Skip to main content

On k-Strong Conflict–Free Multicoloring

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10628))

Abstract

Let \(\mathcal{H}=(\mathcal{V},\mathcal{E})\) be a hypergraph. A k-strong conflict-free coloring of \(\mathcal{H}\) is an assignment of colors to the members of the vertex set \(\mathcal{V}\) such that every hyperedge \(E\in \mathcal{E}\), \(|E|\ge k\), contains k nodes whose colors are pairwise distinct and different from the colors assigned to all the other nodes in E, whereas if \(|E|<k\) all nodes in E get distinct colors. The parameter to optimize is the total number of colors. The need for such colorings originally arose as a problem of frequency assignment for cellular networks, but since then it has found applications in a variety of different areas. In this paper we consider a generalization of the above problem, where one is allowed to assign more than one color to each node. When \(k=1\), our generalization reduces to the conflict-free multicoloring problem introduced by Even et al. [2003], and recently studied by Bärtschi and Grandoni [2015], and Ghaffari et al. [2017]. We motivate our generalized formulation and we point out that it includes a vast class of well known combinatorial and algorithmic problems, when the hypergraph \(\mathcal{H}\) and the parameter k are properly instantiated. Our main result is an algorithm to construct a k-strong conflict-free multicolorings of an input hypergraph \(\mathcal{H}\) that utilizes a total number of colors \(O( \min \{(k+\log ({r}/{k}) )\log {\varGamma }+ k( k+\log ^2 ({r}/{k})), \ (k^2 + r ) \log n \})\), where n is the number of nodes, \(r\) is the maximum hyperedge size, and \({\varGamma }\) is the maximum hyperedge degree; the expected number of colors per node is \(O(\min \{k+\log {\varGamma }, \ (k + \log ({r}/{k})) \log n \})\). Although derived for arbitrary k, our result improves on the corresponding result by Bärtschi and Grandoni [2015], when instantiated for \(k=1\). We also provide lower bounds on the number of colors needed in any k-strong conflict-free multicoloring, thus showing that our algorithm is not too far from being optimal.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    The Hamming weight of a vector/row is the number of symbols that are different from 0 in the vector/row.

  2. 2.

    Essentially, the algorithm works as follows: After a first random evaluation of P, it keeps resampling violated events \(A\in \mathcal{A}\) until none remains.

References

  1. Abam, M.A., de Berg, M., Poon, S.H.: Fault-tolerant conflict-free coloring. In: Proceedings of 20th Canadian Conference on Computational Geometry (CCCG) (2008)

    Google Scholar 

  2. Abellanas, M., Bose, P., García, J., Hurtado, F., Nicolás, C.M., Ramos, P.: On structural and graph theoretic properties of higher order delaunay graphs. Int. J. Comput. Geom. Appl. 19, 595 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  3. Alon, N., Fachini, E., Korner, J.: Locally thin set families. Comb. Probab. Comput. 9, 481–488 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  4. Alon, N., Spencer, J.H.: The Probabilistic Method. Wiley-Interscience Series in Discrete Mathematics and Optimization, 3rd edn. John Wiley & Sons Inc., Hoboken (2008)

    Book  MATH  Google Scholar 

  5. Bärtschi, A., Grandoni, F.: On conflict-free multi-coloring. In: Dehne, F., Sack, J.-R., Stege, U. (eds.) WADS 2015. LNCS, vol. 9214, pp. 103–114. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-21840-3_9

    Chapter  Google Scholar 

  6. de Berg, M., Leijsen, T., van Renssen, A., Roeloffzen, M., Markovic, A., Woeginger, G.: Dynamic and kinetic conflict-free coloring of intervals with respect to points, arXiv preprint arXiv:1701.03388 (2017)

  7. Blundo, C., Galdi, C., Persiano, P.: Randomness recycling in constant-round private computations. In: Jayanti, P. (ed.) DISC 1999. LNCS, vol. 1693, pp. 140–149. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48169-9_10

    Chapter  Google Scholar 

  8. Chaudhuri, S., Radhakrishnan, J.: Deterministic restrictions in circuit complexity. In: Proceedings of 28th STOC, pp. 30–36 (1996)

    Google Scholar 

  9. Cheilaris, P., Gargano, L., Rescigno, A.A., Smorodinsky, S.: Strong conflict-free coloring for intervals. Algorithmica 70(4), 732–749 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  10. Chlebus, B.S., Kowalski, D.R.: Almost optimal explicit selectors. In: Liśkiewicz, M., Reischuk, R. (eds.) FCT 2005. LNCS, vol. 3623, pp. 270–280. Springer, Heidelberg (2005). https://doi.org/10.1007/11537311_24

    Chapter  Google Scholar 

  11. Clementi, A.E.F., Monti, A., Silvestri, R.: Distributed broadcast in radio networks of unknown topology. Theor. Comput. Sci. 302(1–3), 337–364 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  12. Cormode, G., Muthukrishnan, S.: Combinatorial algorithms for compressed sensing. In: Flocchini, P., Gąsieniec, L. (eds.) SIROCCO 2006. LNCS, vol. 4056, pp. 280–294. Springer, Heidelberg (2006). https://doi.org/10.1007/11780823_22

    Chapter  Google Scholar 

  13. De Bonis, A., Gasieniec, L., Vaccaro, U.: Optimal two-stage algorithms for group testing problems. SIAM J. Comput. 34(5), 1253–1270 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  14. Du, D.Z., Hwang, F.K.: Combinatorial Group Testing and its Applications. World Scientific, River Edge (2000)

    MATH  Google Scholar 

  15. Du, D.Z., Hwang, F.K.: Pooling Designs and Nonadaptive Group Testing. World Scientific, Singapore (2006)

    Book  MATH  Google Scholar 

  16. Dua, A.: Random access with multi-packet reception. IEEE Trans. Wirel. Commun. 7(6), 2280–2288 (2008)

    Article  Google Scholar 

  17. D’yachkov, A.G., Rykov, V.V.: Bounds on the length of disjunct codes. Problemy Peredachi Informatsii 18(3), 7–13 (1982)

    Google Scholar 

  18. D’yachkov, A.G., Vorobév, I.V., Polyansky, N.A., Shchukin, V.Y.: Bounds on the rate of disjunctive codes. Prob. Inform. Transm. 50(1), 27–56 (2014)

    Google Scholar 

  19. D’yachkov, A.G., Vorobév, I.V., Polyansky, N.A., Shchukin, V.Y.: Erratum to: bounds on the rate of disjunctive codes. Prob. Inform. Transm. 52(2), 200 (2016). Problems of Information Transmission 50, 27 (2014)

    Google Scholar 

  20. Erdös, P., Frankl, P., Füredi, Z.: Families of finite sets in which no set is covered by the union of \(r\) others. Israel J. Math. 51, 75–89 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  21. Even, G., Lotker, Z., Ron, D., Smorodinsky, S.: Conflict-free colorings of simple geometric regions with applications to frequency assignment in cellular networks. SIAM J. Comput. 33, 94–136 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  22. Gargano, L., Rescigno, A.A.: Complexity of conflict-free colorings of graphs. Theor. Comput. Sci. 566, 39–49 (2015)

    Article  MATH  MathSciNet  Google Scholar 

  23. Ghaffari, M., Kuhn, F., Maus, Y.: On the complexity of local distributed graph problems. In: Proceedings of ACM Symposium on Theory of Computing (STOC) (2017, to appear)

    Google Scholar 

  24. Glebov, R., Szabó, T., Tardos, G.: Conflict-free coloring of graphs. Comb. Prob. Comput. 23(3), 434–448 (2014)

    Article  MATH  Google Scholar 

  25. Horev, E., Krakovski, R., Smorodinsky, S.: Conflict-free coloring made stronger. In: Kaplan, H. (ed.) SWAT 2010. LNCS, vol. 6139, pp. 105–117. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13731-0_11

    Chapter  Google Scholar 

  26. Katz, M., Lev-Tov, N., Morgenstern, G.: Conflict-free coloring of points on a line with respect to a set of intervals. Comp. Geom. 45(9), 508–514 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  27. Kautz, W.H., Singleton, R.C.: Nonrandom binary superimposed codes. IEEE Trans. Inf. Theor. 10, 363–377 (1964)

    Article  MATH  Google Scholar 

  28. Kumar, R., Rajagopalan, S., Sahai, A.: Coding constructions for blacklisting problems without computational assumptions. In: Proceedings of CRYPTO 1999, pp. 609–623 (1999)

    Google Scholar 

  29. Linial, N.: Locality in distributed graph algorithms. SIAM J. Comput. 21, 193–201 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  30. Moser, R.A., Tardos, G.: A constructive proof of the general Lovász local lemma. J. ACM 57(2), 1–15 (2010)

    Article  MATH  Google Scholar 

  31. Pach, J., Tardos, G.: Conflict-free colorings of graphs and hypergraphs. Comb. Prob. Comput. 18(5), 819–834 (2009)

    Article  MATH  Google Scholar 

  32. Porat, B., Porat, E.: Exact and approximate pattern matching in the streaming model. In: Proceedings of 50th FOCS, pp. 315–323 (2009)

    Google Scholar 

  33. Ruszinkó, M.: On the upper bound of the size of the \(r\)-cover-free families. J. Comb. Theor. Ser. A 66, 302–310 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  34. Smorodinsky, S.: Conflict-Free Coloring and its Applications, Geometry – Intuitive, Discrete, and Convex: A Tribute to László Fejes Tóth, pp. 331–389. Springer, Heidelberg (2013). Bárány, I., Böröczky, K.J., Tóth, G.F., Pach, J. (eds.)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ugo Vaccaro .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Gargano, L., Rescigno, A.A., Vaccaro, U. (2017). On k-Strong Conflict–Free Multicoloring. In: Gao, X., Du, H., Han, M. (eds) Combinatorial Optimization and Applications. COCOA 2017. Lecture Notes in Computer Science(), vol 10628. Springer, Cham. https://doi.org/10.1007/978-3-319-71147-8_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-71147-8_19

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-71146-1

  • Online ISBN: 978-3-319-71147-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics