
On Kleene Algebras for weighted computation?

Leandro Gomes1, and Alexandre Madeira1,2and Lúıs S. Barbosa1

1 HASLab INESC TEC - Univ. Minho, Portugal
2 CIDMA - Univ. Aveiro, Portugal

Abstract. Kleene algebra with tests (KAT) was introduced as an alge-
braic structure to model and reason about classic imperative programs,
i.e. sequences of discrete actions guarded by Boolean tests.
This paper introduces two generalisations of this structure able to ex-
press programs as weighted transitions and tests with outcomes in a not
necessary bivalent truth space, namely graded Kleene algebra with tests
(GKAT) and Heyting Kleene algebra with tests (HKAT).
On these contexts, in analogy to Kozen’s encoding of Propositional Hoare
Logic (PHL) in KAT [10], we discuss the encoding of a graded PHL in
HKAT and of its while-free fragment in GKAT.

1 Introduction

1.1 Roadmap

Kleene algebra is pervasive in computer science: it arises in relational algebra,
semantics and logics of programs, automata and formal language theory, and
design and analysis of algorithms. In the specific context of program calculi, the
axiomatisation of Kleene algebra forms a purely equational system to manipu-
late programs [8]. Its applications typically deal with conventional, imperative
programming constructs such as conditional and loops. In order to reason equa-
tionally about them, a notion of test is required, which lead D. Kozen to define -
Kleene algebra with tests (KAT) [9], which plays a major role in reasoning about
programs.

Hoare logic (HL) was the first formal system proposed for verification of pro-
grams. Introduced in as early as 1969, its wide influence transformed Hoare’s
work in a cornerstone of program correctness, a reference for most current re-
search in the area. HL encompasses a syntax to reason about partial correctness
assertions (PCA) of the form {b}p{c}, also called a Hoare triple, and a deduc-
tive system to reason about them [5]. In a PCA, b and c stand for predicates,
representing pre and post conditions, respectively, and p is a program statement.

In particular, propositional Hoare logic (PHL) can be seen as a fragment of
HL, in which PCAs are reduced to static assertions about the underlying domain
of computation [10]. In [10] the authors show that this fragment can be encoded

?
This work is financed by the ERDF – European Regional Development Fund through the Operational Programme
for Competitiveness and Internationalisation - COMPETE 2020 Programme and by National Funds through the
Portuguese funding agency, FCT - Fundação para a Ciência e a Tecnologia, within projects POCI-01-0145-FEDER-016692

and UID/MAT/04106/2013. The second author is also supported by the individual grant SFRH/BPD/103004/2014.

in a Kleene algebra with tests. The translation is based on equational logic,
transforming PCAs into equations and the rules of inference into equational
implications.

As originally presented, KAT is suitable to reason about classic imperative
programs. In fact, such programs are particularly “well tractable”: they repre-
sent a sequence of discrete steps, which can be modelled as atomic transition
systems in a standard automaton. Moreover, the assertions about theses pro-
grams have an outcome in a bivalent truth space. However, current complex
dynamic systems are based in new computing domains, namely probabilistic
[15] or continuous [13], which entail the need for computing paradigms able to
deal with quantitative program executions (eg. weighted, valued, probabilistic).
Moreover, the assertions about these programs can have a graded outcome. In
this context, the development of algebraic structures to model weighted compu-
tations becomes a must. This work builds on such motivations to introduce two
generalisations of KAT able to express programs as weighted computations and
tests as predicates evaluated in graded truth space - the graded Kleene algebra
with tests (GKAT) and the Heyting Kleene algebra with tests (HKAT). GKAT,
for example, has a myriad of interesting examples, from continuous Lukasiewicz
lattice to the discrete finite hoops. HKAT, on the other hand, allows to address
full imperative languages.

In analogy to KAT [10], we intend to encode PHL into GKAT, in the context
of a research agenda to extend the classical area of program correctness. However,
we can only partially generalise such an encoding. More specifically, we can only
encode while-free programs. To achieve a complete encoding of Hoare logic, we
propose to refine the basic structure, obtaining HKAT as a generalisation of
the classical KAT. HKAT is, indeed, a subclass of GKAT. As a consequence,
however, its set of examples is smaller. It includes, in particular, the lattice 3
to deal with partial programs and uncertainty on tests, and Gödel algebra, a
well-known basic structure used in logics whose truth values are closed subsets
of the interval [0, 1].

The remaining of the paper is organised as follows: Subsection 1.2 recaps
some fundamental concepts needed to understand the definitions and results
presented in this work. Section 2 introduces graded Kleene algebra with tests
as a generalisation of KAT, including its axiomatisation, a few examples and
proofs of basic properties. It also presents a partial encoding of classical PHL
in GKAT. Section 3 introduces Heyting Kleene algebra with tests as another
generalisation of the standard KAT and a refinement of GKAT, enjoying of a
complete encoding of PHL. Section 4 sums up some related research, concludes,
and enumerates some topics for future work.

1.2 Preliminaries

Definition 1. A Kleene algebra with tests (KAT) is a tuple

(K,T,+, ; ,∗ ,̄ , 0, 1)

where T ⊆ K, 0 and 1 are constants, + and ; are binary operators in K and T ,
∗ is a unary operator in K, and ¯ is a unary operator defined only on T such
that:

– (K,+, ; ,∗ , 0, 1) is a Kleene algebra;
– (T,+, ; ,̄ , 0, 1) is a Boolean algebra;
– (T,+, ; , 0, 1) is a subalgebra of (K,+, ; , 0, 1).

The elements of K, denoted by lower case letters p, q, r, s, x, y, z, stand for pro-
grams and the elements of T , denoted by a, b, c, d are called tests. Kleene algebra
with tests induces an abstract programming language, where conditionals and
while loops programming constructs are encoded as follows:

if b then p
def
= b; p+ b̄

if b then p else q
def
= b; p+ b̄; q

while b do p
def
= (b; p)∗; b̄

As stated in Section 1, Hoare logic allows to verify imperative programs by
validating PCAs of the form {b}p{c} through a deductive system [5]. The validity
of a Hoare triple assures that whenever precondition b is met, after the execution
of program p, if and when p halts, the postcondition c is guaranteed to hold.
The set of logical rules is shown in Figure 1. Although the importance of HL for

– Composition rule:

{b}p{c} {c}q{d}
{b}p; q{d}

– Conditional rule:

{b ∧ c}p{d}, {¬b ∧ c}q{d}
{c} if b then p else q {d}

– While rule:

{b ∧ c}p{c}
{c} while b do p{¬b ∧ c}

– Weakening rule:

b′ → b, {b}p{c}, c→ c′

{b′} p{c′}
Fig. 1. Hoare logic rules

reasoning about program correctness is unquestionable, proofs in PHL can be
more easily done in terms of purely equational calculation on KAT, as presented
in [10]. In fact, it is shown that PHL can be encoded in KAT, in such a way
that the inference rules Composition, Conditional, While and Weakening become
derived theorems of KAT.

As presented in [10], the PCA {b}p{c} can be encoded in KAT as b; p; c̄ = 0,
which is equivalent to b; p = b; p; c. The first equation means, intuitively, that the
execution of p with precondition b and postcondition c̄ does not halt. Equation
b; p = b; p; c, on the other hand, states that the verification of the post condition
c after the execution of b; p is redundant.

Moreover, the inference rules of Hoare logic can be encoded in KAT, as shown
below:

– Composition:

b; p = b; p; c ∧ c; q = c; q; d⇒ b; p; q = b; p; q; d

– Conditional :

b; c; p = b; c; p; d ∧ b̄; c; q = b̄; c; q; d⇒ c; (b; p+ b̄; q) = c; (b; p+ b̄; q); d

– While:
b; c; p = b; c; p; c⇒ c; (b; p)∗; b̄ = c; (b; p)∗; b̄; b̄; c

– Weakening :

b′ ≤ b ∧ b; p = b; p; c ∧ c ≤ c′ ⇒ b′; p = b′; p; c′

2 Graded Kleene Algebra with Tests

2.1 The basic structure

The approach proposed here, to reason about program executions in a many-
valued context, is based on redefining the interpretation of the assertions about
programs. Since such assertions take the form of tests, we start by modifying
the part of the axiomatisation of KAT that deals with properties of tests, i.e.,
the Boolean algebra (T,+, ·,̄ , 0, 1).

Instead of having a Boolean outcome, as happens in KAT, tests are graded,
taking values from a truth space with more than two possible outcomes (0 and 1).
As a consequence, the expression b; p represents a weighted execution of program
p, conditioned by the value of b. In order to reason about computations in this
graded setting, we introduce the following generalisation of KAT:

Definition 2. A graded Kleene algebra with tests (GKAT) is a tuple

(K,T,+, ; ,∗ ,→, 0, 1)

where K and T are sets, with T ⊆ K, 0 and 1 are constants and + and ; are
binary operations in K and T , ∗ is a unary operator in K, and → is an operator
only defined in T , satisfying the axioms enumerated in Figure 2, where relation
≤ is induced by + in the usual way: p ≤ q iff p+ q = q. Note that (T,+, ; , 0, 1)
is a subalgebra of (K,+, ; , 0, 1).

Again, programs are denoted by lower case letters p, q, r, s, x, y, z and tests by
a, b, c, d. Note that, differently from what happens in KAT, negation is not ex-
plicitly denoted, although it can be derived as a → 0, for a ∈ T . Indeed, this
operator, along with a more relaxed subalgebra (which will replace the Boolean
subalgebra of KAT) are introduced to support a proper truth space, for possible
non bivalent interpretation of assertions.

Some operators in GKAT play a different role when acting on programs
or tests. Such is the case of “+” and “;”. The former one plays the role of

p + (q + r) = (p + q) + r (1)

p + q = q + p (2)

p + p = p (3)

p + 0 = 0 + p = p (4)

p; (q; r) = (p; q); r (5)

p; 1 = 1; p = p (6)

p; (q + r) = (p; q) + (p; r) (7)

(p + q); r = (p; r) + (q; r) (8)

p; 0 = 0; p = 0 (9)

1 + p; p∗ = p∗ (10)

1 + p∗; p = p∗ (11)

q + p; r ≤ r ⇒ p∗; q ≤ r (12)

q + r; p ≤ r ⇒ q; p∗ ≤ r (13)

a; b ≤ c ⇔ b ≤ a→ c (14)

a→ b ≤ a→ (b + c) (15)

b ≤ a→ (a; b) (16)

a + 1 = 1 + a = 1 (17)

a; b = b; a (18)

a + (a; b) = a (19)

Fig. 2. Axiomatisation of graded Kleene algebra with tests

non-deterministic choice, when interpreting programs, and of logical disjunction,
when acting on tests. The latter is taken as sequential composition of actions
when applied to elements of K, and as a conjunction when applied to elements of
T . In the domain of programs, the constants 0 and 1 refer to halt and skip, while
when applied on tests, stand for false and true, respectively. However, there are
operations specific to just one of these domains. For instance, while operation ∗
is taken as iterative execution of programs, operation → plays the role of logical
implication over tests. Let us now discuss some instances of GKAT.

Example 1. (2 - the Boolean lattice). Our first example is the well known binary
structure

2 = ({>,⊥}, {>,⊥},∨,∧,∗ ,→,⊥,>)

with the standard interpretation of Boolean connectives. Operator ∗ maps each
element of {>,⊥} to > and → is defined as logical implication.

Example 2. A second example is provided by the three-element linear lattice,
which introduces an explicit denotation for “unknown” (or undefined).

3 = ({>, u,⊥}, {>, u,⊥},∨,∧,∗ ,→,⊥,>)

where

∨ ⊥ u >
⊥ ⊥ u >
u u u >
> > > >

∧ ⊥ u >
⊥ ⊥ ⊥ ⊥
u ⊥ u u
> ⊥ u >

→ ⊥ u >
⊥ > > >
u ⊥ > >
> ⊥ u >

∗

⊥ >
u >
> >

Example 3. For a fixed, finite set A, let us consider the structure

2A = (P (A), P (A),∪,∩,∗ ,→, ∅, A)

where P (A) denotes the powerset of A, ∪ and ∩ are set union and intersection,
respectively, ∗ maps each set X ∈ P (A) into A and X → Y = XC ∪ Y , where
XC = {x ∈ A|x /∈ X}.
Example 4. This example is based on the well-known Lukasiewicz arithmetic
lattice.

 L = ([0, 1], [0, 1],max,�,∗ ,→, 0, 1)

where x→ y = min{1, 1− x+ y}, x� y = max{0, x+ y − 1} and ∗ maps each
point of the interval [0, 1] to 1.

Example 5. Let us consider now the example given by the standard Π-algebra

Π = ([0, 1], [0, 1],max, .,∗ ,→, 0, 1)

where . is the usual multiplication for real numbers and

x→ y =

{
1, if x ≤ y
y/x, if y ≤ x

with / being the usual division for real numbers and ∗ mapping each point of
the interval [0, 1] to 1.

Example 6. Another example is provided by the Gödel algebra

G = ([0, 1], [0, 1],max,min,∗ ,→, 0, 1)

where

x→ y =

{
1, if x ≤ y
y, if y ≤ x

and ∗ maps each point of the interval [0, 1] to 1.

Example 7. We consider now a GKAT endowing the finite Wajsberg hoop with a
star operator, as presented in [1]. For a fixed natural k and a generator a, define
the structure

Wk = (Wk,Wk,+, ; ,
∗ ,→, 0, 1)

where Wk = {a0, a1, ..., ak−1}, 1 = a0 and 0 = ak−1. Moreover, for any m,n ≤
k − 1, am + an = amin{m,n}, am; an = amin{m+n,k−1}, (am)∗ = a0 and am →
an = amax{n−m,0}.

Example 8. The (min,+) Kleene algebra of [6], known as the tropical semiring,
can be extended to a GKAT by adding residuation →. First let R+ denote the
set {x ∈ R|x ≥ 0} and let ∞ be a new element. Thus, define

R = (R+ ∪ {∞}, R+ ∪ {∞},min,+,∗ ,→,∞, 0)

where, for any x, y ∈ R+ ∪ {∞}, x∗ = 0 and x→ y = max{y − x, 0}.

Note that in all examples considered, T = K, that is, the set of tests and the
set of programs coincide.

For the purpose of this work, i.e., for reasoning about graded computations
and assertions in a multi-valued truth space, Example 4 is particularly relevant.
Indeed, this is a very well known model for fuzzy and multi-valued logics.

A main particularity of the GKAT axiomatization concerns rules (17)-(19),
which form a weakened version of the axiomatization of a Boolean algebra. Note,
however, that this is, in fact, a generalisation:

Lemma 1. Any KAT is a GKAT.

Proof. For a fixed KAT

A = (K,T,+, ; ,∗ ,̄ , 0, 1)

let us consider the structure

M = (K,T,+, ; ,∗ ,→, 0, 1)

inheriting the operators +, ;, ∗ and constants 0 and 1 from A. Define a→ 0 := ā
and a→ b := ā+ b, for a, b ∈ T .
Actually, axioms (14)-(16) hold for M , for all a, b, c ∈ T . For (14), assume
a; b ≤ c, i.e. by definition of ≤, a; b+ c = c. Then,

a→ c

= { definition of → and hypothesis}
ā+ ((a; b) + c)

= { BA (+, ;)-dist.}
(ā+ (a+ c)); (ā+ (b+ c))

= { (1), BA: a + ā = 1, (17) and (6)}
ā+ b+ c

= { (2) and definition of →}
a→ c+ b

Thus, a; b ≤ c ⇒ b ≤ a → c. Now, assume b ≤ a → c, i.e. by definition of M ,
b; (ā+ c) = b, and reason

a; b+ c

= { b; (ā + c) = b}
a; (b; (ā+ c)) + c

= { BA (+, ;)-dist.}
a; b; ā+ a; b; c+ c

= { BA comm, a; ā = 0, (9), (4) and (8)}
(a; b+ 1); c

= { (17) and (6)}
c

Hence, b ≤ c→ c⇒ a; b ≤ c. To prove (15), consider

a→ b+ a→ (b+ c)

= { by definition of →}
(ā+ b) + (ā+ (b+ c))

= { (1), (2) and (3)}
ā+ (b+ c)

= { by definition of →}
a→ (b+ c)

Axiom (16) is proved as follows:

a→ (a; b)

= { definition of →}
ā+ (a; b)

= { BA (+, ;)-dist., BA: a + ā = 1 and (6)}

ā+ b

= { definition of →}
a→ b

We have that b ≤ a→ b, so, by transitivity, b ≤ a→ (a; b), for all a, b ∈ T .
We concluded the proof that axioms (14)-(16) hold for any a, b, c ∈ T in M .

Since axioms (1)-(13), (17)-(19) are axioms of A, M is, indeed, a GKAT.
2

As stated above, while tests in KAT have an outcome of two possible values
(0 and 1), GKAT deals with graded tests. This entails the need to weaken the
Boolean subalgebra (T,+, ·,∗ , 0, 1,̄) of KAT. In any GKAT, for any test a ∈ T ,
a; (a→ 0) = 0 , which follows immediately from definition of ≤ and axiom (14).
However, it is not necessarily true that a + (a → 0) = 1. In order to show this,
let us consider the following GKAT structure over the set {0, n,m, 1}, where
{0,m, 1} ⊆ T and n ∈ K, in which the operation ∗ maps all points to the top
element of T , 1, and the remaining operations are defined as follows:

+ 0 n m 1
0 0 n m 1
n n n m 1
m m m m 1
1 1 1 1 1

; 0 n m 1
0 0 0 0 0
n 0 0 0 n
m 0 0 0 m
1 0 n m 1

→ 0 n m 1
0 1 1 1 1
n m 1 1 1
m m m 1 1
1 0 n m 1

In this structure, and considering a = m, we have m + (m → 0) = m + m =
m 6= 1. Recall that in KAT, a program execution is guarded by a test with only
two possible outcomes: 0 or 1. Thus, an expression b; p intuitively means that
program p is executed when b = 1 and is not executed when b = 0.

It is therefore safe to state that GKAT has embedded a weakened Boolean
subalgebra and, consequently, tests can assume other values besides 0 and 1,
representing the truth degree of the statement “b is true”. Consequently, the ex-
pression b; p means that the execution of program p is guarded by that particular
truth (graded) value.

2.2 Graded Propositional Hoare Logic

Kleene algebra with tests provides a theoretical basis to reason about classic
imperative programs by using purely equational reasoning. Actually, its presen-
tation in [10] aimed at the reduction of PHL to ordinary equations and quasi-
equations, as mentioned in the introduction. In particular, the inference rules of
Hoare logic are derived as theorems in KAT.

Following an analogous approach [10], mentioned in Subsection 1.2, we now
encode propositional Hoare logic in GKAT. Since this new structure deals with
graded tests, both the meaning of PCAs and the inference rules need to be
adjusted. This reinterpretation unfolds a generalised version of classic Hoare
logic, that we call here graded propositional Hoare logic (GPHL).

In the presence of graded tests, the interpretation of a triple {b}p{c}, and
hence, the correctness of a program, relies on the idea that whenever b; p executes
with a truth degree b, if and when it halts, it is guaranteed that (b; p); c holds
with at least the same degree of truth. By other words, correctness of a program
can only grow with execution. Therefore, the encoding in GKAT is captured by
the following inequality:

b; p ≤ b; p; c
However, the equivalence

b; p ≤ b; p; c⇔ b; p = b; p; c, (20)

also holds in GKAT, following immediately from (7), (17) and (6). Note, also,
that the equivalence

b; p = b; p; c⇔ b; p ≤ p; c

does not hold in GKAT, as it does in KAT.
The inference rules of Hoare logic can also be encoded in GKAT, as presented

in the following theorem.

Theorem 1. The following equational implications are theorems in GKAT.

1. Composition rule:
b; p ≤ b; p; c ∧ c; q ≤ c; q; d⇒ b; p; q = b; p; q; d

2. Conditional rule:
b; c; p ≤ b; c; p; d ∧ (b→ 0); c; q ≤ (b→ 0); c; q; d
⇒ c; (b; p+ (b→ 0); q) ≤ c; (b; p+ (b→ 0); q); d

3. Weakening rule:
b′ ≤ b ∧ b; p ≤ b; p; c ∧ c ≤ c′ ⇒ b′; p ≤ b′; p; c′

Proof. 1. Let us assume that b; p ≤ b; p; c and c; q ≤ c; q; d. By (20), these
inequalities are equivalent to b; p = b; p; c and c; q = c; q; d, respectively. So,

we have

b; p; q

= { b; p = b; p; c}
b; p; c; q

= { c; q = c; q; d}
b; p; c; q; d

= { b; p = b; p; c}
b; p; q; d

2. Assume b; c; p ≤ b; c; p; d and (b→ 0); c; q ≤ (b→ 0); c; q; d.
First of all, observe that, for any p, q, r, s ∈ K

p ≤ q & r ≤ s⇒ p+ r ≤ q + s (21)

To prove this, assume that p ≤ q and r ≤ s, i.e. p + q = q and r + s = s.
Then, by (1) and (2), (p + r) + (q + s) = (p + q) + (r + s) = q + s. So, by
(21),

b; c; p+ (b→ 0); c; q ≤ b; c; p; d+ (b→ 0); c; q; d.

⇔ { (18), (7) and (8)}
c; (b; p+ (b→ 0); q) ≤ c; (b; p+ (b→ 0); q); d

3. Finally, for the Weakening rule, observe that, for all b, c ∈ T and p ∈ K,

b; p ≤ b; p; c⇒ b; p; (c→ 0) ≤ 0 (22)

Using (20) to rewrite (22) as

b; p = b; p; c⇒ b; p; (c→ 0) = 0 (23)

and, assuming b; p = b; p; c, we have

b; p; (c→ 0)

= { b; p = b; p; c assumption}
b; p; c; (c→ 0)

= { a; (a→ 0) = 0) and (9)}
0

Using (23), the Weakening rule can be rewritten as

a ≤ b ∧ b; p; (c→ 0) = 0 ∧ (d→ 0) ≤ (c→ 0)⇒ a; p; (d→ 0) = 0

which follows from the monotonicity of “;”.

2

The attentive reader certainly noticed the absence of a While rule in the graded
setting. In analogy with what was done before, such a rule would take the form:

b; c; p ≤ b; c; p; c⇒ c; (b; p)∗; (b→ 0) ≤ c; (b; p)∗; (b→ 0); (b→ 0); c (24)

However, this is not necessarily true for all p ∈ K and b, c ∈ T .
To see this, consider the following GKAT structure over the set {0, n,m, 1},

in which the operator ∗ maps all points to the top element 1 and the remaining
operators are defined as follows:

+ 0 n m 1
0 0 n m 1
n n n m 1
m m m m 1
1 1 1 1 1

; 0 n m 1
0 0 0 0 0
n 0 0 0 n
m 0 0 0 m
1 0 n m 1

→ 0 n m 1
0 1 1 1 1
n m 1 1 1
m m m 1 1
1 0 n m 1

In this structure, {0,m, 1} ⊆ T and n ∈ K. If b = 0, c = m, p = 0, the instantia-
tion of b; c; p ≤ b; c; p; c becomes, using axioms (9) and (3),
0;m; 0 + 0;m; 0;m = 0;m; 0;m⇔ 0 = 0
and that of c; (b; p)∗; (b→ 0) ≤ c; (b; p)∗; (b→ 0); (b→ 0); c becomes, by axioms
(9), (10), (6) and (4),
m; (0)∗; 1 +m; (0)∗; 1; 1;m = m; (0)∗; 1; 1;m⇔ m = 0.
Using these two equations, the equational implication which could represent the
While rule (24) boils down to 0 = 0 ⇒ m = 0, which is obviously false. In the
next section we will discuss this problem, by presenting an alternative algebraic
structure with complete Hoare logic encoding.

3 Heyting Kleene Algebra with Tests

3.1 The basic structure

By carefully looking at the while rule proof for the Hoare logic encoding in KAT
it is easy to note that one cause for the failure of the analogous encoding in
GKAT, mentioned in the previous section, is the impossibility of duplicating
graded tests. Actually, in GKAT, we don’t have that b; b = b, but only b; b ≤ b.
In fact, the duplication is a requirement for the proof of the While rule. The
solution we propose here is to refine the GKAT structure with some additional
properties, capturing two crucial aspects for the purpose of this work: allowing for
a complete encoding of Hoare logic and, at the same time, capturing non-classical
examples, with degrees of uncertainty in program executions and evaluation of
tests. The idea is to use a Heyting algebra to model the tests, instead of the
Boolean algebra implicit on KAT.

Definition 3. A Heyting Kleene algebra with tests (HKAT) is a tuple

(K,T,+, ; ,∗ ,→, 0, 1)

where K and T are sets, with T ⊆ K, 0 and 1 are constants and + and ; are
binary operations in K and T , ∗ is a unary operator in K, and → is an operator
only defined in T , satisfying the axioms enumerated in Figure 2 plus three axioms
from KAT, listed in Figure 3. The relation ≤ is induced by + in the usual way
p ≤ q iff p+ q = q such that:

– (K,+, ; ,∗ , 0, 1) is a Kleene algebra;
– (T,+, ; ,→, 0, 1) is a Heyting algebra;
– (T,+, ; , 0, 1) is a subalgebra of (K,+, ; , 0, 1).

a; a = a (25)

a; (a + b) = a (26)

a + (b; c) = (a + b); (a + c) (27)

Fig. 3. New axioms added to the axiomatisation of GKAT, to form the axiomatisation
of Heyting Kleene algebra with tests

Note that, as in GKAT, negation is not explicitly denoted and can be derived
as a→ 0.

Let us also enhance that HKAT is a subclass of GKAT. Examples 1, 2, 3 and
6 illustrate this structure. The set of examples discussed for GKAT and HKAT,
as well as which ones are also KAT is summarised in Figure 4.

HKAT

GKAT

2

⇧
 L
Wk,k 6=2

R

G

P(A)

2

KAT

W2

Fig. 4. Examples of KAT, GKAT and HKAT

In HKAT, we can think about the intuitive meaning of the execution of a
program guarded by a test as an uncertain execution. For instance, in Example
2, if b = u, the expression u; p means that we are not sure if program p could be
executed or not.

Just as GKAT, HKAT is also a generalisation of KAT.

Lemma 2. Any KAT is a HKAT.

Proof. It suffices to show that axioms (14), (15) and (16) hold for all a, b, c ∈ T .
The proof is the same as Lemma 1.

3.2 Heyting Propositional Hoare logic

Let us now discuss how to encode propositional Hoare logic in HKAT. We call
this generalisation Heyting propositional Hoare logic (HPHL). Differently from
what happens in GKAT, the three encodings proposed by D. Kozen for Hoare
logic are equivalent in HKAT:

b; p = b; p; c⇔ b; p ≤ b; p; c⇔ b; p ≤ p; c

Hence, the inference rules of Hoare logic can be encoded in HKAT as in
classical propositional Hoare logic.

Theorem 2. The following equational implications are theorems in HKAT.

1. Composition rule:

b; p = b; p; c ∧ c; q = c; q; d⇒ b; p; q = b; p; q; d

2. Conditional rule:

b; c; p = b; c; p; d ∧ (b→ 0); c; q = (b→ 0); c; q; d
⇒ c; (b; p+ (b→ 0); q) = c; (b; p+ (b→ 0); q); d

3. While rule:

b; c; p = b; c; p; c⇒ c; (b; p)∗; (b→ 0) = c; (b; p)∗; (b→ 0); (b→ 0); c

4. Weakening rule:

b′ ≤ b ∧ b; p = b; p; c ∧ c ≤ c′ ⇒ b′; p = b′; p; c′

Proof. The proofs for rules 1, 2 and 4 are as in Theorem 1. To prove rule 3,
consider

c; b; p ≤ c; b; p; c⇒ c; (b; p)∗ ≤ c; (b; p)∗; c.

Assuming

c; b; p ≤ c; b; p; c (28)

by (13), it is enough to show

c+ c; (b; p)∗; c; b; p ≤ c; (b; p)∗; c

But

c+ c; (b; p)∗; c; b; p

≤ { by (28)}
c+ c; (b; p)∗; c; b; p; c

≤ { by B.A}
c; 1; c+ c; (b; p)∗; c; b; p; c

≤ { by distributivity}
c; (1 + (b; p)∗; c; b; p); c

≤ { by monotonicity}
c; (1 + (b; p)∗; b; p); c

≤ { by (11)}
c; (b; p)∗; c

Note that, as in classical case, for both encodings of PHL previously discussed,
the way to reason about the correctness of a program is settled in a bivalent
truth space.

4 Conclusion and Further Work

This paper aimed at generalising Kleene algebra with tests, to reason equation-
ally about graded computations and assertions evaluated in a multi-valued truth
space. Moreover, the propositional fragment of classic Hoare logic was revisited.

A similar attempt is discussed in [15], which introduces a complete theory
of probabilistic KAT to deal with regular programs with probabilities. However,
instead of focusing on the possible range of values for tests, or in adding an
uncertainty concretisation to them, which have an immediate consequence on
program executions, the authors add a new operator +α to the algebraic struc-
ture, where α is a probability value. Thus, in their work, a probabilistic Kleene
algebra with Tests is defined as

(K,T,+,+α, ·,∗ , 0, 1,̄)

where expression p+α q represents the probabilistic choice between executing a
program p with probability α or a program q with probability 1−α. More related
work on this matter include references [3] and [12]. However, the main ideas be-
hind these approaches is to introduce probabilities at the syntactic level, namely
a new choice operator. Our approach, on the other hand, opted by redefining
the notions of test and program execution.

The approach taken in this paper for GKAT, of adding a residual as a logical
implication to capture a multi-valued setting, is based on previous work reported
in [11], where an action lattice is adopted as the basic algebraic structure to
generate many-valued dynamic logics.

Originally derived from action algebras [7], an action lattice entails both
a generic space of computations, with choice, composition and iteration, and,
supported by residuation, a proper truth space for a non bivalent interpretation
of the assertions (as a residuated lattice). V. Pratt thought about residuation as a
pure technicality to obtain a finitely-based equational variety [14]. Subsequently,
the work of D. Kozen [7] extended this notion by adding and axiomatizing a meet

operation, in order to recover the closure under matricial formation typical of
the Kleene algebras [2].

The attentive reader may wonder about the lack of concrete illustrations
for the introduced formalism, like simple imperative programs as in [10]. Note,
however, that programs are interpreted here as weighted relations and tests as
truth degrees. Hence, as it happens in propositional Hoare logic derived from
standard KAT, there is no first-order structure to interpret program variables.
Consequently, there is no assignment rule neither for GPHL nor for HPHL, as
presented here. Extending the formalism in this direction, in order to deal with
imperative fuzzy programs is, naturally, in our agenda.

Another important aspect to note is that, since both GKAT and HKAT are
generalisations of KAT, as stated by lemmas 1 and 2, all the classical models
of KAT, namely relational algebra over a set, languages over an alphabet and
traces are naturally examples of our structures. In all these cases, the set of
programs K and the set of tests T do not coincide, contrary to what happens
with all the examples presented in this paper. Nevertheless, since the introduced
structures intend to formalise over fuzzy programs, we want to go a step fur-
ther: the tentative to formalise fuzzy relations and fuzzy languages, as they are
presented in [4], as models of GKAT and HKAT is a priority in our agenda.

In all variants of dynamic logic discussed in the literature, even when some
forms of structured computations are taken into consideration, the validity of
assertions (for example, of Hoare triples annotating a program) is always stated
in classical terms. This means that, even when the object of reasoning is e.g.
a fuzzy program or a quantum system, the validity of an assertion over it is
discussed in classical, two-valued logic.

In this work we assume, as in classic PHL, that a PCA is valid if b; p = b; p; c.
In GKAT, this expression states that, after the execution of p guarded by the
truth degree of precondition b, a state is reached where the truth degree of the
post condition does not modify the value of the execution. In HKAT, for the
case considered in example 2, the variation from the classical case comes when
b = u. Thus, the expression b; p can be interpreted as “we are not sure if program
p can be executed”. Due to the nature of the expression (an equality relation),
this is clearly tied to the classical, two-valued logic: despite the graded nature
of the computations, their correctness is evaluated in a bivalent truth space.

This limitation motivates an approach to be addressed in future work: the
intention is to go a step further and resort to the same algebraic structure used
to specify the computing paradigm, in order to give semantics to the logic used
to reason about it. This makes it possible to discuss the validity of an assertion
over a fuzzy or a quantum program in terms of a logic capturing itself fuzzy or
quantum reasoning, respectively.

References

1. W. J. Blok and I. Ferreirim. On the structure of hoops. Algebra Universalis,
43:233–257, 2000.

2. J. Conway. Regular Algebra and Finite Machines. Dover Publications, 1971.
3. J. den Hartog and E. P. de Vink. Verifying probabilistic programs using a Hoare

like logic. Int. J. Found. Comput. Sci., 13(3):315–340, 2002.
4. R. Guilherme. A coalgebraic approach to fuzzy automata. Master’s thesis, Facul-

dade de Ciências e Tecnologia - Universidade Nova de Lisboa, Lisboa, 2016.
5. C. A. R. Hoare. An axiomatic basis for computer programming. Commun. ACM,

12(10):576–580, 1969.
6. D. Kozen. The design and analysis of algorithms. Springer-Verlag New York, 1992.
7. D. Kozen. On action algebras. In Logic and the Flow of Information, Amsterdam,

1993.
8. D. Kozen. A Completeness Theorem for Kleene Algebras and the Algebra of

Regular Events. Information and Computation, 110(May 1994):366–390, 1994.
9. D. Kozen. Kleene algebra with tests. ACM Transactions on Programming Lan-

guages and Systems, 19(3):427–443, 1997.
10. D. Kozen. On Hoare logic and Kleene algebra with tests. ACM Transactions on

Computational Logic (TOCL), 1(212):1–14, 2000.
11. A. Madeira, R. Neves, and M. A. Martins. An exercise on the generation of many-

valued dynamic logics. Journal of Logical and Algebraic Methods in Programming,
1:1–29, 2016.

12. A. McIver, E. Cohen, and C. Morgan. Using probabilistic kleene algebra for
protocol verification. In R. A. Schmidt, editor, Relations and Kleene Algebra in
Computer Science, 9th International Conference on Relational Methods in Com-
puter Science and 4th International Workshop on Applications of Kleene Algebra,
RelMiCS/AKA 2006, Manchester, UK, August 29-September 2, 2006, Proceedings,
volume 4136 of Lecture Notes in Computer Science, pages 296–310. Springer, 2006.

13. A. Platzer. Logical Analysis of Hybrid Systems - Proving Theorems for Complex
Dynamics. Springer, 2010.

14. V. R. Pratt. Action logic and pure induction. In J. van Eijck, editor, Logics in
AI, European Workshop, JELIA ’90, Amsterdam, The Netherlands, September 10-
14, 1990, Proceedings, volume 478 of Lecture Notes in Computer Science, pages
97–120. Springer, 1990.

15. R. Qiao, J. Wu, Y. Wang, and X. Gao. Operational semantics of probabilistic
Kleene algebra with tests. Proceedings - IEEE Symposium on Computers and
Communications, pages 706–713, 2008.

