Skip to main content

Parallel Bacterial Potential Field Algorithm for Path Planning in Mobile Robots: A GPU Implementation

  • Chapter
  • First Online:
Fuzzy Logic Augmentation of Neural and Optimization Algorithms: Theoretical Aspects and Real Applications

Part of the book series: Studies in Computational Intelligence ((SCI,volume 749))

Abstract

Path planning is a fundamental task in autonomous mobile robot navigation and one of the most computationally intensive tasks. In this work, a parallel version of the bacterial potential field (BPF) method for path planning in mobile robots is presented. The BPF is a hybrid algorithm, which makes use of a bacterial evolutionary algorithm (BEA) with the artificial potential field (APF) method, to take advantage of intelligent and classical methods. The parallel bacterial potential field (parallel-BPF) algorithm is implemented on a graphics processing unit (GPU) to speed up the path planning computation in mobile robot navigation. Simulation results to validate the analysis and implementation are provided; the experiments were specially designed to show the effectiveness and the efficiency of the parallel-BPF algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. O. Montiel, U. Orozco-Rosas, R. Sepúlveda, Path planning for mobile robots using Bacterial Potential Field for avoiding static and dynamic obstacles. Expert Syst. Appl. 42(12), 5177–5191 (2015)

    Article  Google Scholar 

  2. M. Candeloro, A.M. Lekkas, A.J. Sørensen, A Voronoi-diagram-based dynamic path-planning system for underactuated marine vessels. Control Eng. Pract. 61, 41–54 (2017)

    Article  Google Scholar 

  3. P. Muñoz, M.D. R-Moreno, B. Castaño, 3Dana: a path planning algorithm for surface robotics. Eng. Appl. Artif. Intell. 60, 175–192 (2017)

    Article  Google Scholar 

  4. S. Garrido, L. Moreno, F. Martín, D. Álvarez, Fast marching subjected to a vector field-path planning method for mars rovers. Expert Syst. Appl. 78, 334–346 (2017)

    Article  Google Scholar 

  5. Y. Chen, J. Yu, X. Su, G. Luo, Path planning for multi-UAV formation. J. Intell. Rob. Syst. 77(1), 229–246 (2015)

    Google Scholar 

  6. W. Kowalczyk, M. Przybyla, K. Kozlowski, Set-point control of mobile robot with obstacle detection and avoidance using navigation function—experimental verification. J. Intell. Rob. Syst. 85(3), 539–552 (2017)

    Article  Google Scholar 

  7. N.E. Nawa, T. Furuhashi, Fuzzy system parameters discovery by bacterial evolutionary algorithm. IEEE Trans. Fuzzy Syst. 7(5), 608–616 (1999)

    Article  Google Scholar 

  8. N.E. Nawa, T. Hashiyama, T. Furuhashi, Y. Uchikawa, A study on fuzzy rules discovery using pseudo-bacterial genetic algorithm with adaptive operator. Paper presented at the IEEE international conference on evolutionary computation, Indianapolis, IN, 13–16 Apr 1997 (1997)

    Google Scholar 

  9. J. Botzheim, L.T. Kóczy, Model identification by bacterial optimization. National Scientific Research Fund, Budapest, Hungary. https://pdfs.semanticscholar.org/b717/7925a514452b03d9802a7a6390b1910db30a.pdf. Accessed 05 Apr 2017 (2004)

  10. M.F. Rad, F. Akbari, A.J. Bakht, Implementation of common genetic and bacteriological algorithms in optimization testing data in mutation testing. Paper presented at the 2010 international conference on computational intelligence and software engineering, Wuhan, 10–12 Dec 2010 (2010)

    Google Scholar 

  11. B. Baudry, F. Fleurey, J.M. Jézéquel, Y.L. Traon, From genetic to bacteriological algorithms for mutation-based testing. Softw. Test. Verif. Reliab. 15(2), 73–96 (2005)

    Article  Google Scholar 

  12. J. Botzheim, L. Gál, L.T. Kóczy, Fuzzy rule base model identification by bacterial memetic algorithms, in Recent Advances in Decision Making, vol. 222, ed. by E. Rakus-Andersson, R.R. Yager, N. Ichalkarange, L.C. Jain (Springer, Berlin, 2009), pp. 21–43

    Google Scholar 

  13. J. Botzheim, Y. Toda, N. Kubota, Path planning for mobile robots by bacterial memetic algorithm. Paper presented at the 2011 IEEE workshop on robotic intelligence in informationally structured space, Paris, 11–15 Apr 2011 (2011)

    Google Scholar 

  14. O. Kathib, Real-time obstacle avoidance for manipulators and mobile robots. Int. J. Robot. Res. 5(1), 90–98 (1986)

    Article  Google Scholar 

  15. Q. Zhang, D. Chen, T. Chen, An obstacle avoidance method of soccer robot based on evolutionary artificial potential field. Procedia 16, 1792–1798 (2012). Paper presented at the 2012 international conference on future energy, environment, and materials

    Google Scholar 

  16. V. Sezer, M. Gokasan, A novel obstacle avoidance: “Follow the Gap Method”. Robot. Auton. Syst. 60(9), 1123–1134 (2012)

    Article  Google Scholar 

  17. S.S. Ge, Y.J. Cui, New potential functions for mobile robot path planning. IEEE Trans. Robot. Autom. 16(5), 615–620 (2000)

    Article  Google Scholar 

Download references

Acknowledgements

We thank Instituto Politécnico Nacional (IPN), the Comisión de Operación y Fomento de Actividades Academicas of IPN (COFAA), and the Mexican National Council of Science and Technology (CONACYT) for supporting our research activities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ulises Orozco-Rosas .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Orozco-Rosas, U., Montiel, O., Sepúlveda, R. (2018). Parallel Bacterial Potential Field Algorithm for Path Planning in Mobile Robots: A GPU Implementation. In: Castillo, O., Melin, P., Kacprzyk, J. (eds) Fuzzy Logic Augmentation of Neural and Optimization Algorithms: Theoretical Aspects and Real Applications. Studies in Computational Intelligence, vol 749. Springer, Cham. https://doi.org/10.1007/978-3-319-71008-2_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-71008-2_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-71007-5

  • Online ISBN: 978-3-319-71008-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics