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Abstract

We study a two-level multiview learning with more than two views under the PAC-Bayesian framework. This
approach, sometimes referred as late fusion, consists in learning sequentially multiple view-specific classifiers at
the first level, and then combining these view-specific classifiers at the second level. Our main theoretical result
is a generalization bound on the risk of the majority vote which exhibits a term of diversity in the predictions
of the view-specific classifiers. From this result it comes out that controlling the trade-off between diversity and
accuracy is a key element for multiview learning, which complements other results in multiview learning. Finally,
we experiment our principle on multiview datasets extracted from the Reuters RCV1/RCV2 collection.

1 Introduction
With the ever-increasing observations produced by more than one source, multiview learning has been expanding
over the past decade, spurred by the seminal work of Blum and Mitchell [1998] on co-training. Most of the existing
methods try to combine multimodal information, either by directly merging the views or by combining models
learned from the different views1 [Snoek et al., 2005], in order to produce a model more reliable for the considered
task. Our goal is to propose a theoretically grounded criteria to “correctly” combine the views. With this in mind
we propose to study multiview learning through the PAC-Bayesian framework (introduced in [McAllester, 1999])
that allows to derive generalization bounds for models that are expressed as a combination over a set of voters.
When faced with learning from one view, the PAC-Bayesian theory assumes a prior distribution over the voters
involved in the combination, and aims at learning—from the learning sample—a posterior distribution that leads to
a well-performing combination expressed as a weighted majority vote. In this paper we extend the PAC-Bayesian
theory to multiview with more than two views. Concretely, given a set of view-specific classifiers, we define a
hierarchy of posterior and prior distributions over the views, such that (i) for each view v, we consider prior Pv and
posterior Qv distributions over each view-specific voters’ set, and (ii) a prior π and a posterior ρ distribution over the
set of views (see Figure 1), respectively called hyper-prior and hyper-posterior2. In this way, our proposed approach
encompasses the one of Amini et al. [2009] that considered uniform distribution to combine the view-specific
classifiers’ predictions. Moreover, compared to the PAC-Bayesian work of Sun et al. [2016], we are interested here to
the more general and natural case of multiview learning with more than two views. Note also that Lecué and Rigollet
[2014] proposed a non-PAC-Bayesian theoretical analysis of a combination of voters (called Q-Aggregation) that is
able to take into account a prior and a posterior distribution but in a single-view setting.

Our theoretical study also includes a notion of disagreement between all the voters, allowing to take into account
a notion of diversity between them which is known as a key element in multiview learning [Kuncheva, 2004, Chapelle

1The fusion of descriptions, resp. of models, is sometimes called Early Fusion, resp. Late Fusion.
2Our notion of hyper-prior and hyper-posterior distributions is different than the one proposed for lifelong learning [Pentina and Lampert,

2014], where they basically consider hyper-prior and hyper-posterior over the set of possible priors: The prior distribution P over the voters’ set is
viewed as a random variable.
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Figure 1: Example of the multiview distributions hierarchy with 3 views. For all views v ∈ {1, 2, 3}, we have a set
of votersHv = {hv1, . . . , hvnv} on which we consider prior Pv view-specific distribution (in blue), and we consider
a hyper-prior π distribution (in green) over the set of 3 views. The objective is to learn a posterior Qv (in red)
view-specific distributions and a hyper-posterior ρ distribution (in orange) leading to a good model. The length of a
rectangle represents the weight (or probability) assigned to a voter or a view.

et al., 2010, Maillard and Vayatis, 2009, Amini et al., 2009]. Finally, we empirically evaluate a two-level learning
approach on the Reuters RCV1/RCV2 corpus to show that our analysis is sound.

In the next section, we recall the general PAC-Bayesian setup, and present PAC-Bayesian expectation bounds—
while most of the usual PAC-Bayesian bounds are probabilistic bounds. In Section 3, we then discuss the problem
of multiview learning, adapting the PAC-Bayesian expectation bounds to the specificity of the two-level multiview
approach. In Section 4, we discuss the relation between our analysis and previous works. Before concluding in
Section 6, we present experimental results obtained on a collection of the Reuters RCV1/RCV2 corpus in Section 5.

2 The Single-View PAC-Bayesian Theorem
In this section, we state a new general mono-view PAC-Bayesian theorem, inspired by the work of Germain et al.
[2015], that we extend to multiview learning in Section 3.

2.1 Notations and Setting
We consider binary classification tasks on data drawn from a fixed yet unknown distribution D over X × Y ,
where X ⊆ Rd is a d-dimensional input space and Y = {−1,+1} the label/output set. A learning algorithm is
provided with a training sample of m examples denoted by S = {(xi, yi)}mi=1 ∈ (X × Y)m, that is assumed to be
independently and identically distributed (i.i.d.) according to D. The notation Dm stands for the distribution of
such a m-sample, and DX for the marginal distribution on X . We consider a setH of classifiers or voters such that
∀h ∈ H, h : X → Y . In addition, PAC-Bayesian approach requires a prior distribution P over H that models a
priori belief on the voters from H before the observation of the learning sample S. Given S ∼ Dm, the learner
objective is then to find a posterior distribution Q overH leading to an accurate Q-weighted majority vote BQ(x)
defined as

BQ(x) = sign

[
E
h∼Q

h(x)

]
.

In other words, one wants to learn Q overH such that it minimizes the true risk RD(BQ) of BQ(x):

RD(BQ) = E
(x,y)∼D

1[BQ(x)6=y] ,

where 1[π] = 1 if predicate π holds, and 0 otherwise. However, a PAC-Bayesian generalization bound does not
directly focus on the risk of the deterministic Q-weighted majority vote BQ. Instead, it upper-bounds the risk of
the stochastic Gibbs classifier GQ, which predicts the label of an example x by drawing h from H according to
the posterior distribution Q and predicts h(x). Therefore, the true risk RD(GQ) of the Gibbs classifier on a data
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distribution D, and its empirical risk RS(GQ) estimated on a sample S ∼ Dm are respectively given by

RD(GQ) = E
(x,y)∼D

E
h∼Q

1[h(x)6=y] ,

and RS(GQ) =
1

m

m∑
i=1

E
h∼Q

1[h(xi) 6=yi] .

The above Gibbs classifier is closely related to the Q-weighted majority vote BQ. Indeed, if BQ misclassifies x ∈ X ,
then at least half of the classifiers (under measure Q) make an error on x. Therefore, we have

RD(BQ) ≤ 2RD(GQ). (1)

Thus, an upper bound on RD(GQ) gives rise to an upper bound on RD(BQ). Other tighter relations exist [Langford
and Shawe-Taylor, 2002, Lacasse et al., 2006, Germain et al., 2015], such as the so-called C-Bound [Lacasse et al.,
2006] that involves the expected disagreement dD(Q) between all the pair of voters, and that can be expressed as
follows (when RD(GQ) ≤ 1

2 ):

RD(BQ) ≤ 1− (1− 2RD(GQ))
2

1− 2dD(Q)
, (2)

where dD(Q) = E
x∼DX

E
(h,h′)∼Q2

1[h(x)6=h′(x)] .

Moreover, Germain et al. [2015] have shown that the Gibbs classifier’s risk can be rewritten in terms of dD(Q) and
expected joint error eD(Q) between all the pair of voters as

RD(GQ) =
1

2
dD(Q) + eD(Q) , (3)

where eD(Q) = E
(x,y)∼D

E
(h,h′)∼Q2

1[h(x)6=y] 1[h′(x)6=y] .

It is worth noting that from multiview learning standpoint where the notion of diversity among voters is known to be
important [Amini et al., 2009, Maillard and Vayatis, 2009, Sun et al., 2016, Atrey et al., 2010, Kuncheva, 2004],
Equations (2) and (3) directly capture the trade-off between diversity and accuracy. Indeed, dD(Q) involves the
diversity between voters [Morvant et al., 2014], while eD(Q) takes into account the errors. Note that the principle of
controlling the trade-off between diversity and accuracy through the C-bound of Equation (2) has been exploited
by Laviolette et al. [2011] and Roy et al. [2016] to derive well-performing PAC-Bayesian algorithms that aims
at minimizing it. For our experiments in Section 5, we make use of CqBoost [Roy et al., 2016]—one of these
algorithms—for multiview learning.
Last but not least, PAC-Bayesian generalization bounds take into account the given prior distribution P onH through
the Kullback-Leibler divergence between the learned posterior distribution Q and P :

KL(Q‖P ) = E
h∼Q

ln
Q(h)

P (h)
.

2.2 A New PAC-Bayesian Theorem as an Expected Risk Bound
In the following we introduce a new variation of the general PAC-Bayesian theorem of Germain et al. [2009, 2015];
it takes the form of an upper bound on the “deviation” between the true risk RD(GQ) and empirical risk RS(GQ) of
the Gibbs classifier, according to a convex function D:[0, 1]×[0, 1]→R. While most of the PAC-Bayesian bounds
are probabilistic bounds, we state here an expected risk bound. More specifically, Theorem 1 below is a tool to
upper-bound ES∼DmRD(GQS )—whereQS is the posterior distribution outputted by a given learning algorithm after
observing the learning sample S—while PAC-Bayes usually bounds RD(GQ) uniformly for all distribution Q, but
with high probability over the draw of S ∼ Dm. Since by definition posterior distributions are data dependent, this
different point of view on PAC-Bayesian analysis has the advantage to involve an expectation over all the possible
learning samples (of a given size) in bounds itself.

Theorem 1. For any distribution D on X × Y , for any set of votersH, for any prior distribution P onH, for any
convex function D : [0, 1]× [0, 1]→ R, we have

D
(

E
S∼Dm

RS(GQS ), E
S∼Dm

RD(GQS )
)
≤ 1

m

[
E

S∼Dm
KL(QS‖P ) + ln

(
E

S∼Dm
E
h∼P

emD(RS(h),RD(h))

)]
,

where RD(h) and RS(h) are respectively the true and the empirical risks of individual voters.
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Similarly to Germain et al. [2009, 2015], by selecting a well-suited deviation function D and by upper-bounding
ES EhemD(RS(h),RD(h)), we can prove the expected bound counterparts of the classical PAC-Bayesian theorems
of McAllester [1999], Seeger [2002], Catoni [2007]. The proof presented below borrows the straightforward proof
technique of Bégin et al. [2016]. Interestingly, this approach highlights that the expectation bounds are obtained
simply by replacing the Markov inequality by the Jensen inequality (respectively Theorems 5 and 6, in Appendix).

Proof of Theorem 1. The last three inequalities below are obtained by applying Jensen’s inequality on the convex
function D, the change of measure inequality [as stated by Bégin et al., 2016, Lemma 3], and Jensen’s inequality on
the concave function ln.

mD
(

E
S∼Dm

RS(GQS ), E
S∼Dm

RD(GQS )
)

= mD

(
E

S∼Dm
E

h∼QS
RS(h), E

S∼Dm
E

h∼QS
RD(h)

)
≤ E

S∼Dm
E

h∼QS
mD (RS(h), RD(h))

≤ E
S∼Dm

[
KL(QS‖P ) + ln

(
E
h∼P

emD(RS(h),RD(h))

)]
≤ E

S∼Dm
KL(QS‖P ) + ln

(
E

S∼Dm
E
h∼P

emD(RS(h),RD(h))

)
.

Since the C-bound of Equation (2) involves the expected disagreement dD(Q), we also derive below the expected
bound that upper-bounds the deviation between ES∼Dm dS(QS) and ES∼Dm dD(QS) under a convex function D.
Theorem 2 can be seen as the expectation version of probabilistic bounds over dS(QS) proposed by Lacasse et al.
[2006], Germain et al. [2015].

Theorem 2. For any distribution D on X × Y , for any set of votersH, for any prior distribution P onH, for any
convex function D : [0, 1]× [0, 1]→ R, we have

D
(

E
S∼Dm

dS(QS), E
S∼Dm

dD(QS)
)
≤ 2

m

[
E

S∼Dm
KL(QS‖P ) + ln

√
E

S∼Dm
E

(h,h′)∼P 2
emD(dS(h,h′),dD(h,h′))

]
,

where dD(h, h′) = Ex∼DX 1[h(x)6=h′(x)] is the disagreement of voters h and h′ on the distribution D, and dS(h, h′)
is its empirical counterpart.

Proof. First, we apply the exact same steps as in the proof of Theorem 1:

mD
(

E
S∼Dm

dS(QS), E
S∼Dm

dD(QS)
)

= mD

(
E

S∼Dm
E

(h,h′)∼Q2
S

dS(h, h
′), E

S∼Dm
E

(h,h′)∼Q2
S

dD(h, h
′)

)
...

≤ E
S∼Dm

KL(Q2
S‖P 2) + ln E

S∼Dm
E

(h,h′)∼P 2
emD(dS(h,h

′),dD(h,h′)).

Then, we use the fact that KL(Q2
S‖P 2) = 2KL(QS‖P ) [see Germain et al., 2015, Theorem 25].

In the following we provide an extension of this PAC-Bayesian framework to multiview learning with more than
two views.

3 Multiview PAC-Bayesian Approach

3.1 Notations and Setting
We consider binary classification problems where the multiview observations x = (x1, . . . , xV ) belong to a
multiview input set X = X1 × . . .×XV , where V ≥ 2 is the number of views of not-necessarily the same
dimension. We denote V the set of the V views. In binary classification, we assume that examples are pairs (x, y),
with y ∈ Y = {−1,+1}, drawn according to an unknown distribution D over X × Y . To model the two-level
multiview approach, we follow the next setting. For each view v ∈ V , we consider a view-specific setHv of voters
h : Xv → Y , and a prior distribution Pv onHv . Given a hyper-prior distribution π over the views V , and a multiview
learning sample S = {(xi, yi)}mi=1 ∼ (D)m, our PAC-Bayesian learner objective is twofold: (i) finding a posterior
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distribution Qv overHv for all views v ∈ V ; (ii) finding a hyper-posterior distribution ρ on the set of views V . This
hierarchy of distributions is illustrated by Figure 1. The learned distributions express a multiview weighted majority
vote BMV

ρ defined as

BMV
ρ (x) = sign

[
E
v∼ρ

E
h∼Qv

h(xv)

]
.

Thus, the learner aims at constructing the posterior and hyper-posterior distributions that minimize the true risk
RD(B

MV
ρ ) of the multiview weighted majority vote:

RD(B
MV
ρ ) = E

(x,y)∼D
1[BMV

ρ (x)6=y].

As pointed out in Section 2, the PAC-Bayesian approach deals with the risk of the stochastic Gibbs classifier GMV
ρ

defined as follows in our multiview setting, and that can be rewritten in terms of expected disagreement dMV
D (ρ) and

expected joint error eMV
D (ρ):

RD(G
MV
ρ ) = E

(x,y)∼D
E
v∼ρ

E
h∼Qv

1[h(xv) 6=y]

= 1
2 d

MV
D (ρ) + eMV

D (ρ) , (4)
where dMV

D (ρ) = E
x∼DX

E
v∼ρ

E
v′∼ρ

E
h∼Qv

E
h′∼Qv′

1[h(xv)6=h′(xv′ )],

and eMV
D (ρ) = E

(x,y)∼D
E
v∼ρ

E
v′∼ρ

E
h∼Qv

E
h′∼Qv′

1[h(xv)6=y]1[h′(xv′ ) 6=y].

Obviously, the empirical counterpart of the Gibbs classifier’s risk RD(GMV
ρ ) is

RS(G
MV
ρ ) =

1

m

m∑
i=1

E
v∼ρ

E
h∼Qv

1[h(xvi )6=yi]

=
1

2
dMV
S (ρ) + eMV

S (ρ) ,

where dMV
S (ρ) and eMV

S (ρ) are respectively the empirical estimations of dMV
D (ρ) and eMV

D (ρ) on the learning sample
S. As in the single-view PAC-Bayesian setting, the multiview weighted majority vote BMV

ρ is closely related to the
stochastic multiview Gibbs classifierGMV

ρ , and a generalization bound forGMV
ρ gives rise to a generalization bound for

BMV
ρ . Indeed, it is easy to show that RD(BMV

ρ ) ≤ 2RD(G
MV
ρ ), meaning that an upper bound over RD(GMV

ρ ) gives an
upper bound for the majority vote. Moreover the C-Bound of Equation (2) can be extended to our multiview setting
by Lemma 1 below. Equation (5) is a straightforward generalization of the single-view C-bound of Equation (2).
Afterward, Equation (6) is obtained by rewriting RD(GMV

ρ ) as the ρ-average of the risk associated to each view, and
lower-bounding dMV

D (ρ) by the ρ-average of the disagreement associated to each view.

Lemma 1. Let V ≥ 2 be the number of views. For all posterior {Qv}Vv=1 and hyper-posterior ρ distribution, if
RD(G

MV
ρ ) < 1

2 , then we have

RD(B
MV
ρ ) ≤ 1−

(
1− 2RD(G

MV
ρ )
)2

1− 2dMV
D (ρ)

(5)

≤ 1−

(
1− 2Ev∼ρRD(GQv )

)2
1− 2Ev∼ρ dD(Qv)

. (6)

Proof. Equation (5) follows from the Cantelli-Chebyshev’s inequality (Theorem 7, in Appendix). To prove
Equation (6), we first notice that in the binary setting where y ∈ {−1, 1} and h : X → {−1, 1}, we have
1[h(xv)6=y] =

1
2 (1− y h(x

v)), and

RD(G
MV
ρ ) = E

(x,y)∼D
E
v∼ρ

E
h∼Qv

1[h(xv)6=y]

=
1

2

(
1− E

(x,y)∼D
E
v∼ρ

E
h∼Qv

y h(xv)

)
= E

v∼ρ
RD(GQv ) .
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Moreover, we have

dMV
D (ρ) = E

x∼DX
E
v∼ρ

E
v′∼ρ

E
h∼Qv

E
h′∼Qv′

1[h(xv)6=h′(xv′ )]

=
1

2

(
1− E

x∼DX
E
v∼ρ

E
v′∼ρ

E
h∼Qv

E
h∼Qv′

h(xv)× h′(xv
′
)

)
=

1

2

(
1− E

x∼DX

[
E
v∼ρ

E
h∼Qv

h(xv)

]2)
.

From Jensen’s inequality (Theorem 6, in Appendix) it comes

dMV
D (ρ) ≥ 1

2

(
1− E

x∼DX
E
v∼ρ

[
E

h∼Qv
h(xv)

]2)
= E

v∼ρ

[
1

2

(
1− E

x∼DX

[
E

h∼Qv
h(xv)

]2)]
= E

v∼ρ
dD(Qv) .

By replacing RD(GMV
ρ ) and dMV

D (ρ) in Equation (5), we obtain

1−
(
1− 2RD(G

MV
ρ )
)2

1− 2dMV
D (ρ)

≤ 1−

(
1− 2Ev∼ρRD(GQv )

)2
1− 2Ev∼ρ dD(Qv)

.

Similarly than for the mono-view setting, Equations (4) and (5) suggest that a good trade-off between the risk of
the Gibbs classifier GMV

ρ and the disagreement dMV
D (ρ) between pairs of voters will lead to a well-performing majority

vote. Equation (6) exhibits the role of diversity among the views thanks to the disagreement’s expectation over the
views Ev∼ρ dD(Qv).

3.2 General Multiview PAC-Bayesian Theorems
Now we state our general PAC-Bayesian theorem suitable for the above multiview learning setting with a two-level
hierarchy of distributions over views (or voters). A key step in PAC-Bayesian proofs is the use of a change of measure
inequality [McAllester, 2003], based on the Donsker-Varadhan inequality [Donsker and Varadhan, 1975]. Lemma 2
below extends this tool to our multiview setting.

Lemma 2. For any set of priors {Pv}Vv=1 and any set of posteriors {Qv}Vv=1, for any hyper-prior distribution π on
views V and hyper-posterior distribution ρ on V , and for any measurable function φ : Hv → R, we have

E
v∼ρ

E
h∼Qv

φ(h) ≤ E
v∼ρ

KL(Qv‖Pv) + KL(ρ‖π) + ln

(
E
v∼π

E
h∼Pv

eφ(h)
)
.

Proof. We have

E
v∼ρ

E
h∼Qv

φ(h) = E
v∼ρ

E
h∼Qv

ln eφ(h)

= E
v∼ρ

E
h∼Qv

ln

(
Qv(h)

Pv(h)

Pv(h)

Qv(h)
eφ(h)

)
= E

v∼ρ

[
E

h∼Qv
ln

(
Qv(h)

Pv(h)

)
+ E
h∼Qv

ln

(
Pv(h)

Qv(h)
eφ(h)

)]
.

According to the Kullback-Leibler definition, we have

E
v∼ρ

E
h∼Qv

φ(h) = E
v∼ρ

[
KL(Qv‖Pv) + E

h∼Qv
ln

(
Pv(h)

Qv(h)
eφ(h)

)]
.

By applying Jensen’s inequality (Theorem 6, in Appendix) on the concave function ln, we have

E
v∼ρ

E
h∼Qv

φ(h) ≤ E
v∼ρ

[
KL(Qv‖Pv) + ln

(
E

h∼Pv
eφ(h)

)]
= E

v∼ρ
KL(Qv‖Pv) + E

v∼ρ
ln

(
ρ(v)

π(v)

π(v)

ρ(v)
E

h∼Pv
eφ(h)

)
= E

v∼ρ
KL(Qv‖Pv) + KL(ρ‖π) + E

v∼ρ
ln

(
π(v)

ρ(v)
E

h∼Pv
eφ(h)

)
.

Finally, we apply again the Jensen inequality (Theorem 6) on ln to obtain the lemma.
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Based on Lemma 2, the following theorem can be seen as a generalization of Theorem 1 to multiview. Note
that we still rely on a general convex function D : [0, 1]× [0, 1]→ R, that measures the “deviation” between the
empirical disagreement/joint error and the true risk of the Gibbs classifier.

Theorem 3. Let V ≥ 2 be the number of views. For any distribution D on X × Y , for any set of prior distributions
{Pv}Vv=1, for any hyper-prior distribution π over V , for any convex function D : [0, 1]× [0, 1]→ R, we have

D
(

1
2 E
S∼Dm

dMV
S (ρS) + E

S∼Dm
eMV
S (ρS), E

S∼Dm
RD(G

MV
ρS )
)
≤ 1

m

[
E

S∼Dm
E

v∼ρS
KL(Qv,S‖Pv)

+ E
S∼Dm

KL(ρS‖π) + ln

(
E

S∼Dm
E
v∼π

E
h∼Pv

emD(RS(h),RD(h))

)]
.

Proof. We follow the same steps as in Theorem 1 proof.

mD
(

E
S∼Dm

RS(G
MV
ρS ), E

S∼Dm
RD(G

MV
ρS )
)

=mD
(

E
S∼Dm

E
v∼ρS

E
h∼Qv,S

RS(h), E
S∼Dm

E
v∼ρS

E
h∼Qv,S

RD(h)
)

≤ E
S∼Dm

E
v∼ρS

E
h∼Qv,S

mD (RS(h), RD(h))

≤ E
S∼Dm

[
E

v∼ρS
KL(Qv,S‖Pv) + KL(ρS‖π) + ln

(
E
v∼π

E
h∼Pv

emD(RS(h),RD(h))

)]
,

where the last inequality is obtained using Lemma 2. After distributing the expectation of S ∼ Dm, the final
statement follows from Jensen’s inequality (Theorem 6)

E
S∼Dm

ln

(
E
v∼π

E
h∼Pv

emD(RS(h),RD(h))

)
≤ ln

(
E

S∼Dm
E
v∼π

E
h∼Pv

emD(RS(h),RD(h))

)
,

and from Equation (3): RS(GMV
ρS ) =

1
2d

MV
S (ρS) + eMV

S (ρS).

It is interesting to compare this generalization bound to Theorem 1. The main difference relies on the introduction
of view-specific prior and posterior distributions, which mainly leads to an additional term Ev∼ρKL(Qv‖Pv),
expressed as the expectation of the view-specific Kullback-Leibler divergence term over the views V according to the
hyper-posterior distribution ρ. We also introduce the empirical disagreement allowing us to directly highlight the
presence of the diversity between voters and between views. As Theorem 1, Theorem 3 provides a tool to derive
PAC-Bayesian generalization bounds for a multiview supervised learning setting. Indeed, by making use of the
same trick as Germain et al. [2009, 2015], the generalization bounds can be derived from Theorem 3 by choosing a
suitable convex function D and upper-bounding ES Ev Eh emD(RS(h),RD(h)). We provide the specialization to the
three most popular PAC-Bayesian approaches McAllester [1999], Catoni [2007], Seeger [2002], Langford [2005] in
the next section.

Following the same approach, we can obtain a mutiview bound for the expected disagreement.

Theorem 4. Let V ≥ 2 be the number of views. For any distribution D on X × Y , for any set of prior distributions
{Pv}Vv=1, for any hyper-prior distribution π over V , for any convex function D : [0, 1]× [0, 1]→ R, we have

D
(

E
S∼Dm

dMV
S (ρS), E

S∼Dm
dMV
D (ρS)

)
≤ 2

m

[
E

S∼Dm
E

v∼ρS
KL(Qv,S‖Pv) + E

S∼Dm
KL(ρS‖π) + ln

√
E

S∼Dm
E

(h,h′)∼P 2
emD(dS(h,h′),dD(h,h′))

]
.

Proof. The result is obtained straightforwardly by following the proof steps of Theorem 3, using the disagreement
instead of the Gibbs risk. Then, similarly at what we have done to obtain Theorem 2, we substitute KL(Q2

v,S‖P 2
v )

by 2KL(Qv,S‖Pv), and KL(ρ2S‖π2) by 2KL(ρS‖π).

3.3 Specialization of our Theorem to the Classical Approaches
In this section, we provide specialization of our multiview theorem to the most popular PAC-Bayesian approaches [McAllester,
1999, Catoni, 2007, Seeger, 2002, Langford, 2005]. To do so, we follow the same principles as Germain et al. [2009,
2015].
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3.3.1 A McAllester-Like Theorem

We derive here the specialization of our multiview PAC-Bayesian theorem to the McAllester [2003]’s point of view.

Corollary 1. Let V ≥ 2 be the number of views. For any distribution D on X × Y , for any set of prior distributions
{Pv}Vv=1, for any hyper-prior distribution π over V , we have

E
S∼Dm

RD(G
MV
ρS ) ≤

1

2
E

S∼Dm
dMV
S (ρS) + E

S∼Dm
eMV
S (ρS) +

√√√√ E
S∼Dm

E
v∼ρS

KL(Qv,S‖Pv) + E
S∼Dm

KL(ρS‖π) + ln 2
√
m
δ

2m
.

Proof. To prove the above result, we apply Theorem 3 with D(a, b) = 2(a− b)2.
Then, we upper-bound E

S∼Dm
E
v∼π

E
h∼Pv

emD(RS(h),RD(h)). According to Pinsker’s inequality, we have

D(a, b) ≤ kl(a, b) = a ln
a

b
+ (1− a) ln 1− a

1− b
.

By considering RS(h) as a random variable which follows a binomial distribution of m trials with a probability of
success R(h), we obtain

E
S∼Dm

E
v∼π

E
h∼Pv

emD(RS(h),RD(h)) ≤ E
S∼Dm

E
v∼π

E
h∼Pv

em kl(RS(h),RD(h))

= E
v∼π

E
h∼Pv

E
S∼Dm

[
RS(h)

RD(h)

]mRS(h) [ 1−RS(h)
1−RD(h)

]m(1−RS(h))

= E
v∼π

E
h∼Pv

m∑
k=0

Pr
S∼Dm

[
RS(h) =

k
m

] [ k/m

RD(h)

]k [
1− k/m
1−RD(h)

]m−k
=

m∑
k=0

(
m

k

)[
k

m

]k [
1− k

m

]m−k
≤ 2
√
m.

3.3.2 A Catoni-Like Theorem

To derive a generalization bound with the Catoni [2007]’s point of view—given a convex function F and a real
number C > 0—we define the measure of deviation between the empirical disagreement/joint error and the true risk
as D(a, b) = F(b)− C a [Germain et al., 2009, 2015]. We obtain the following generalization bound.

Corollary 2. Let V ≥ 2 be the number of views. For any distribution D on X × Y , for any set of prior distributions
{Pv}Vv=1, for any hyper-prior distributions π over V , for all C > 0, we have:

E
S∼Dm

RD(G
MV
ρS ) ≤

1

1− e−C

(
1− exp

[
−
(
C

(
1

2
E

S∼Dm
dMV
S (ρS) + E

S∼Dm
eMV
S (ρS)

)
+

1

m

[
E

S∼Dm
E

v∼ρS
KL(Qv,S‖Pv) + E

S∼Dm
KL(ρS‖π) + ln 1

δ

])])

Proof. The result comes from Theorem 3 by taking D(a, b) = F(b) − Ca, for a convex F and C > 0, and by
upper-bounding E

S∼Dm
E
v∼π

E
h∼Pv

emD(RS(h),RD(h)). We consider RS(h) as a random variable following a binomial

distribution of m trials with a probability of success R(h). We have:

E
S∼Dm

E
v∼π

E
h∼Pv

emD(RS(h),RD(h)) = E
S∼Dm

E
v∼π

E
h∼Pv

emF(RD(h)−CmRS(h))

= E
S∼Dm

E
v∼π

E
h∼Pv

emF(RD(h))
m∑
k=0

Pr
S∼(D)m

(
RS(h) =

k

m

)
e−Ck

= E
S∼Dm

E
v∼π

E
h∼Pv

emF(RD(h))
m∑
k=0

(
m
k

)
RD(h)

k(1−RD(h))m−ke−Ck

= E
S∼Dm

E
v∼π

E
h∼Pv

emF(RD(h))
(
RD(h) e

−C + (1−RD(h))
)m
.
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The corollary is obtained with

F(p) = ln
1

(1− p[1− e−C ])
.

3.3.3 A Langford/Seeger-Like Theorem.

If we make use, as function D(a, b) between the empirical risk and the true risk, of the Kullback-Leibler divergence
between two Bernoulli distributions with probability of success a and b, we can obtain a bound similar to Seeger
[2002], Langford [2005]. Concretely, we apply Theorem 3 with:

D(a, b) = kl(a, b) = a ln
a

b
+ (1− a) ln 1− a

1− b
.

Corollary 3. Let V ≥ 2 be the number of views. For any distribution D on X × Y , for any set of prior distributions
{Pv}Vv=1, for any hyper-prior distributions π over views V , we have:

kl
(

1
2 E
S∼Dm

dMV
S (ρS) + E

S∼Dm
eMV
S (ρS), E

S∼Dm
RD(G

MV
ρS )
)

≤ 1

m

[
E

S∼Dm
E

v∼ρS
KL(Qv,S‖Pv) + E

S∼Dm
KL(ρS‖π) + ln

2
√
m

δ

]
.

where ξ(m) =

m∑
k=0

(
m

k

)(
k

m

)k(
1− k

m

)m−k
≤ 2
√
m.

Proof. The result follows from Theorem 3 by takingD(a, b) = kl(a, b), and upper-bounding E
S∼Dm

E
v∼π

E
h∼Pv

em kl(RS(h),RD(h)).

By considering RS(h) as a random variable which follows a binomial distribution of m trials with a probability of
success R(h), we can prove:

E
S∼Dm

E
v∼π

E
h∼Pv

em kl(RS(h),RD(h)) = E
v∼π

E
h∼Pv

E
S∼Dm

[
RS(h)

RD(h)

]mRS(h) [ 1−RS(h)
1−RD(h)

]m(1−RS(h))

= E
v∼π

E
h∼Pv

m∑
k=0

Pr
S∼Dm

(
RS(h) =

k
m

) [ k/m

RD(h)

]k [
1− k/m
1−RD(h)

]m−k
=

m∑
k=0

(
m

k

)[
k

m

]k [
1− k

m

]m−k
= ξ(m).

4 Discussion on Related Work
In this section, we discuss two related theoretical studies of multiview learning related to the notion of Gibbs
classifier.

Amini et al. [2009] proposed a Rademacher analysis of the risk of the stochastic Gibbs classifier over the
view-specific models (for more than two views) where the distribution over the views is restricted to the uni-
form distribution. In their work, each view-specific model is found by minimizing the empirical risk: h∗v =

argmin
h∈Hv

1

m

∑
(x,y)∈S

1[h(xv) 6=y]. The prediction for a multiview example x is then based over the stochastic Gibbs

classifier defined according to the uniform distribution, i.e., ∀v ∈ V, ρ(v) = 1
V . The risk of the multiview classifier

Gibbs is hence given by

RD(G
MV
ρ=1/V ) = E

(x,y)∼D

1

V

V∑
v=1

1[h∗v(x
v)6=y].

Moreover, Sun et al. [2016] proposed a PAC-Bayesian analysis for multiview learning over the concatenation of
the views, where the number of views is set to two, and deduced a SVM-like learning algorithm from this framework.
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Table 1: Accuracy and F1-score averages for all the classes over 20 random sets. Note that the results are obtained
for different sizes m of the learning sample and are averaged over the six one-vs-all classification problems. Along
the columns, best results are in bold. ↓ indicates statistically significantly worse performance than the best result,
according to Wilcoxon rank sum test (p < 0.02) [Lehmann, 1975].

Strategy
m = 150 m = 200 m = 250 m = 300

Accuracy F1 Accuracy F1 Accuracy F1 Accuracy F1
Monov .8516±.0031↓ .1863±.0299↓ .8424±.0272↓ .3056±.0233↓ .8691±.0017↓ .3352±.0164↓ .8770±.0018↓ .4103±.0158↓

ConcatSVM .8507±.0051↓ .1577±.0403↓ .8615±.0018↓ .2505±.0182↓ .8674±.0026↓ .3006±.0267↓ .8746±.0022↓ .3647±.0258↓

AggregP .8521±.0041↓ .1810±.0305↓ .8420±.0385↓ .2852±.0339↓ .8676±.0023↓ .3027±.0234↓ .8774±.0021↓ .3945±.0185↓
AggregL .8507±.0043↓ .1653±.0336↓ .8477±.0377↓ .2806±.0244↓ .8682±.0022↓ .3116±.0210↓ .8773±.0024↓ .3943±.0204↓

FusionallSVM .8568±.0087↓ .3899±.0789↓ .8527±.0406↓ .5027±.0780 .8490±.0716↓ .5399±.0585 .8422±.0526↓ .5779±.0422
FusionallCq .8692±.0059 .4298±.0570 .8768±.0082 .5066±.0402 .8846 ±.0047 .5365±.0371 .8881± .0060 .5705±.0286

The key idea of their approach is to define a prior distribution that promotes similar classification among the two
views, and the notion of diversity among the views is handled by a different strategy than ours. We believe that the
two approaches are complementary, as in the general case of more than two views that we consider in our work, we
can also use a similar informative prior as the one proposed by Sun et al. [2016] for learning.

5 Experiments
In this section, we present experiments to highlight the usefulness of our theoretical analysis by following a two-
level hierarchy strategy. To do so, we learn a multiview model in two stages by following a classifier late fusion
approach [Snoek et al., 2005] (sometimes referred as stacking [Wolpert, 1992]). Concretely, we first learn view-
specific classifiers for each view at the base level of the hierarchy. Each view-specific classifier is expressed as
a majority vote of kernel functions. Then, we learn weighted combination based on predictions of view-specific
classifiers. It is worth noting that this is the procedure followed by Morvant et al. [2014] in a PAC-Bayesian fashion,
but without any theoretical justifications and in a ranking setting.

We consider a publicly available multilingual multiview text categorization corpus extracted from the Reuters
RCV1/RCV2 corpus [Amini et al., 2009]3, which contains more than 110, 000 documents from five different
languages (English, German, French, Italian, Spanish) distributed over six classes. To transform the dataset into a
binary classification task, we consider six one-versus-all classification problems: For each class, we learn a multiview
binary classification model by considering all documents from that class as positive examples and all others as
negative examples. We then split the dataset into training and testing sets: we reserve a test sample containing 30% of
total documents. In order to highlight the benefits of the information brought by multiple views, we train the models
with small learning sets by randomly choosing the learning sample S from the remaining set of the documents; the
number of learning examples m considered are: 150, 200, 250 and 300. For each fusion-based approach, we split
the learning sample S into two parts: S1 for learning the view-specific classifier at the first level and S2 for learning
the final multiview model at the second level; such that |S1| = 3

5m and |S2| = 2
5m (with m = |S|). In addition, the

reported results are averaged on 20 runs of experiments, each run being done with a new random learning sample.
Since the classes are highly unbalanced, we report in Table 1 the accuracy along with the F1-measure, which is the
harmonic average of precision and recall, computed on the test sample.

To assess that multiview learning with late fusion makes sense for our task, we consider as baselines the four
following one-step learning algorithms (provided with the learning sample S). First, we learn a view-specific model
on each view and report, as Monov, their average performance. We also follow an early fusion procedure, referred
as ConcatSVM, consisting of learning one single model using SVM [Cortes and Vapnik, 1995] over the simple
concatenation of the features of five views. Moreover, we look at two simple voters’ combinations, respectively
denoted by AggregP and AggregL, for which the weights associated with each view follow the uniform distribution.
Concretely, AggregP, respectively AggregL, combines the real-valued prediction, respectively the labels, returned

3https://archive.ics.uci.edu/ml/datasets/Reuters+RCV1+RCV2+Multilingual,+Multiview+Text+
Categorization+Test+collection
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by the view-specific classifiers. In other words, we have

AggregP(x) =
1

5

5∑
v=1

hv(xv) ,

and AggregL(x) =
1

5

5∑
v=1

sign [hv(xv)] ,

where hv(xv) is the real-valued prediction of the view-specific classifier learned on view v.
We compare the above one-step methods to the two following late fusion approaches that only differ at the

second level. Concretely, at the first level we construct from S1 different view-specific majority vote expressed as
linear SVM models4 with different hyperparameter C values (12 values between 10−8 and 103): We do not perform
cross-validation at the first level. This has the advantage to (i) lighten the first level learning process, since we do not
need to validate models, and (ii) to potentially increase the expressivity of the final model.

At the second level, as it is often done for late fusion, we learn from S2 the final weighted combination over the
view specific voters using a RBF kernel. The methods referred as FusionallSVM, respectively FusionallCq , make use
of SVM, respectively the PAC-Bayesian algorithm CqBoost [Roy et al., 2016]. Note that, as recalled in Section 2,
CqBoost is an algorithm that tends to minimize the C-Bound of Equation (2): it directly captures a trade-off between
accuracy and disagreement.

We follow a 5-fold cross-validation procedure for selecting the hyperparameters of each learning algorithm. For
Monov, ConcatSVM, AggregP and AggregL the hyperparameter C is chosen over a set of 12 values between
10−8 and 103. For FusionallSVM and FusionallCq the hyperparameter γ of the RBF kernel is chosen over 9 values
between 10−6 and 102. For FusionallSVM, the hyperparameter C is chosen over a set of 12 values between 10−8 and
103. For FusionallCq , the hyperparameter µ is chosen over a set of 8 values between 10−8 and 10−1. Note that we
made use of the scikit-learn [Pedregosa et al., 2011] implementation for learning our SVM models.

First of all, from Table 1, the two-step approaches provide the best results on average. Secondly, according to a
Wilcoxon rank sum test [Lehmann, 1975] with p < 0.02, the PAC-Bayesian late fusion based approach FusionallCq

is significantly the best method—in terms of accuracy, and except for the smallest learning sample size (m = 150),
FusionallCq and FusionallSVM produce models with similar F1-measure. We can also remark that FusionallCq is
more “stable” than FusionallSVM according to the standard deviation values. These results confirm the potential of
using PAC-Bayesian approaches for multiview learning where we can control a trade-off between accuracy and
diversity among voters.

6 Conclusion and Future Work
In this paper, we proposed a first PAC-Bayesian analysis of weighted majority vote classifiers for multiview learning
when observations are described by more than two views. Our analysis is based on a hierarchy of distributions, i.e.
weights, over the views and voters: (i) for each view v a posterior and prior distributions over the view-specific voter’s
set, and (ii) a hyper-posterior and hyper-prior distribution over the set of views. We derived a general PAC-Bayesian
theorem tailored for this setting, that can be specialized to any convex function to compare the empirical and true
risks of the stochastic Gibbs classifier associated with the weighted majority vote. We also presented a similar
theorem for the expected disagreement, a notion that turns out to be crucial in multiview learning. Moreover, while
usual PAC-Bayesian analyses are expressed as probabilistic bounds over the random choice of the learning sample,
we presented here bounds in expectation over the data, which is very interesting from a PAC-Bayesian standpoint
where the posterior distribution is data dependent.

According to the distributions’ hierarchy, we evaluated a simple two-step learning algorithm (based on late
fusion) on a multiview benchmark. We compared the accuracies while using SVM and the PAC-Bayesian algorithm
CqBoost for weighting the view-specific classifiers. The latter revealed itself as a better strategy, as it deals nicely
with accuracy and the disagreement trade-off promoted by our PAC-Bayesian analysis of the multiview hierarchical
approach.

We believe that our theoretical and empirical results are a first step toward the goal of theoretically understanding
the multiview learning issue through the PAC-Bayesian point of view, and toward the objective of deriving new
multiview learning algorithms. It gives rise to exciting perspectives.
Among them, we would like to specialize our result to linear classifiers for which PAC-Bayesian approaches are
known to lead to tight bounds and efficient learning algorithms [Germain et al., 2009]. This clearly opens the door to
derive theoretically founded algorithms for multiview learning.

4We use linear SVM model as it is usually done for text classification tasks [e.g., Joachims, 1998].
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Another possible algorithmic direction is to take into account a second statistical moment information to link it
explicitly to important properties between views, such as diversity or agreement Kuncheva [2004], Amini et al.
[2009]. A first direction is to deal with our multiview PAC-Bayesian C-Bound of Lemma 1—that already takes into
account such a notion of diversity Morvant et al. [2014]—in order to derive an algorithm as done in a mono-view
setting by Laviolette et al. [2011], Roy et al. [2016].
Another perspective is to extend our bounds to diversity-dependent priors, similarly to the approach used by Sun
et al. [2016], but for more than two views. This would allow to additionally consider an a priori knowledge on the
diversity.
Moreover, we would like to explore the semi-supervised multiview learning where one has access to unlabeled data
Su = {xj}muj=1 along with labeled data Sl = {(xi, yi)}mli=1 during training. Indeed, an interesting behaviour of our
theorem is that it can be easily extended to this situation: the bound will be a concatenation of a bound over 1

2d
MV
Su

(ρ)
(depending on mu) and a bound over eMV

Sl
(ρ) (depending on ms). The main difference with the supervised bound is

that the Kullback-Leibler divergence will be multiplied by a factor 2.

Appendix—Mathematical Tools
Theorem 5 (Markov’s ineq.). For any random variable X s.t. E(|X|) = µ, for any a > 0, we have

P(|X| ≥ a) ≤ µ

a
.

Theorem 6 (Jensen’s ineq.). For any random variable X , for any concave function g, we have

g(E[X]) ≥ E[g(X)].

Theorem 7 (Cantelli-Chebyshev ineq.). For any random variable X s.t. E(X) = µ and Var(X) = σ2, and for
any a > 0, we have

P(X − µ ≥ a) ≤ σ2

σ2 + a2
.
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