[11,12], is to treat
syntax and semantics as the same thing. A program’s syntax is simply a short-
hand notation for its semantics. So, the program text x := x+y is a predi-
cate, a shorthand for the more verbose x′ = x + y ∧ y′ = y 2 . in particu-
lar, the notation for sequential composition, P ;Q, is a shorthand for ∃obsm •
P [obsm/obs

′]∧Q[obsm/obs], where obs (obs′) refers to all the before- (after-) ob-
servations. This “punning” between syntax and semantics largely works for theo-
ries of sequential programs or local-state concurrency, mainly because sequences
of code lead to simple semantic sequencing. However, in global shared-variable
concurrency, code sequences get broken up by interference from parallel execu-
tion threads, and there is no longer a simple correspondence between syntactical
and semantic sequencing.

Here we shall use the notation P ;Q to denote semantic sequential compo-
sition, which means that the execution of P is immediately followed by the
execution of Q, without any intervening external interfence. We define it as fol-
lows:

P ;Q =̂ ∃sm, lsm • P [sm, lsm/s
′, ls′] ∧Q[sm, lsm/s, ls] (6)

The key thing to note is that this definition makes no reference at all to g, in or
out, as these are static observations.

We also define semantic skip (II), the unit for semantic sequential composi-
tion, as

II =̂ ls′ = ls ∧ s′ = s (7)
2 Assuming x and y are the only variables

6 Atomic Actions

An atomic action (a) is simply a global state transformer whose effects, once
started, occur immediately and completely, without any external interference.
We can consider it be a relational predicate that only mentions s and s′. Flow of
control is managed by keeping a dynamic record of which labels are considered
current, or “enabled”. The behaviour of an atomic action is that it exhibits
none until its label is enabled. Noting that many atomic actions can be enabled
at once, what happens is that one of actions is selected non-deterministically to
run. The action so selected transforms the global state, and then the control-flow
management marks its label as disabled, and enables labels of atomic action that
can immediately follow it according to the control-flow structure of the program.

As already stated, we use a to denote the predicate describing the core global
state-changes, and use ls and ls′ to record the set of enabled labels both before
and after the atomic action has run. We can define a predicate that captures the
basic behaviour of such “flow-controlled” atomic action:

in ∈ ls ∧ a ∧ (ls′ = (ls \ {in}) ∪ {out}) (8)

In short: the action when its in-label is in ls, is that it performs the state-change
specified by a, and replaces the in-label by the out-label, in the updated set ls′

of enabled labels. If in is not in ls, or predicate a is not satisfied by the current
value of s, then the semantic predicate reduces to false.

The semantics of a running composite program, as per the action systems
approach used in [23], is to imagine all of the labelled atomic actions collected
into one large non-deterministic choice, itself in a loop that runs until some
distinguished stop-label appears in the enabled label-set. The whole thing is ini-
tialised by enabling at least one atomic action in-label. The result of initialising
and running this loop once will be once possible complete execution sequence of
the program (assuming it terminates). In effect, the meaning of a shared-variable
concurrent program is all the interleavings of atomic actions that are consistent
with flow-of-control restrictions, with each interleaving being a series of atomic
actions sequentially composed semantically, using ; as defined in Eqn. 6.

Given that we will be sequentially composing a lot of predicates like 8, we
shall introduce a shorthand notation that we refer to as a “basic action”, which
refers to sets of labels called E (enablers) and N (new):

A(E | a | N) =̂ E ⊆ ls ∧ a ∧ ls′ = (ls \ E) ∪N 〈〈·A-def·〉〉

The plan is to then produce some laws governing the semantic sequential
compositions of basic actions (A(E1 | a1 | N1);A(E2 | a1 | N2)), but we quickly
discover that in general the outcome cannot be expressed as a single instance of
the form A(E | a | N). Consider A(l1 | a | l2);A(l2 | b | l3), in a starting state
where both l1 and l2 are in ls. The overall result is a combined action that needs
l1 to start, and adds in l3 at the end, but also removes both l1 and l2. So, in
order to effectively calculate with the theory (see Sec. 9), we need to generalise

the basic action idea to an eXtended basic action, where we explicitly identify
the labels that we remove (R):

X(E | a | R | A) =̂ E ⊆ ls ∧ a ∧ ls′ = (ls\R) ∪A 〈〈·X-def·〉〉

Clearly A(E | a | N) = X(E | a | E | N). We can now prove the following
composition law:

X(E1 | a | R1 | A1);X(E2 | b | R2 | A2) 〈〈·X-then-X·〉〉

= E2 ∩ (R1\A1) = ∅
∧X(E1 ∪ (E2\A1) | a ; b | R1 ∪R2 | (A1\R2) ∪A2)

The condition E2 ∩ (R1\A1) = ∅ characterises all those cases were the second
X is enabled immediately after the first X terminates (i.e., without any outside
interference). This brings us to a very important aspect of how these predicates
are to be interpreted. The semantic sequential composition of two basic actions
captures the occurrence of both actions in sequence without any intervening
interference, known as a mumbling step. This means that the first action once
enabled, must be able to enable the second one without relying on some external
agent. The expression E2 ∩ (R1\A1) is all of the labels in E2 that are removed
(R1) by the first action, but are not added back in (A1). If this not empty then
some of the labels from E2 will not be present, and so the second action has
been disabled by the first. So the whole predicate reduces to false, indicating
that it is not possible to observe those two actions in sequence, unless some
other execution thread manages to add in the missing E2 labels in-between, as
an interference step.

7 Healthiness

7.1 Wheels-within-Wheels

We are building a semantics based on predicates that define before-after relations
on program state s, s′ and label-sets ls, ls′, using the static observations to put
things in their syntactical context. In order to be able to extract the correct
behaviour from this semantics, it was necessary to have a healthiness condition
that effectively said that every program component, atomic or composite, has
to be viewed as being willing to run as many times as necessary whenever its
labels would appear in ls. At its simplest, the semantics required every construct
to be embedded in its own infinite loop, to ensure it was always ready to “go”.
This lead to our use of the phrase “Wheels within Wheels” (WwW) to refer to
this principle. This did not mean that everything ran forever, but that, in some
sense, it should always be ready.

Technically we require any healthy UTCP program predicate to be equivalent
to a non-deterministic choice of how many times it repeats itself, including zero,
using UTP semantic sequential composition.

P 0 =̂ II 〈〈·seq-0·〉〉

P i+1 =̂ P ; P i 〈〈·seq-i-plus-1·〉〉

WwW(P) =̂
∨
i∈N P

i 〈〈·WWW-as-NDC·〉〉

Here we have introduced a stuttering step, denoted by UTP’s semantic skip
(II). We note also, that WwW is monotonic and idempotent.

It should be noticed that this theory underwent a large number of iterations
before the WwW principle was finally elucidated properly and shown to give
the right results. The number and complexity of the test calculations needed to
debug, develop and validate the theory presented in this paper necessitated the
development of a bespoke “UTP Calculator”[6].

7.2 Label-Set Invariants

The semantics we propose here depends on the careful management of when
specific labels are, or are not, present in the global label-set ls. Key to the
success of this semantics is a collection of label-set invariants which characterise
proper label-set contents, which are preserved by all label-set manipulations
performed by our semantic definitions. We have two kinds of invariants, both of
which are concerned with the mutual disjointness, in some sense, of a collection
of sets of labels. We introduce some shorthand notations to avoid excessively
long predicates and expressions. We use ‘|’ as a separator between things meant
to be disjoint, and commas to list subsets and/or set- elements that should be
unioned together. So the fragment A, b |M,N | x, Y is shorthand for the mutual
disjointness of A∪{b} and M ∪N and {x}∪Y . To assert mutual set disjointness,
we use the following shorthand, where the Li are label-sets,

{L1 | L2 | . . . | Ln} =̂ ∀i,j∈1...n • i 6= j =⇒ Li ∩ Lj = ∅
〈〈·short-disj-lbl·〉〉

We also want to assert that certain sets, necessarily mutually disjoint, can
never have any of their elements in the global label-set, if any element from one
of the other sets is present. Again, we have a shorthand:

[L1 | L2 | . . . | Ln] =̂ ∀i,j∈1...n • i 6= j =⇒ (Li ∩ ls 6= ∅ =⇒ Lj ∩ ls = ∅)
〈〈·short-lbl-exclusive·〉〉

The first invariant we have, Disjoint Labels (DL) is simply one that asserts,
for every construct, that in, out and the labels of g are all different. 3

DL =̂ {in | labs(g) | out} 〈〈·Disjoint-Labels·〉〉

We shall simplify further by stating that in the shorthands presented here that
we use just simple g to denote labs(g), so DL can we written as {in | g | out}.
We also need stronger Label Exclusivity invariants, regarding which labels can,
or cannot, occur in the global label set at any one time. There is not one such

3 The theory can be developed using only g as a static observation, and letting `g
and `g: play the role of in and out respectively, in which case Disjoint Labels is
automatically satisfied. However, while this results in an entirely equivalent theory,
it is notationally more obscure making it harder to interpret and check.

invariant, but rather we have that some language constructs may define their
own variation, in order to ensure that flow of control is correctly managed.

There is a general version of the invariant (LE) that holds for all language
constructs that asserts that any point in time, only elements from of one of in,
labs(g) or out can be present in ls or ls′ at any point in time:

LE =̂ [in | g | out] ∧ [in | g | out]′ 〈〈·Exclusive-Labels·〉〉

Note that [in | g | out]′ is simply indicates that it refers to ls′ rather than ls.
So, in summary, we have that every healthy predicate describing a shared-

variable concurrent program’s behaviour is of the form WwW(C) for some
predicate C and also satisfies DL and LE.

W(P) =̂ DL ∧ LE ∧WwW(P) 〈〈·W-def·〉〉

We note that many of the axioms for a given construct in the semantics of
Lamport[18] exist to ensure the same properties regarding construct activation
as the healthiness conditions described here.

8 Command Semantics

We present the full semantics of atomic commands first, then describe an im-
portant classification of expressions and substitutions, before describing the se-
mantics of the four composite command forms.

8.1 Atomic Commands

The atomic command 〈a〉 can be very simply expressed as basic action with the
addition of healthiness conditions:

W(P) =̂ DL ∧ LE ∧WwW(P) 〈〈·W-def·〉〉

〈a〉 =̂ W(A(in | a | out))) 〈〈·sem:atomic·〉〉

Here we would expect that if LE holds when this action starts, i.e. when in ∈ ls
and it gets to run, that LE′ should also hold, with out ∈ ls′.

8.2 Grounded and Sound

Given that we have a distinction between static observations (g, in, out), and
dynamic ones (s, s′, ls, ls′) it is worth extending this distinction to expressions
and substitutions. The reason for this is to do with the fact that, by design,
semantic sequential composition ignores the static variables. An expression or
predicate is “ground” if the only variables present are static. The DL healthiness
condition is ground, but LE is not, as it refers to ls and ls′. Ground predicates
K satisfy some important laws, and LE satisfies something similar:

K ; K = K
(K ∧ P) ; Q = K ∧ (P ; Q) = P ; (K ∧Q)

K ∧WwW(P) = WwW(K ∧ P)
(LE ∧ P) ; (LE ∧Q) = LE ∧ ((LE ∧ P) ; (LE ∧Q))

P ;; Q =̂ W(P [g:1, `g/g, out] ∨Q[g:2, `g/g, in]) 〈〈·sem:seq·〉〉

P ‖ Q =̂ W(A(in | ii | `g1, `g2) ∨ 〈〈·sem:par·〉〉

P [g1::, `g1, `g1:/g, in, out] ∨
Q[g2::, `g2, `g2:/g, in, out] ∨
A(`g1:, `g2: | ii | out))

P + Q =̂ W(P [g1/g] ∨Q[g2/g]) 〈〈·sem:NDC·〉〉

P ∗ =̂ W(A(in | ii | `g) ∨ 〈〈·sem:star·〉〉

A(`g | ii | `g:) ∨
A(`g | ii | out) ∨
P [g::, `g:, `g/g, in, out])

Fig. 2. Composite Semantics

A substitution is also deemed “ground”, if all the the replacement expressions
are ground, and the target variables are all static. A desired consequence of
this is that ground substitutions γ will distribute through semantic sequential
composition, semantic skip, both disjoint label-set notations, and WwW.

(P ; Q)γ = Pγ ; Qγ 〈〈·seq-gnd-distr·〉〉

II γ = II 〈〈·skip-gamma·〉〉

{L1 | . . . | Ln}γ = {L1γ | . . . | Lnγ} 〈〈·DL-gamma-subst·〉〉

[L1 | . . . | Ln]γ = [L1γ | . . . | Lnγ] 〈〈·LE-gamma-subst·〉〉

(WwW(P))γ = WwW(Pγ) 〈〈·WwW-gamma-subst·〉〉

Groundness is not enough, we also require substitutions to be “sound” in the
sense that they cannot transform a situation that satisfies DL or LE into one
that does not. A ground substitution ς, of the form [labs(G), I, O/g, in, out] is
sound if {labs(G) | I | O} holds. We will see that all substitutions in the semantic
definitions are sound, and that this is easy to check by inspection.

8.3 Composing Actions

The semantics of composite actions basically involves using the generator to
produce a suitable number of labels, that are then used in zero or more “control-
flow” actions of the form A(E | ii | N), where ii is atomic skip that simply
asserts s′ = s. The left-over generator is then split as required, and then the
components are “connected” into the relevant new labels and generators using
sound substitutions. Finally the relevant healthiness conditions are applied. A
key principle is to ensure that when any sub-component is “active”, that is, at
least one of its labels is present in ls, that none of the labels of the parent,
other than those explicitly shared with the sub-component, are themselves in ls.
This prevents a parent starting a spurious copy of a sub-component while that
sub-component is actually running. The semantic definitions are listed in Fig. 2.

We will explain the semantics of parallel in more detail, aided by the diagram
in Fig. 3. We take the generator g and split it to obtain g1 and g2. From g1

g

in

out

lg1

1g

P out
g

in

Q
g

in out

P || Q

2g

1:g 1::g

2:g
2::g

lg1:

lg2:lg2

Fig. 3. Label and Generator “plumbing” for P ‖ Q.

we generate two labels `g1 and `g1:, and leftover generator g1::. We then use a
substitution to replace all references by P to g, in and out with g1::, `g1 and `g1:,
respectively. We do something similar with g2 and Q. We also add a top-level
control action that is enabled by label in, and adds both `g1 and `g2 into ls,
so enabling both P and Q to start. We then have another control-flow action
that waits for both of `g1: and `g2: to appear in ls, at which point they will be
replaced by the top-level out label.

The similarity between our labels and the sub-statement notation of Lamport
is quite striking. His parallel construct, called cobegin, labels the subcompo-
nents with numbers from 1 upwards. So he refers to P within cobegin P �Q coend
as (cobegin P � Q coend, 1). We call it P [g1::, . . . /g, . . .]. When for a con-
struct P , we assert that in ∈ ls, he uses a predicate at(P). In the paral-
lel case here, an assertion by us that `g1 ∈ ls, corresponds to his assertion
at(cobegin P � Q coend, 1).

Given that the invariant LE, which is [in | labs(g) | out], is part of the
definition of W, then we have it satisfied, by definition, by any sub-components.
From the perspective of the parent composite, this means that LEς also holds,
where ς ranges over all the sound substitutions used in the definition of the
parent’s semantics. For example, for program sequential composition, we not
only assert [in | g | out], but can also infer [in | g:1 | `g] and [`g | g:2 | out].

In summary, we have have predicate semantics for atomic and composite
program constructs, in which everything at every level is wrapped in an infinite
loop. This seems to be completely counter-intuitive: a program that consists of
a single atomic action may wait for a while while external interference rumbles
on, but eventually it should get “scheduled”, perform its atomic action and then

effectively stop. How is this consistent with looping forever? To see the answer
to this question, it helps to consider such simple examples, and this brings up
the issue of calculation.

9 Calculations

Part of the validation of this his semantic theory was by a series of test calcula-
tions done to ensure that it was making the right predictions about program be-
haviour. This typically involved taking small programs with a few atomic actions
and trying to simplify their semantic predicates down to a non-deterministic
choice of atomic action sequences. Some of the calculations proved to be very
long, repetitive and tedious, motivating the UTP-calculator development [6].

We shall start by sketching out a test calculation for 〈a〉, where the objective
is to reduce it down to a predicate involving just basic atoms.

〈a〉
= W(A(in | a | out))) 〈〈·sem:atomic·〉〉

= DL ∧ LE ∧WwW(A(in | a | out)) 〈〈·W-def·〉〉

= DL ∧ LE ∧
∨
iA(in | a | out)i 〈〈·WWW-as-NDC·〉〉

At this point what remains is to compute A(in | a | out)i for i ∈ N. The cases
of i = 0, 1 are straightforward. Computing i = 2 is easy:

A(in | a | out) ; A(in | a | out) 〈〈·X-def·〉〉

= X(in | a | in | out) ; X(in | a | in | out) 〈〈·X-then-X·〉〉

= {in} ∩ ({in} \ {out}) = ∅ ∧X(. . .) set theory
= false ∧X(. . .)

We see that A(in | a | out)2 = false, and as false is a zero for semantic
sequential composition, we can deduce that A(in | a | out)i = false for all i ≥ 2.
So our final result is

〈a〉 = DL ∧ LE ∧ (II ∨A(in | a | out)) (9)

Ignoring the healthiness conditions, this boils down to two possible observations
we can make of 〈a〉: either we observe stuttering—no change in state or label-sets
(II) or we see the complete execution of the underlyng basic action A(in | a |
out).

Test calculations for simple usage of most of the composites is essentially the
same. One slight complication is that the contents of WwW in theses cases is a
disjunction of terms, rather than a single basic action, so we first simplify these
out, applying all substitutions, to get a term Q of the form (II ∨ basic actions).
We need to compute Qi for i ≥ 2, and sequential composition distributes through
disjunction, so we obtain resulting terms of the same form, by repeated appli-
cation of law 〈〈·X-then-X·〉〉. A large number of these have results with the set
side-condition that evaluates to false, as per the i = 2 example above—these

〈a〉 ;; 〈b〉 = II ∨A(in | a | `g) ∨A(`g | b | out) ∨A(in | ab | out)
〈a〉 + 〈b〉 = II ∨A(in | ii | `g1) ∨A(in | ii | `g2) ∨A(`g1 | a | out)

∨A(`g2 | b | out) ∨A(in | a | out) ∨A(in | b | out)
〈a〉 ‖ 〈b〉 = II ∨A(in | ii | `g1, `g2) ∨A(`g1:, `g2: | ii | out) ∨A(`g1 | a | `g1:)

∨A(`g2 | b | `g2:) ∨A(in | a | `g1:, `g2) ∨A(in | b | `g2:, `g1)
∨A(`g1, `g2 | ba | `g1:, `g2:) ∨A(`g1, `g2 | ab | `g1:, `g2:)
∨A(`g2:, `g1 | a | out) ∨A(`g1:, `g2 | b | out) ∨A(in | ba | `g1:, `g2:)
∨A(in | ab | `g1:, `g2:) ∨A(`g1, `g2 | ba | out) ∨A(`g1, `g2 | ab | out)
∨A(in | ba | out) ∨A(in | ab | out)

Fig. 4. Some Test Calculation Results. Here ab (ba) is short for a; b (b; a), and we have
omitted the DL and LE invariants for clarity.

terms vanish. There are other terms produced that do not vanish, but some of
these can also be eliminated, because their enabling set violates the Label Ex-
clusivity invariant. All remaining terms have the form X(E | a | R | N), and
some of these can be immediately re-written to A(E | a | N), if R = E. In every
test calculation we have done it turns out that the others, where R 6= E can
also be re-written, because LE says that none of R \ E can be present in ls
when anything from E is present, so the removal of those labels is ineffective,
as they are never present when that action is enabled. So, the outcome is that
we get final results where every basic action can be written in the A-form. All
of these aspects of these test calculations are supported by current versions of
the tool described in [6]. If there is no use of the iteration construct (P ∗), then
all calculations terminate because there is always some i for which Qi evaluates
to false. Any use of the language iteration construct however results in having
terms for all values of i.

Some calculation results are shown in Fig. 4. If we look at the result for
〈a〉;;〈b〉 we have II , the stuttering step, and A(in | ab | out) which is the complete
exection of both actions without interference (mumbling), and A(in | a | `g) that
shows the execution of a, to an intermediate point where b has yet to occur. These
three observations are consistent with the idea that our predicates are relations
between a starting state and some subsequent or final state. However we also
have action A(`g | b | out), which is an observation that begins after action
a has already occured, and just observes the behaviour of b alone. What has
happened with this UTP theory of concurrency is that it is now no longer insists
that the “before” observation is pinned to be the start of the program. Now we
are able to observe program behaviour that can both start and end at what are
intermediate points in the lifetime of the program.

If we look at 〈a〉+ 〈b〉, we also explictly see the control-flow “decisions”, such
as A(in | ii | `g1) where the decision to execute a is made. This will remove in
from ls if it runs, so disabling the other choice, denoted by A(in | ii | `g2). By
contrast, in 〈a〉 ‖ 〈b〉 the initially enabled action is A(in | ii | `g1, `g2), which

activates both a and b. The control flow action A(`g1:, `g2: | ii | out) delays
termination until both atomic actions are done.

Finally, we stress that the explicit inclusion of labels in the final results is
essential in order to ensure compositionality. In [7] we had the explicit run form,
and this reduced the semantics of 〈a〉 to a, that of 〈a〉+ 〈b〉 to a∨ b and 〈a〉 ‖ 〈b〉
to ab ∨ ba. While this looks cleaner, it has lost too much information, and we
cannot compose these further to get correct answers. With the explicitly labelled
semantics presented here for UTCP, we can, for example, correctly compute
(〈a〉 ;; 〈b〉) ‖ 〈c〉 by replacing the first ;; term by its expansion from Fig. 4.

10 Conclusions and Future Work

We have presented a compositional, denotational UTP semantics of shared-
variable concurrency. It is “explicit” in the sense that it can enumerate all the
observations that it is possible make of the program’s own behaviour, in any
time-slot. As already explained, our semantics has a lot of similarities to the
axiomatic action semantics of Lamport [18].

The usefulness of this theory is that it is in a form that makes it very easy for
us to specialise it to cover other approaches to concurrency in the Views paper
[10], as that paper shows how thay all link to the simple concurrent language
whose semantics we have just supplied. These concurrency approaches include
Rely-Guarantee[15,22], Owicki-Gries[20], and Concurrent Separation Logic[4].
This is precisely because it is formulated as a before-after relation, with the
twist that before and after observations can occur at any time during program
execution, with the obvious proviso that “before” precedes “after”.

While careful inspection and test calculations give us a high level of con-
fidence in the validity of our semantics, we still need to demonstrate that the
algebraic laws of Concurrent Kleene Algebra[14] can be derived from our se-
mantics. We also need to show how the standard operational semantics can be
recovered.

We also hope to use this semantics as a baseline for a program to apply
UTP to model the various linked approaches discussed in the Views paper[10].
Of particular interest is to explore the connection between UTCP and rely-
guarantee[16] approaches. In particular, given our idea of “before” and “after”
being able to refer intermediate execution points, and that we can explicitly
provide all atomic actions and their mumblings, we see a good opportunity to
explore how this can be exploited to analyse how well one or more program steps
satisfy their guarantee obligation, given a reliable environment.

Given the similarities between our approach and that of Lamport, it also
raises the possibility of bringing our observations and notation closer in line
with his.

References

1. Atkinson, D.C., Weeks, D.C., Noll, J.: Tool support for iterative software process
modeling. Information & Software Technology 49(5), 493–514 (2007), http://dx.
doi.org/10.1016/j.infsof.2006.07.006

2. Back, R.J.R., Kurki-Suonio, R.: Decentralization of process nets with centralized
control. In: Proceedings of the Second Annual ACM SIGACT-SIGOPS Symposium
on Principles of Distributed Computing. pp. 131–142. Montreal, Quebec, Canada
(17–19 Aug 1983)

3. de Boer, F.S., Kok, J.N., Palamidessi, C., Rutten, J.J.M.M.: The failure of fail-
ures in a paradigm for asynchronous communication. In: Baeten, J.C.M., Groote,
J.F. (eds.) CONCUR ’91, 2nd International Conference on Concurrency Theory,
Amsterdam, The Netherlands, August 26-29, 1991, Proceedings. Lecture Notes in
Computer Science, vol. 527, pp. 111–126. Springer (1991), http://dx.doi.org/

10.1007/3-540-54430-5_84
4. Brookes, S.: A revisionist history of concurrent separation logic. Electr. Notes

Theor. Comput. Sci. 276, 5–28 (2011), https://doi.org/10.1016/j.entcs.2011.
09.013

5. Brookes, S.D.: Full abstraction for a shared-variable parallel language. Inf. Comput.
127(2), 145–163 (1996), http://dx.doi.org/10.1006/inco.1996.0056

6. Butterfield, A.: UTPCalc - A Calculator for UTP Predicates. In: Bowen, J.P., Zhu,
H. (eds.) Unifying Theories of Programming - 6th International Symposium, UTP
2016, Reykjavik, Iceland, June 4-5, 2016, Revised Selected Papers. Lecture Notes
in Computer Science, vol. 10134, pp. 197–216. Springer (2016), https://doi.org/
10.1007/978-3-319-52228-9_10

7. Butterfield, A., Mjeda, A., Noll, J.: UTP Semantics for Shared-State, Concurrent,
Context-Sensitive Process Models. In: Bonsangue, M., Deng, Y. (eds.) TASE 2016
10th International Symposium on Theoretical Aspects of Software Engineering.
pp. 93–100. IEEE (Jul 2016)

8. Calcagno, C., O’Hearn, P.W., Yang, H.: Local action and abstract separation logic.
pp. 366–378. IEEE Computer Society (2007), http://ieeexplore.ieee.org/xpl/
mostRecentIssue.jsp?punumber=4276538

9. Dijkstra, E.W.: A Discipline of Programming. Series in Automatic Computation,
Prentice-Hall, Englewood Cliffs , NJ , USA (1976)

10. Dinsdale-Young, T., Birkedal, L., Gardner, P., Parkinson, M.J., Yang, H.: Views:
compositional reasoning for concurrent programs. In: Giacobazzi, R., Cousot, R.
(eds.) The 40th Annual ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, POPL ’13, Rome, Italy - January 23 - 25, 2013. pp.
287–300. ACM (2013)

11. Hehner, E.C.R.: Predicative programming part i & ii. Commun. ACM 27(2), 134–
151 (Feb 1984)

12. Hoare, C.A.R.: Programs are predicates. In: Proc. of a discussion meeting of the
Royal Society of London on Mathematical logic and programming languages. pp.
141–155. Prentice-Hall, Inc., Upper Saddle River, NJ, USA (1985)

13. Hoare, C.A.R., He, J.: Unifying Theories of Programming. Prentice-Hall Interna-
tional, Englewood Cliffs, NJ (1998)

14. Hoare, C.A.R.T., Möller, B., Struth, G., Wehrman, I.: Concurrent kleene algebra.
In: Bravetti, M., Zavattaro, G. (eds.) CONCUR 2009 - Concurrency Theory: 20th
International Conference, CONCUR 2009, Bologna, Italy, September 1-4, 2009.
Proceedings. pp. 399–414. Springer Berlin Heidelberg, Berlin, Heidelberg (2009),
https://doi.org/10.1007/978-3-642-04081-8_27

http://dx.doi.org/10.1016/j.infsof.2006.07.006
http://dx.doi.org/10.1016/j.infsof.2006.07.006
http://dx.doi.org/10.1007/3-540-54430-5_84
http://dx.doi.org/10.1007/3-540-54430-5_84
https://doi.org/10.1016/j.entcs.2011.09.013
https://doi.org/10.1016/j.entcs.2011.09.013
http://dx.doi.org/10.1006/inco.1996.0056
https://doi.org/10.1007/978-3-319-52228-9_10
https://doi.org/10.1007/978-3-319-52228-9_10
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=4276538
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=4276538
https://doi.org/10.1007/978-3-642-04081-8_27

15. Jones, C.B.: Developing methods for computer programs including a notion of
interference. Ph.D. thesis, University of Oxford, UK (1981)

16. Jones, C.B.: Development methods for computer programs including a notion of
interference (PRG-25), 265 (06 1981)

17. Jones, C.B.: Tentative steps toward a development method for interfering pro-
grams. ACM Trans. Program. Lang. Syst. 5(4), 596–619 (1983), http://doi.acm.
org/10.1145/69575.69577

18. Lamport, L.: An Axiomatic Semantics of Concurrent Programming Languages, pp.
77–122. Springer Berlin Heidelberg, Berlin, Heidelberg (1985), https://doi.org/
10.1007/978-3-642-82453-1_4

19. Lamport, L.: Turing lecture: The computer science of concurrency: the early years.
Commun. ACM 58(6), 71–76 (2015), http://doi.acm.org/10.1145/2771951

20. Owicki, S.S., Gries, D.: An axiomatic proof technique for parallel programs I. Acta
Inf. 6, 319–340 (1976), https://doi.org/10.1007/BF00268134

21. van Staden, S.: Constructing the views framework. In: Naumann, D. (ed.) Unify-
ing Theories of Programming - 5th International Symposium, UTP 2014, Sin-
gapore, May 13, 2014, Revised Selected Papers. Lecture Notes in Computer
Science, vol. 8963, pp. 62–83. Springer (2014), http://dx.doi.org/10.1007/

978-3-319-14806-9_4

22. van Staden, S.: On rely-guarantee reasoning. In: Hinze, R., Voigtländer, J.
(eds.) Mathematics of Program Construction: 12th International Conference,
MPC 2015, Königswinter, Germany, June 29–July 1, 2015. Proceedings. pp. 30–
49. Springer International Publishing, Cham (2015), https://doi.org/10.1007/
978-3-319-19797-5_2

23. Woodcock, J., Hughes, A.P.: Unifying theories of parallel programming. In: George,
C., Miao, H. (eds.) Formal Methods and Software Engineering, 4th International
Conference on Formal Engineering Methods, ICFEM 2002 Shanghai, China, Oc-
tober 21-25, 2002, Proceedings. Lecture Notes in Computer Science, vol. 2495, pp.
24–37. Springer (2002), http://dx.doi.org/10.1007/3-540-36103-0_5

http://doi.acm.org/10.1145/69575.69577
http://doi.acm.org/10.1145/69575.69577
https://doi.org/10.1007/978-3-642-82453-1_4
https://doi.org/10.1007/978-3-642-82453-1_4
http://doi.acm.org/10.1145/2771951
https://doi.org/10.1007/BF00268134
http://dx.doi.org/10.1007/978-3-319-14806-9_4
http://dx.doi.org/10.1007/978-3-319-14806-9_4
https://doi.org/10.1007/978-3-319-19797-5_2
https://doi.org/10.1007/978-3-319-19797-5_2
http://dx.doi.org/10.1007/3-540-36103-0_5

	UTCP: compositional semantics for shared-variable concurrency

