Skip to main content

Optimization of the Parameters of Smoothed Particle Hydrodynamics Method, Using Evolutionary Algorithms

  • Chapter
  • First Online:

Part of the book series: Studies in Computational Intelligence ((SCI,volume 749))

Abstract

Smooth particle hydrodynamics (SPH) is a mesh free numerical method for solving hydrodynamical equations. For its functioning, the method uses; one integer-domain parameter (the total number of particles) and three real domain parameters (smoothing parameters and artificial viscosity). For a given problem (geometry and initial conditions) these parameters can be tuned to reduce the computational cost and improve the accuracy of the solutions. Optimized values of the SPH parameters using the evolutionary algorithms, Differential Evolution (DE) and Boltzmann Univariate Marginal Distribution Algorithm (BUMDA) are obtained for different Sod shock tube test problems. Comparison of the numerical solution of the physical variables with that of the exact solution shows that this optimization strategy can be used to make an initial guess of the SPH parameters based on the initial conditions of the simulation domain. The performance of the two algorithms are statistically compared.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. J.J. Monaghan, Smoothed Particle Hydrodynamics, Area, vol. 30 (1992), pp. 543–574

    Google Scholar 

  2. N. Xiao, C. Leiting, X. Tao, Real-time incompressible fluid simulation on the GPU. Int. J. Comput. Games Technol. 2015, 12 (2015)

    Google Scholar 

  3. A.W. Alshaer, B.D. Rogers, L. Li, Smoothed particle hydrodynamics (SPH) modelling of transient heat transfer in pulsed laser ablation of Al and associated free-surface problems. Comput. Mater. Sci. 127, 161–179 (2017)

    Google Scholar 

  4. S.I. Inutsuka, Reformulation of smooth particle hydrodynamics with Riemann solver. J. Comput. Phys. 179, 238–267 (2002)

    Article  MATH  Google Scholar 

  5. M. Muller, D. Charypar, M. Gross, Particle-based fluid simulation for interactive applications, in Proceedings of the 2003 ACM SIGGRAPH/Eurographics Symposium on Computer Animation (2003), pp. 154–159

    Google Scholar 

  6. G. Fourtakas, B.D. Rogers, Modelling multi-phase liquid-sediment scour and resuspension induced by rapid flows using smoothed particle hydrodynamics (SPH) accelerated with a graphics processing unit (GPU). Adv. Water Resour. 92, 186–199 (2016)

    Google Scholar 

  7. I. Markus, O. Jens, S. Barbara, K. Andreas, T. Matthias, SPH Fluids in Computer Graphics (The Eurographics Association, 2014)

    Google Scholar 

  8. H. Chen, Z. Jian, S. Hanqiu, W. Enhua, Parallel-optimizing SPH fluid simulation for realistic VR environments. Comput. Anim. Virtual Worlds 26, 43–54 (2015)

    Google Scholar 

  9. R.A. Gingold, J.J. Monagahan, Kernel estimates as a basis for general particle methods in hydrodynamics. J. Comput. Phys. 46, 429–453 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  10. A. Barreiro, A.J.C. Crespo, J.M. Domínguez, M. Gómez-Gesteira, Smoothed particle hydrodynamics for coastal engineering problems. Comput. Struct. 120, 96–106 (2013)

    Article  Google Scholar 

  11. A. Corrado, A.J.C. Crespoc, J.M. Domínguez, M. Gómez-Gesteira, S. Tomohiro, V. Toon, Applicability of smoothed particle hydrodynamics for estimation of sea wave impact on coastal structures. Coast. Eng. 96, 1–12 (2015)

    Article  Google Scholar 

  12. E.L. Fasanella, K.E. Jackson, Impact testing and simulation of a crashworthy composite fuselage section with energy-absorbing seats and dummies. J. Am. Helicopter Soc. 49, 140–148 (2004)

    Google Scholar 

  13. D. Guibert, M. de Leffe, G. Oger, J.-C. Piccinali, Efficient parallelisation of 3D SPH schemes, in 7th International SPHERIC Workshop, Prato, Italy, SPHERIC (2012), pp. 259–265

    Google Scholar 

  14. M.S. Shadloo, M. Zainali, M. Yildiz, Improved solid boundary treatment method for the solution of flow over an airfoil and square obstacle by SPH method, in 5th International SPHERIC Workshop, Manchester, UK, SPHERIC (2010), pp. 37–41

    Google Scholar 

  15. R.A. Gingold, J.J. Monaghan, Smoothed particle hydrodynamics - theory and application to non-spherical stars. Mon. Not. R. Astron. Soc. 181, 375–389 (1977)

    Article  MATH  Google Scholar 

  16. J.J. Monaghan, R.A. Gingold, Shock simulation by the particle method SPH. J. Comput. Phys. 52, 374–389 (1983)

    Article  MATH  Google Scholar 

  17. M. Steinmetz, E. Mueller, Hydrodynamical cosmology: galaxy formation in a cosmological context, metallicities and metallicity gradients. Astron. Ges. Abstract Ser. 281 (1992)

    Google Scholar 

  18. V. Springel, The cosmological simulation code GADGET-2, mnras, vol. 364 (2005), pp. 1105–1134

    Google Scholar 

  19. Q. Hongfu, G. Weiran, A new SPH equation including variable smoothing lengths aspects and its implementation. Comput. Mech. ISBN: 9783540759997_143 (2009)

    Google Scholar 

  20. J.C. Travis, H.D. Brian, X.H. Zhen, P.B. Wang, Aerodynamic shape optimization of a vertical-Axis wind turbine using differential evolution. ISRN Renew. Energy 2012, 16 (2012)

    Google Scholar 

  21. T. Rogalsky, R.W. Derksen, Hybridization of differential evolution for aerodynamic design, in Proceedings of the 8th Annual Conference of the Computational Fluid Dynamics Society of Canada (2000), pp. 729–736

    Google Scholar 

  22. K.W. Wagner, The complexity of combinatorial problems with succinct input representation. Acta Inf. 23, 325–356 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  23. J.K. Lenstra, A.H.G. Rinnooy, P. Brucker, Complexity of machine scheduling problems. Ann. Discret. Math. 1, 343–362 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  24. E.F. Toro, Riemann Solvers and Numerical Methods for Fluid Dynamics: A Practical Introduction (Springer, ISBN. 3540616764, 1997)

    Google Scholar 

  25. R. Storn, K. Price, Differential Evolution - A Simple and Efficient Adaptive Scheme for Global Optimization Over Continuous Spaces (1995)

    Google Scholar 

  26. S.I. Valdez, A. Hernández, S. Botello, A Boltzmann based estimation of distribution algorithm. Inf. Sci. 236, 126–137 (2013)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martín Carpio .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

de Anda-Suárez, J., Carpio, M., Jeyakumar, S., Puga-Soberanes, H.J., Mosiño, J.F., Cruz-Reyes, L. (2018). Optimization of the Parameters of Smoothed Particle Hydrodynamics Method, Using Evolutionary Algorithms. In: Castillo, O., Melin, P., Kacprzyk, J. (eds) Fuzzy Logic Augmentation of Neural and Optimization Algorithms: Theoretical Aspects and Real Applications. Studies in Computational Intelligence, vol 749. Springer, Cham. https://doi.org/10.1007/978-3-319-71008-2_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-71008-2_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-71007-5

  • Online ISBN: 978-3-319-71008-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics