Skip to main content

An Improved Branching Algorithm for (n, 3)-MaxSAT Based on Refined Observations

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10628))

Abstract

In the MaxSAT problem, we are given a CNF formula (conjunctive normal form) and seek an assignment satisfying the maximum number of clauses. In the parameterized (n, 3)-MaxSAT problem we are given an integer k and a CNF formula such that each variable appears in at most 3 clauses, and are asked to find an assignment that satisfies at least k clauses. Based on refined observations, we propose a branching algorithm for the (n, 3)-MaxSAT problem with significant improvement over the previous results. More precisely, the running time of our algorithm can be bounded by \(O^*(1.175^k)\) and \(O^*(1.194^n)\), respectively, where n is the number of variables in the given CNF formula. Prior to our study, the running time of the best known exact algorithm can be bounded by \(O^*(1.194^k)\) and \(O^*(1.237^n)\), respectively.

This work is supported by the National Natural Science Foundation of China (Grants No. 61672536, 61502054, 61702557, 61420106009), the Natural Science Foundation of Hunan Province, China (Grant No. 2017JJ3333), the Scientific Research Fund of Hunan Provincial Education Department (Grant No. 17C0047), and the China Postdoctoral Science Foundation (Grant No. 2017M612584).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Argelich, J., Manyà, F.: Exact Max-SAT solvers for over-constrained problems. J. Heuristics 12(4–5), 375–392 (2006)

    Article  MATH  Google Scholar 

  2. Bansal, N., Raman, V.: Upper bounds for MaxSat: further improved. ISAAC 1999. LNCS, vol. 1741, pp. 247–258. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-46632-0_26

    Chapter  Google Scholar 

  3. Berg, J., Hyttinen, A., Jrvisalo, M.: Applications of MaxSAT in data analysis. In: Pragmatics of SAT Workshop (2015)

    Google Scholar 

  4. Bliznets, I., Golovnev, A.: A new algorithm for parameterized MAX-SAT. In: Thilikos, D.M., Woeginger, G.J. (eds.) IPEC 2012. LNCS, vol. 7535, pp. 37–48. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33293-7_6

    Chapter  Google Scholar 

  5. Bliznets, I.A.: A new upper bound for \((n, 3)\)-MAX-SAT. J. Math. Sci. 188(1), 1–6 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  6. Bonet, M.L., Levy, J., Manyà, F.: Resolution for Max-SAT. Artif. Intell. 171(8–9), 606–618 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  7. Chen, J., Kanj, I.A.: Improved exact algorithms for Max-Sat. Discret. Appl. Math. 142(1–3), 17–27 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  8. Chen, J., Kanj, I.A., Xia, G.: Improved upper bounds for vertex cover. Theoret. Comput. Sci. 411(40–42), 3736–3756 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  9. Davis, M., Putnam, H.: A computing procedure for quantification theory. J. ACM 7(3), 201–215 (1960)

    Article  MATH  MathSciNet  Google Scholar 

  10. Fomin, F.V., Kratsch, D.: Exact exponential algorithms. In: Texts in Theoretical Computer Science. An EATCS Series, Chap. 2, pp. 13–30. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-16533-7

  11. Hochbaum, D.: Approximation Algorithms for NP-Hard Problems. PWS Publishing Company, Boston (1997)

    MATH  Google Scholar 

  12. Hutter, F., Lindauer, M., Balint, A., Bayless, S., Hoos, H., Leyton-Brown, K.: The Configurable SAT Solver Challenge (CSSC). Artif. Intell. 243, 1–25 (2017)

    Article  MATH  MathSciNet  Google Scholar 

  13. Kulikov, A.S.: Automated generation of simplification rules for SAT and MAXSAT. In: Bacchus, F., Walsh, T. (eds.) SAT 2005. LNCS, vol. 3569, pp. 430–436. Springer, Heidelberg (2005). https://doi.org/10.1007/11499107_35

    Chapter  Google Scholar 

  14. Lokshtanov, D.: New methods in parameterized algorithms and complexity. Ph.D. thesis, University of Bergen (2009)

    Google Scholar 

  15. Niedermeier, R., Rossmanith, P.: New upper bounds for maximum satisfiability. J. Algorithms 36(1), 63–88 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  16. Poloczek, M., Schnitger, G., Williamson, D.P., van Zuylen, A.: Greedy algorithms for the maximum satisfiability problem: simple algorithms and inapproximability bounds. SIAM J. Comput. 46(3), 1029–1061 (2017)

    Article  MATH  MathSciNet  Google Scholar 

  17. Raman, V., Ravikumar, B., Rao, S.S.: A simplified NP-complete MAXSAT problem. Inf. Process. Lett. 65(1), 1–6 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  18. Saikko, P., Malone, B., Järvisalo, M.: MaxSAT-based cutting planes for learning graphical models. In: Michel, L. (ed.) CPAIOR 2015. LNCS, vol. 9075, pp. 347–356. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-18008-3_24

    Google Scholar 

  19. Shen, H., Zhang, H.: Improving exact algorithms for MAX-2-SAT. Ann. Math. Artif. Intell. 44(4), 419–436 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  20. Xiao, M., Nagamochi, H.: An exact algorithm for maximum independent set in degree-5 graphs. Discret. Appl. Math. 199, 137–155 (2016)

    Article  MATH  MathSciNet  Google Scholar 

  21. Xu, C., Chen, J., Wang, J.: Resolution and linear CNF formulas: improved \((n, 3)\)-MaxSAT algorithms. Theor. Comput. Sci. (2016)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yongjie Yang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Li, W., Xu, C., Wang, J., Yang, Y. (2017). An Improved Branching Algorithm for (n, 3)-MaxSAT Based on Refined Observations. In: Gao, X., Du, H., Han, M. (eds) Combinatorial Optimization and Applications. COCOA 2017. Lecture Notes in Computer Science(), vol 10628. Springer, Cham. https://doi.org/10.1007/978-3-319-71147-8_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-71147-8_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-71146-1

  • Online ISBN: 978-3-319-71147-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics