Skip to main content

Heat-Bath Algorithmic Cooling with Correlated-Qubits Relaxation

  • Conference paper
  • First Online:
Theory and Practice of Natural Computing (TPNC 2017)

Abstract

Pure states are needed for many quantum algorithms and in particular for quantum error correction. Algorithmic cooling has been shown to purify qubits by a controlled redistribution of entropy and multiple contact with a heat-bath. In previous heat-bath algorithmic cooling work, it was assumed that each qubit undergoes thermal relaxation independently. In this paper we remove this constraint, and introduce an additional tool for cooling algorithms which we call “state-reset”. State-reset can occur when the coupling to the environment is generalized from individual-qubits relaxation to correlated-qubits relaxation. We present several improved cooling algorithms which lead to an increase of polarization beyond the ones all previous work believed to be optimal, and we relate our results to an effect in chemical physics, known as the Nuclear Overhauser Effect.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Atia, Y., Elias, Y., Mor, T., Weinstein, Y.: Algorithmic cooling in liquid-state nuclear magnetic resonance. Phys. Rev. A 93, 012325 (2016)

    Article  MathSciNet  Google Scholar 

  2. Baugh, J., Moussa, O., Ryan, C.A., Nayak, A., Laflamme, R.: Experimental implementation of heat-bath algorithmic cooling using solid-state nuclear magnetic resonance. Nature 438(7067), 470–473 (2005)

    Article  Google Scholar 

  3. Boykin, P.O., Mor, T., Roychowdhury, V., Vatan, F., Vrijen, R.: Algorithmic cooling and scalable NMR quantum computers. Proc. Natl. Acad. Sci. 99(6), 3388–3393 (2002)

    Article  MATH  Google Scholar 

  4. Brassard, G., Elias, Y., Fernandez, J.M., Gilboa, H., Jones, J.A., Mor, T., Weinstein, Y., Xiao, L.: Experimental heat-bath cooling of spins. arXiv preprint quant-ph/0511156 (2005)

    Google Scholar 

  5. Brassard, G., Elias, Y., Fernandez, J.M., Gilboa, H., Jones, J.A., Mor, T., Weinstein, Y., Xiao, L.: Experimental heat-bath cooling of spins. Eur. Phys. J. Plus 129, 266 (2014)

    Article  Google Scholar 

  6. Brassard, G., Elias, Y., Mor, T., Weinstein, Y.: Prospects and limitations of algorithmic cooling. Eur. Phys. J. Plus 129(11), 1–16 (2014)

    Article  Google Scholar 

  7. Chang, D., Vandersypen, L., Steffen, M.: NMR implementation of a building block for scalable quantum computation. Chem. Phys. Lett. 338(4–6), 337 (2001)

    Article  Google Scholar 

  8. Elias, Y., Fernandez, J.M., Mor, T., Weinstein, Y.: Optimal algorithmic cooling of spins. In: Akl, S.G., Calude, C.S., Dinneen, M.J., Rozenberg, G., Wareham, H.T. (eds.) UC 2007. LNCS, vol. 4618, pp. 2–26. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-73554-0_2

    Chapter  Google Scholar 

  9. Elias, Y., Gilboa, H., Mor, T., Weinstein, Y.: Heat-bath cooling of spins in two amino acids. Chem. Phys. Lett. 517(4), 126–131 (2011)

    Article  Google Scholar 

  10. Elias, Y., Mor, T., Weinstein, Y.: Semioptimal practicable algorithmic cooling. Phys. Rev. A 83(4), 042340 (2011)

    Article  Google Scholar 

  11. Fernandez, J.M., Lloyd, S., Mor, T., Roychowdhury, V.: Algorithmic cooling of spins: a practicable method for increasing polarization. Int. J. Quantum Inf. 2(04), 461–477 (2004)

    Article  Google Scholar 

  12. Fernandez, J.M., Mor, T., Weinstein, Y.: Paramagnetic materials and practical algorithmic cooling for NMR quantum computing. Int. J. Quantum Inf. 3(1), 281–285 (2005)

    Article  Google Scholar 

  13. Kaye, P.: Cooling algorithms based on the 3-bit majority. Quantum Inf. Process. 6(4), 295–322 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  14. Li, J., Lu, D., Luo, Z., Laflamme, R., Peng, X., Du, J.: Maximally accessible purity in coherently controlled open quantum systems: application to quantum state engineering. Phys. Rev. A 94(3), 032316 (2016)

    Article  Google Scholar 

  15. Mor, T., Fernandez, J.M., Lloyd, S., Mor, T., Roychowdhury, V., Weinstein, Y.: Algorithmic cooling. USA PATENT (US6873154 B2) (2005)

    Google Scholar 

  16. Moussa, O.: On heat-bath algorithmic cooling and its implementation in solid-state NMR. Master of Science in Physics thesis, University of Waterloo (2005)

    Google Scholar 

  17. Overhauser, A.W.: Paramagnetic relaxation in metals. Phys. Rev. 89(4), 689 (1953)

    Article  MATH  Google Scholar 

  18. Park, D.K., Feng, G., Rahimi, R., Labruyere, S., Shibata, T., Nakazawa, S., Sato, K., Takui, T., Laflamme, R., Baugh, J.: Hyperfine spin qubits in irradiated malonic acid: heat-bath algorithmic cooling. Quantum Inf. Process. 14(7), 2435–2461 (2015)

    Article  MATH  Google Scholar 

  19. Park, D.K., Rodriguez-Briones, N.A., Feng, G., Rahimi, R., Baugh, J., Laflamme, R.: Heat bath algorithmic cooling with spins: review and prospects. In: Takui, T., Berliner, L., Hanson, G. (eds.) Electron Spin Resonance (ESR) Based Quantum Computing. BMR, vol. 31, pp. 227–255. Springer, New York (2016). https://doi.org/10.1007/978-1-4939-3658-8_8

    Chapter  Google Scholar 

  20. Peres, Y.: Iterating von Neumann’s procedure for extracting random bits. Ann. Statist. 20(1), 590–597 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  21. Raeisi, S., Mosca, M.: Asymptotic bound for heat-bath algorithmic cooling. Phys. Rev. Lett. 114(10), 100404 (2015)

    Article  Google Scholar 

  22. Rodríguez-Briones, N.A., Laflamme, R.: Achievable polarization for heat-bath algorithmic cooling. Phys. Rev. Lett. 116, 170501 (2016)

    Article  Google Scholar 

  23. Rodriguez-Briones, N.A., Li, J., Peng, X., Mor, T., Weinstein, Y., Laflamme, R.: Heat-bath algorithmic cooling with correlated qubit-environment interactions. To appear in New Journal of Physics (2017). arXiv preprint arXiv:1703.02999 [quant-ph]

  24. Ryan, C.A., Moussa, O., Baugh, J., Laflamme, R.: Spin based heat engine: demonstration of multiple rounds of algorithmic cooling. Phys. Rev. Lett. 100(14), 140501 (2008)

    Article  Google Scholar 

  25. Schulman, L.J., Mor, T., Weinstein, Y.: Physical limits of heat-bath algorithmic cooling. Phys. Rev. Lett. 94(12), 120501 (2005)

    Article  MATH  Google Scholar 

  26. Schulman, L.J., Mor, T., Weinstein, Y.: Physical limits of heat-bath algorithmic cooling. SIAM J. Comput. 36(6), 1729–1747 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  27. Schulman, L.J., Vazirani, U.V.: Molecular scale heat engines and scalable quantum computation. In: Proceedings of the 31st Annual ACM Symposium on Theory of Computing (STOC), pp. 322–329. ACM (1999)

    Google Scholar 

  28. Sørensen, O.W.: The entropy bound as a limiting case of the universal bound on spin dynamics. polarization transfer in \({I_N S_ M}\) spin systems. J. Magn. Resonance (1969) 93(3), 648–652 (1991)

    Google Scholar 

  29. Von Neumann, J.: Various techniques used in connection with random digits. Natl. Bur. Stand. Appl. Math. Ser. 12, 36–38 (1951)

    Google Scholar 

Download references

Acknowledgments

The authors would like to thank Jun Li, Xinhua Peng, Xian Ma, Aharon Brodutch, Osama Moussa, Daniel Park, David Cory, Om Patange, and David Layden for insightful discussions. N.A. R.-B. is supported by CONACYT-COZCYT and the Mike and Ophelia Lazaridis Fellowship program. R. L. is supported by Industry Canada, the government of Ontario, CIFAR and the U.S. Army Research Laboratory. R. L., T. M. and Y. M. thank the Schwartz/Reisman Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yossi Weinstein .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Laflamme, R., Mor, T., Rodríguez-Briones, N.A., Weinstein, Y. (2017). Heat-Bath Algorithmic Cooling with Correlated-Qubits Relaxation. In: Martín-Vide, C., Neruda, R., Vega-Rodríguez, M. (eds) Theory and Practice of Natural Computing. TPNC 2017. Lecture Notes in Computer Science(), vol 10687. Springer, Cham. https://doi.org/10.1007/978-3-319-71069-3_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-71069-3_23

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-71068-6

  • Online ISBN: 978-3-319-71069-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics