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Abstract. To predict customer’s next choice in the context of what he/she has
bought in a session is interesting and critical in the transaction domain especially
for online shopping. Precise prediction leads to high quality recommendations
and thus high benefit. Such kind of recommendation is usually formalized as
transaction-based recommender systems (TBRS). Existing TBRS either tend to
recommend popular items while ignore infrequent and newly-released ones (e.g.,
pattern-based RS) or assume a rigid order between items within a transaction
(e.g., Markov Chain-based RS) which does not satisfy real-world cases in most
time. In this paper, we propose a neural network-based comprehensive transac-
tion embedding model (NTEM) which can effectively perceive the next choice in
a transaction context. Specifically, we learn these comprehensive embeddings of
both items and their features from relaxed ordered transactions. The relevance be-
tween items revealed by the transactions is encoded into such embeddings. With
rich information embedded, such embeddings are powerful to predict the next
choices given those already bought items. NTEM is a shallow wide-in-wide-out
network, which is more efficient than deep networks considering large numbers
of items and transactions. Experimental results on real-world datasets show that
NTEM outperforms three typical TBRS models FPMC, PRME and GRU4Rec in
terms of recommendation accuracy and novelty. Our implementation is available
at https://github.com/shoujin88/NTEM-model

1 Introduction

1.1 Target Problem and Motivation

Nowadays, recommender systems (RS) play an important role in real-world business es-
pecially in the e-commerce domain. For example, the RS behind thousands of websites
(e.g., Amazon) provide magic power to help end users to discover and make choices
from a huge number of items. As a result, RS can not only improve customers’ shop-
ping experience but also increase the business profits. Although lots of work has been
done to produce high quality recommendations, some issues are still challenging and
need more efforts. One of them is to enable RS to dynamically perceive customers’
next choice on thousands of candidate items online according to what they have just put
in the shopping carts. In this paper, we call the next item to choose as the target item
while those items having been added to cart are treated as its context. The challenges
come from two sides: on one hand, the context is dynamic along with the shopping



2

transaction; on the other hand, the RS needs to keep updating the recommendations
when the context was changed. For instance, suppose a customer Robin starts an on-
line shopping transaction on Amazon: first, he bought a cellphone and then a protective
film may be his next choice, so good RS should be capable of perceiving the protective
film according to the context of cellphone. When Robin has bought the cellphone and
protective film, his next choice is probably an earphone rather than buying another type
of protective film again. Therefore, the recommended item should be changed from
the protective film to the earphone accordingly. This dynamic recommendation process
keeps updating until the transaction is finished.

This kind of recommender systems are also called transaction-based RS (TBRS)
[11] as they work on transactional data, which are different from the rating-based RS
(RBRS) [2] working on rating data. Although existing TBRS can recommend next items
given the context, most of them treat the context as static rather than dynamic and
can only work on static transactional data, an example is the pattern-based RS [23].
Moreover, it is quite hard for them to keep updating recommendations due to the long
computational time, like deep network-based RS [10, 21]. As a result, they do not work
efficiently for online recommendations. RBRS has been well studied but it cannot tackle
our problems here due to the lack of consideration of context, existing TBRS cannot
perform well either for online recommendations due to the aforementioned reasons. In
this paper, we focus on TBRS and target at handling the dynamic context and producing
online recommendations.

Due to the lack of effective approach to model the context of a transaction event,
most current TBRS cannot capture the intra-session relevance over items perfectly and
thus cannot produce high quality recommendations. They tend to recommend those
popular and long-released items while ignore those less popular or newly-released ones.
In practice, customers may not always need popular or similar items to form immutable
shopping behaviors, instead, they want to explore something novel or unpopular. For
example, when the first smart-phone iPhone appeared in 2010, most customers pre-
fer to it rather than Nokia, a popular function-phone (not smart-phone) brand lasted
for more than a decade at that time. Therefore, more sensible RS which can bring sur-
prising experience to users by recommending novel but relevant items is increasingly
important. In this paper, novel items refer to unpopular or newly-released items while
“relevant” infers the recommended items are strongly relevant to the context. It’s clear
that an effective approach to model the dynamic context in real-time is necessary to
produce high quality online recommendations.

Content-based filtering (CBF) [14] and collaborative filtering (CF) [12] are two ap-
proaches that are most commonly used in RS. They are not applicable to TBRS directly
though they perform well in RBRS. This is because these methods are actually designed
to work on rating matrix in RBRS, which is quite different from the shopping-basket
data in TBRS, thus it is hard for them to capture the relevance between items embedded
in transactional data.

Pattern-based recommendation [23] is a straightforward solution to transaction-
based recommendation issues. It first captures associations between items and then
recommends items associated to the context items. Although simple and effective some-
times, patterns are extracted from those frequent items due to the “support” measure,
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whereas those infrequent ones are missed. As a result, the discovered patterns can nei-
ther capture the relevance between all items nor achieve the goal in this work. In ad-
dition, the sequential pattern mining assumes a rigid order on transaction data [9]. For
instance, it makes no difference whether milk or bread is put into the cart firstly. Markov
Chain (MC) [18] is another straightforward way to model sequential data and thus can
be used for TBRS on sequence data. However, MC can only capture the transition from
one item to another rather than from a context item set to an item. Recently, matrix
factorization (MF) [5] is used to factorize the transition probability from current item
to the next one to the latent factors of each item and user. Similar to sequential patterns,
both MC and MF were originally designed for time-series data with rigid natural order,
which limit their applications in TBRS, where the order between items within a trans-
action usually makes no difference. Moreover, they cannot handle those novel items
well as the transitions between them and other items tend to be weak due to their low
frequencies.

The above illustrations reveal the difficulty of modeling the context especially for
dynamic context. In practice, the next choice is not only affected by one item or part of
items in front of the target item, but by all items bought in the transaction event (i.e.,
the whole context). It is important to model the whole context and learn the relevance
between the whole context and the target item. Furthermore, the intra-transaction rele-
vance over items are greatly driven by their intrinsic nature, in another words, there are
complex coupling relations [4] between item features and item relevance. Such rela-
tions are particularly critical for those novel items with quite a few transaction records.
For example, milk and bread are always bought together probably due to their differ-
ent but closely related categories “drink” and “food”. This indicates that not only the
context items but also the features of these items can affect the choice of the target
item. To capture the indicators on the next choice as more as possible, we propose a
neural-network-based comprehensive transaction embedding model (NTEM) to learn
the embeddings of both items and their features when modeling the relevance between
the context and the known choice. The model is comprehensive for several reasons: it
models the relations between the target item and the whole context rather than part of
it. It learns the embedding of the two important aspects (e.g., items and their features)
of a transaction at the same time. During model training, the coupling relations be-
tween item relevance and item features are learnt and encoded into feature embeddings,
which is useful for novel item discovery and recommendation. Though comprehensive,
the embedding model has a shallow and wide network structure containing only one
hidden layer, which guarantees its efficiency to find the best next choices over thou-
sands of candidate items when the given context changes over time. This is suitable for
online recommendation.

1.2 Our Design and Main Contributions

Inspired by the great success of modern word embedding models, such as Word2Vec
[15], in natural language processing (NLP) domain, we propose a shallow and wide
network-based transaction embedding model (NTEM) to learn the relevance between
different items efficiently on a large number of items with its wide-in-wide-out struc-
ture. Such relevance is learnt by capturing both the explicit relevance between items
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Fig. 1: The NTEM architecture, which learns item embeddings and feature
embeddings for target item prediction based on contextual items and their features

from the shopping-basket data and the implicit relevance from item features together
with the coupling relations between them and the item relevance. It is noted that a deep
structure is not efficient for online recommendation due to the long computational time
needed to deal with thousands of items in real time. The Word2Vec cannot be directly
applied to RS for two reasons: on one hand, it lacks of necessary element to incorporate
the item features. On the other hand, the words in NLP often have a strict sequence,
which is different from our case.

Our model, NTEM has a three-layer network structure consisting of input layer,
embedding layer and output layer as shown in Fig. 1. The input layer contains double
wide-in data vectors, the contextual itemset is collected from one while their corre-
sponding features are acquired from the other. The embedding layer learns the item
embeddings and feature embeddings respectively. The target item is then predicted by
the output layer taking the embeddings of contextual items and features as the input.
The NTEM learns the relevance between items with comprehensive transaction em-
beddings using a concise network structure. The main contributions of this work are
summarized below.

(1). We model the whole context using a comprehensive network-based transaction
embedding model for the next choice prediction.

(2). A TBRS model is proposed, which does not require the strict order over items
within one transaction. This is more consistent with the real-world case.

(3). We incorporate item features into the model and encode the feature-item rele-
vance coupling relations into feature embeddings, which makes our model also work
well on cold start cases.

(4). We propose a shallow and wide network, which recommends the next item
efficiently on large number of items under dynamic context.

2 Related Work

Existing transaction-based recommender system (TBRS) can be roughly divided into
pattern mining-based and model-based ones, we will briefly review the literature on
these two.

Pattern mining-based approaches are an intuitive solution to TBRS and widely used
in real-world business. [13] proposed to adjust the minimum support according to the
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various frequencies of users and items. The mined association rules between users as
well as between items are then used for making recommendations. [1] introduced re-
lation rule mining to discover relations between different objects and such relations
are then used for recommendations. Considering the order between items, some se-
quential pattern mining (SPM) based recommendation methods are proposed. [23] in-
troduced a personalized sequential pattern mining-based recommendation framework.
Using a novel Competence Score measure, the proposed framework effectively learns
user-specific sequence importance knowledge for accurate personalized recommenda-
tion. Although simple and effective, such kind of approaches may lose information of
those infrequent items due to the “ minimum support” constraint. In addition, they can
not be applied to online recommendation directly as the dynamic context may contain
arbitrary items, it probably fail to match any mined pattern.

Overall, there are mainly two kinds of model-based approaches for TBRS: Markov
Chain (MC) based ones and matrix-factorization (MF) based ones. [18] used Markov
Chain to estimate the transition probability from current item to the next item and thus
make prediction based on this probability. [22] proposed Personalized Markov Embed-
ding (PME) to map the users and songs to an Euclidean space by modeling the sequen-
tial singing behaviours, the prediction and recommendation are conducted on the base
of the embeddings. Although sequential behaviour prediction based on Markov Chain
is effective for capturing the transition preferences of certain users and thus make good
recommendations, it is essentially based on item order within a transaction, which is
not always available in real-world business and such method only captures the first-
order dependency between items. Recently, MF-based approaches are also developed
for TBRS. [18] combined MF and MC for next-item recommendation, the latent user
and item representations from the {user, item, last item} triplets are learned, and then
the inner product of these latent vectors is used to perform next-item recommendation.
Following factorization machine [17], a pairwise factorization model is proposed in [5]
to learn the latent vectors of user, last item and item for next-song recommendation.
Similar to MC-based model, MF-based ones depend strongly on the rigid order be-
tween items. The working mechanism limits it to model the relations between one item
and another rather than between a contextual itemset and the target item. Furthermore,
MF-based methods can not work well on sparse dataset, while the data on novel items
usually has a large chance to be sparse due to their low frequencies.

3 Transaction Embeddings for Online Recommendation

In this section, we start with the problem formulation, then we talk about the proposed
NTEM model including the network architecture in the model and the model construc-
tion, finally we illustrate how to train the model and how to make prediction and thus
produce recommendations for online shopping using the trained model.

3.1 Problem Formalization

Let T = {t1, t2...t|T |} be a set of transactions, each transaction t = {i1, i2...i|t|}
contains a set of items, where |T | denotes the number of elements in set T . All the
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items occurred in all transactions constitute the whole item set I = {i1, i2...i|I|}. Let
F = {f1, f2...f |F |} be a set a features which describe the items from I . Each item i

is described by a set of feature values Fi = {f1i , f2i ...f
|F |
i }. Note that the items in one

transaction t may not have a rigid order, which is consistent with the real-world cases.
Given the set of context itemset c, our NTEM is constructed and trained as a probabilis-
tic classifier that learns to predict a conditional probability distribution P (is|c), where
c ⊆ t\is is the context from a transaction t ∈ T w.r.t. the target item is. This is similar
to the bag of word (BOW) model in natural language processing, which trains a clas-
sifier to learn a conditional probability distribution P (wj |wI), where wI is the context
consisting of several words of the target word wj [19]. Similar to BOW, for each target
item is ∈ t, the transaction context is c = t\is, namely all the items except the target
one in the transaction are picked up as the context. Totally |t| training instances are built
for each transaction t by picking up one item as the target one each time.

Since we want to capture more information from the context for prediction, the
features of items are added to the model as part of context, which result in cf =<
c, Fc >, where Fc = {Fi|i ∈ c} is the corresponding features of the items from
c. Thus our NTEM model is refined to predict the conditional probability distribution
P (is|c, Fc) when the transaction-feature context < c, Fc > is given. We call c and Fc
as transaction context and feature context respectively in this paper. Thus, the TBRS
is reduced to ranking all candidate items in terms of their conditional probability over
the given transaction-feature context. Note that in the prediction stage, the conditional
probability is computed based on the embeddings of item set c and its corresponding
features Fc learned in the training stage.

Particularly, the incorporation of features contributes greatly to the recommendation
of novel items. Due to the low frequencies of novel items in training set, the embed-
dings of these items may not be learned well during the model training process and it
leads to poor prediction. Thanks to the feature embeddings synchronously learned with
the item embeddings, the intra-transaction item relevance can be partly encoded into
feature value embeddings of novel items. In addition, part of the feature values of novel
items may already be embedded when encoding those of frequent items as some feature
values may be shared between frequent items and infrequent ones.

3.2 Neural-Network-based Transaction Embedding Model (NTEM)

In this section, we mainly talk about the details of constructing NTEM and learning its
parameters.

Giving a context < c, Fc > to the input layer, the input units in the bottom left
corner of Fig. 1 constitute a one-hot encoding vector where only the units at position
ij (ij ∈ c) is set to 1 and all other units are set to 0. For each i ∈ c, we encode it in
the same way as ij . Note that items may have both numerical and categorical features
in real-world business. In this work, we only consider those categorical features. For
a value from a categorical feature f (f ∈ F ) with m different values, we transform it
to a 1 ×m vector using one-hot encoding. Suppose V =

∑
nk is the total number of

distinct values of all features, where nk is the number of distinct values in feature fk.
For the features of a given item, a 1×V vector is achieved by doing the transformation
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of all feature values first and then concatenate all the transformed vectors together. Thus
the input layer for each training example consists of |c| item vector with length |I| and
|c| item feature vectors with length V .

In the input layer, items and item features are represented by sparse one-hot item
and feature vectors. In NTEM, we create an embedding mechanism to map these vectors
to an informative and lower-dimensional vector representation in the embedding layer,
where a K-dimension vector Ei ∈ [0, 1]K is used to represent the item embedding. The
transaction context weight matrix Wt ∈ RK×|I| is used to fully connect between input-
layer and embedding-layer. Where the ith column Wt

:,i encodes the one-hot vector of
item i to the embedding Ei using the commonly used logistic function σ(·).

Ei = σ(Wt
:,i) (1)

To make the training and prediction more stable, here we use the nonlinear embed-
dings as they are bounded in [0,1] compared to the linear embeddings. Furthermore, the
nonlinear embeddings are more expressive than linear one though they may involve a
little more computation cost. After embedding all items in c, we can obtain the embed-
ding Ec ∈ [0, 1]L of transaction context c by combining all embeddings of items in such
context. As illustrated in the following equation, the transaction context embedding is
built as a combination of Ei, i ∈ c.

Ec =
∑
i∈c

ωiEi (2)

where
∑
i∈c ωi = 1. The combination weight ωi for each item i in context c can be as-

signed to different values according to specific applications. For instance, in sequential
data, the weights decay with time span to the target item. As illustrated in the introduc-
tion part, we treat the items within a transaction as unordered, so uniform weights are
used in this paper, i.e. the items in context are equally important for the prediction of
the target item.

Similarly, we use the feature context weight matrix Wf ∈ RL×V to encode the
one-hot item feature vector Fi of item i to the embedding EFi

∈ [0, 1]L.

EFi = σ(Wf
:,Fi

) (3)

Similar to transaction context, we combine the embeddings of features of all items
from c to construct the whole feature embedding EFc

as below.

EFc =
∑
i∈c

ωFiEFi (4)

where
∑
i∈c ωFi

= 1. Uniform weights are assigned to the feature embedding of each
item for the same reason as ωi illustrated above.

The output weight matrices Wo ∈ R|I|×K and Wp ∈ R|I|×L is used to fully
connect the embedding-layger and output-layer as depicted in the top of Fig. 1. With the
embeddings of given contextual itemset c and its features Fc, plus the weight metrics
Wo and Wp, the score Sis of a target item is w.r.t. the given context < c, Fc > is
computed as:

Sis(c, Fc) = Wo
s,:Ec +Wp

s,:EFc (5)
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where W o
s,: denotes the sth row of W o. This score quantifies the relevance of the target

item is w.r.t. the given context < c, Fc >. As a result, the conditional probability dis-
tribution PΘ(is|c, Fc) can be defined in terms of softmax function, which is commonly
used in neural network or regression model.

PΘ(is|c, Fc) =
exp(Sis(c, Fc))

Z(c, Fc)
(6)

where Z(c, Fc) =
∑
i∈I exp(Si(c, Fc)) is the normalization constant and Θ = {Wt,

Wf ,Wo,Wp} is the model parameters. Thus a probabilistic classifier modeled by our
NTEM is obtained.

3.3 Learning and Prediction

In the above subsection, we have built a probabilistic classifier based on the transaction
and item feature information data b =< g, ig >, where g =< c, Fc > is the input data,
namely the transaction-feature context, and ig is the corresponding observed output,
namely an item bought together with the given transaction context c. Given a training
dataset D = {< g, ig >}, the joint probability distribution over it is obtained:

PΘ(D) ∝
∏
b∈D

PΘ(ig|c, Fc) (7)

As a result, the model parameters Θ can be learned by maximizing the conditional
log-likelihood:

LΘ =
∑
b∈D

logPΘ(ig|c, Fc) =
∑
b∈D

Sig (c, Fc)− logZ(c, Fc) (8)

Evaluating LΘ and evaluating the corresponding log-likelihood gradient involve the
normalization term Z(c, Fc), which needs to sum exp(Sig (c, Fc)) over the whole item-
set for each training instance. That is to say, training this model take |I| × |D| times
of computation to get the normalization constant for each iteration, which makes the
training process intractable. To tackle this problem, we adopt a sub-sampling approach,
namely noise-constrictive estimation (NCE) [8] to deal with the normalization calcula-
tion of softmax function in the training process. We sample 50 negative items each time
in the experiment.

All the parameters Θ are learned by back propagation. Algorithm 1 summarizes the
learning process briefly. In Algorithm 1, � denotes element-wise product operation, io
is the output item which includes both positive example and noise examples. ij ∈ c is
the input item from the context and ωij is the corresponding combination weight used
in Eq. 2. Similarly, Fij is the corresponding input feature of item ij and ωFij

is its
corresponding combination weight used in Eq. 4.

Due to the large computation cost and the strength in matrix calculation of GPUs, a
GPU-based adaptive stochastic gradient descent (SGD) optimizer is designed to speed
up the training process.
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Algorithm 1 NTEM Parameter Learning Using Gradient Descent
1: l← 0
2: while not converged do
3: Compute woio -gradient (Eq.1): gwo

io
← E>

c

4: Compute wpio -gradient (Eq.3): gwp
io
← E>

Fc

5: Compute wt:,ij -gradient (Eq.5):
gwt

:,ij
← ωijW

o>
io,: �Ei � (1−Ei)

6: Compute wf:,Fij
-gradient (Eq.5):

g
w

f
:,Fij

← ωFij
Wp>

Fio ,:
�EFi � (1−EFi)

7: Perform SGD-updates for woio , wpio , wt:,ij and wt:,ij :
woio ← woio + Slio(g)gwo

io
, wpio ← wpio + Slio(g)gwp

io
, wt:,ij ← wt:,ij +

Slio(g)gwt
:,ij
, wf:,Fij

← wf:,Fij
+ Slio(g)gwf

:,Fij

8: l← l + 1
9: end while

4 Experiments and Evaluation

4.1 Experimental Setup

Data Preparation We evaluate our method on two real-world transaction data sets:
IJCAI-15 1 and Tafang 2. First, a shopping-basket-based transaction table and an item
information table are extracted from each of the original data. The transaction table
contains multiple transactions and each transaction consists of multiple items. Note that
those transactions containing only one item are removed as they can not fit our model.
This is because, we use at least one item as context for constructing the embeddings.
The item information table contains the feature values of each item occurred in the
transaction table, note that we only focus on those categorical features in this paper.
Secondly, the transaction table is splitted into training and testing set. Specifically, we
randomly choose 20% from the transactions happened in last 30 days as the testing set,
while others are used for training. The item information table is used in both training
and testing processes. Finally, to test the performance of our proposed model under
different cold-start levels, part of the transactions in training set are removed following
certain rules. To be specific, we construct 4 different training sets with a drop rate of
0, 40%, 80%, 95% respectively. Taking the one with drop rate of 40% as an example,
for each target item selected in the testing set, 40% of all the transactions containing it
in the training set are dropped. The characteristics of the datasets are shown in Table 1.

During the training, the transactions in the training set together with the correspond-
ing item features are imported into the model in batches to learn embeddings of each
item and each feature value. In the testing process, the learned embeddings are used
to predict the target item given the (n − 1) ones. The real target item in the testing

1 https://tianchi.aliyun.com/datalab/dataSet.htm?id=1
2 http://stackoverflow.com/questions/25014904/download-link-for-ta-feng-grocery-dataset
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Table 1: Statistics of experimental datasets
Statistics IJCAI-15 Tafang
#Transactions 144,936 19,538
#Items 27,863 5,263
#Features 3 1
Avg. Transaction Length 2.91 7.41
#Training Transactions 141,840 18,840
#Training Instances 412,679 141,768
#Testing Transactions 3,096 698
#Testing Instances 9,030 3,150

set is used as the ground truth. We calculate accuracy measures Recall@K [24] and
MRR [5] by comparing the predicted results and the ground truth. We also calculate the
recommendation novelty measures: global novelty and local novelty by comparing the
recommendation list and the whole item population and the given context item set re-
spectively. Finally, the performance of our proposed method is evaluated by comparing
it and other related ones in terms of recommendation accuracy and novelty.

Evaluated Methods In the experiments, we compare our proposed NTEM with the
following commonly used baselines:
• FPMC: A model that combines matrix factorization and Markov Chains for next-

basket recommendation. The model factorize the personal transition matrix between
items with a pairwise interaction model [18].
• PRME: A personalized ranking metric embedding method (PRME) to model per-

sonalized check-in sequences. The learned PRME is then used to recommend next new
point of interest (POI) of users [6].
• GRU4Rec: A RNN-based approach for session-based recommendations by mod-

eling the whole session using a modified RNN [10].

4.2 Performance Evaluation

Except for the traditional recommendation accuracy, we also evaluate the recommen-
dation novelty to test the capability of the proposed method to recommend novel items.

Accuracy Evaluation We use the following widely used accuracy metrics for transaction-
based recommendation to evaluate all the comparison approaches.The result of each
approach is given in Table 2.
• REC@K:It measures the recall of the top-K ranked items in the recommendation

list over all the testing instances [24]. Recall that in the real-world case most customers
are only interested in the items recommended on the first one or two pages, so here we
choose K ∈ {10, 50}. In practice, it’s a big challenge to find the extract one true item
from thousands of items.
• MRR:It measures the mean reciprocal rank of the predictive positions of the true

target item on all the testing instances [5].
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Table 2: Accuracy comparisons between different recommendation models
IJCAI-15 Tafang

Scenario Model REC@10 REC@50 MRR REC@10 REC@50 MRR

drop
0

FPMC 0.0016 0.0025 0.0031 0.0189 0.0216 0.0089
PRME 0.0555 0.0612 0.0405 0.0212 0.0305 0.0102
GRU4Rec 0.1182 0.1566 0.0965 0.0428 0.0887 0.0221
NTEM 0.2026 0.3224 0.1125 0.0689 0.1716 0.0231

drop
40%

FPMC 0.0012 0.0021 0.0026 0.0008 0.0010 0.0058
PRME 0.0327 0.0411 0.0312 0.0102 0.0205 0.0095
GRU4Rec 0.1108 0.1356 0.0868 0.0330 0.0659 0.0196
NTEM 0.1928 0.2794 0.1117 0.0575 0.1049 0.0377

drop
80%

FPMC 0.0009 0.0017 0.0021 0.0005 0.0008 0.0020
PRME 0.0212 0.0287 0.0215 0.0084 0.0125 0.0056
GRU4Rec 0.0493 0.0611 0.0398 0.0110 0.0244 0.0054
NTEM 0.1098 0.1450 0.0686 0.0254 0.0494 0.0072

drop
95%

FPMC 0.0003 0.0008 0.0012 0.0002 0.0004 0.0008
PRME 0.0089 0.0113 0.0105 0.0071 0.0096 0.0043
GRU4Rec 0.0233 0.0337 0.0173 0.0101 0.0172 0.0042
NTEM 0.0318 0.0639 0.0173 0.0215 0.0305 0.0068

Table 2 demonstrates the results of REC@10, REC@50 and MRR over the testing
sets of different cold-start levels. The number of factor is set to 10 for training FPMC
as the best performance is achieved in such setting. The performance of FPMC on both
data sets is quite poor, even in the warm start situation (e.g., REC@50=0.0025 when
drop rate=0 on IJCAI-15). The main reason is that both data sets are extremely sparse
and thus a very large but quite sparse matrix is constructed to train the MF model for
each data set. For instance, in IJCAI-15 data set, each user only has an average of 3.6
transactions and each transaction only contains an average of 2.91 items of over 27,000
ones. This leads to that each row of the constructed matrix contains less than two items
(cf. the avg. transaction length in Table 1, note that one out of the items need to be
taken out as the output) and all other entries are empty. By calculation, we found the
non-empty entries in the constructed matrix of IJCAI-15 account for less than 0.01%.
We set the embedding dimensions to 60 as suggested in [6] when training PRME model.
The performance of PRME is a little better than FPMC, but it’s still poor especially in
those cold start cases. This is because PRME is a fist-order MC model, which learns
the transition probability over successive item instead of the whole context. Namely,
this model only predict the target item based on its previous one while ignore all those
bought before in the same transaction, which lost some information. Furthermore, in
the real-word, the choice of items does not follow a rigid sequence assumed by such
kind of models. Benefiting from the deep structure, GRU4Rec achieves much better
performance compared with FPMC and PRME models. Especially, when we drop no
more than 40% transactions, the REC@10 is above 10% on IJCAI-15, which can lead
to a relative accurate recommendation in real-world business.

The batch size is empirically set to 200 and number of hidden units for the item
and feature value embeddings are set to 50 and 20 respectively. We run 60 epochs to
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train our NTEM model. It achieves much better performance than GRU4Rec, where
the REC@10 and REC@50 exceed 20% and 30% respectively when drop nothing on
IJCAI-15. In the extremely cold start case (drop 95% ), it also achieves obvious better
performance than other methods on both data sets. The REC@10 and REC@50 of our
model exceed 3% and 6% respectively, compared to around 2% and 3% of GRU4Rec
on IJCAI-15. The higher MRR of our model also shows that we can accurately put the
customers’ desired items in the front of the recommendation list. The reason is multi-
faceted. First of all, we use a complete context to predict one target item, and we donot
assume a rigid order between the items within one transaction. This makes the input
more informative and consistent with the reality compared with those models which
only utilize part of the context and assume a rigid order between items. Second, more
information is used by our model by incarnating the item features into it. More impor-
tantly, the coupling relations between item features and its transactions are learned and
encoded into item and its feature embeddings in the back-forward propagation training
mechanism. Thanks to the features and the coupling relations, additional information
is provided to help with the item prediction and recommendation, especially for those
novel items which lack of sufficient transaction information. What’s more important,
our model has a very concise structure which is easy to train. This shallow structure is
efficient enough to retrain and recompute the score for ranking of all candidate items in
an incremental dataset for online recommendations. However, GRU4Rec is a deep RNN
consisting of GRU layers, which makes it more time consuming when new transaction
records are added into the dataset.

Novelty Evaluation Except for accuracy, novelty is another important quality which
should be considered in real-world recommendation scenarios [20]. Recall that in this
paper we also try to recommend those infrequent or unpopular items, namely novel
items, so the novelty is particularly important to measure the recommendation quality
of our model. Specifically, we evaluate the recommendation novelty from both global
perspective and local perspective by using different metrics.
• Global novelty: intuitively, the novelty of an item from the global perspective can

be defined as the opposite of item popularity w.r.t the whole population. The item is
novel if it occurs in few transactions, i.e., the item is far in the long tail of the popularity
distribution [16]. Inspired by the inverse user frequency (IUF) proposed in [3] and [7],
we define the concept of inverse transaction frequency (ITF) as ITF = −log2|Ti|/|T |,
where Ti = {t ∈ T |i ∈ t} denotes the set of transactions containing item i. Similar to
the novelty metric MIUF defined in [16], here we use the average of the ITF (MITF)
of the recommended items to measure the global novelty of a recommendation:

MITF = − 1

|R|
∑
i∈R

log2
|Ti|
|T | (9)

whereR is the set of recommended items in one recommendation and T is the whole set
of transactions. For all the N recommendations on a certain testing dataset, the global
recommendation novelty is defined as the mean of MITF of each recommendation:

M2ITF =
1

N

∑
MITF (10)
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• Local novelty: different from global novelty, local novelty refers to the difference
of recommended items w.r.t the previous experience of the users. Generally, if the rec-
ommended items are more different from the already bought items, the more novel these
items are. In our model, the already bought items correspond to the context c used for
recommendation R. Given a recommendation list R, the more items in R having been
seen in the context c, the less novelty the recommendation is. Based on this observation,
the context-aware novelty (CAN ) of recommendation R can be defined as:

CAN = 1− |R ∩ c|
|R| (11)

Similarly, for all the N recommendations on a certain testing set, the local recommen-
dation novelty is defined as the mean of CAN (MCAN ) of all recommendations:

MCAN =
1

N

∑
CAN (12)

(a) (b)

Fig. 2: M2ITF comparisons on top-10 items, NTEM achieves higher global novelty
than other approaches

Fig. 2 and Fig. 3 show the results of global novelty and local novelty compar-
isons of top-10 recommendations over testing sets using the aforementioned measures
M2ITF@10 and MCAN@10 respectively on both data sets. Overally, our proposed
NTEM achieves both higher global novelty and local novelty compared to other ap-
proaches. FPMC is not trained well on such sparse dataset and can not work well, so
its recommendations are not precise and have a lot of randomness. Recall the fact that
most of the candidate items in the dataset are frequent and not novel. Accordingly, we
get low M2ITF and MCAN on FPMC. PRME is a first-order Markov Chain model
in which a sequential hypothesis is forced between the items within a transaction and
it predicts the target item by only utilizing the one before it in the transaction. This is
not always the case in the real world and it leads to information loss by ignoring other
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(a) (b)

Fig. 3: MCAN comparisons on top-10 items, NTEM achieves higher local novelty
than other approaches

items in the transaction, so PRME also gets low novelties here. GRU units in GRU4Rec
can accumulate the effect of all the sequential items in a transaction, it makes use of all
other items in the transaction to predict the target one. Taking the advantage of the deep
structure, it achieves relative high novelties. As a result, GRU4Rec is a relative good
TBRS to make novel recommendations.

Our proposed NTEM do not have the sparse issue as FPMC due to its totally differ-
ent work mechanism from matrix factorization used in FPMC, so it works well even on
a sparse data set as shown in our experiment. Furthermore, NTEM does not assume a
sequence between the items within a transaction, which is closer to the actual situation.
More importantly, we make full use of all the other items in a transaction to predict
the target one, which makes the prediction more solid by utilizing richer information.
For the cold start issue, we incorporate the item features into the model and take the
advantage of the information flow on feature values for prediction when the available
transaction information is limited. So NTEM is more easily to provide novel recom-
mendations and to achieve higher global and local novelties.

In practice, both the global and local novelties are somehow related to the recom-
mendation accuracy here, specifically, some kind of positive relations exist between
them. In the cold start scenarios, as all the target items are infrequent or novel, higher
recommendation accuracy means more chance to get the target items into the recom-
mendation list. Whereas more target items included in the recommendation list lead to
higher novelty.

5 Discussions

Currently, we have to admit a weakness of our work on dealing with the purely cold
items though it can get good results in the extremely high drop rate (i.e. 95%) case. We
try to analyze the reasons and provide some suggestions in this section. On one hand, the
model parameters are learned on training set, so they tend to reveal the existing patterns
in training set naturally. However, the purely cold items never appear in the training
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set, nothing is learned for them when training. On the other hand, for those purely cold
items, only their features are used for predictions. This requires their feature values
have occurred frequently in the training set and thus good embeddings can be learned.
In addition, the item features also affect the prediction of new items greatly. In general,
high-dimensional features have stronger capabilities to deliver information than low-
dimensional ones. Unfortunately, the shopping-basket datasets in transaction domain
usually have diverse feature values and low dimensions. For instance, the IJCAI-15
dataset only has three features: category, brand and seller. The average frequency of
feature values in brand and seller is below five, which is quite infrequent. This leads to
the feature values of new items in testing set occur too few times or even never occur,
which leads to learning poor embeddings of them and thus poor information delivering
capacity. Some potential solutions to improving our model for dealing with purely cold
items may be: (1) finding more suitable datasets with high-dimensional features and
intensive feature values, like audio data, image data or text data; (2) only using those
features having already occurred in training set.

6 Conclusions

Perceiving the next choice in a dynamic context for onling recommendation is de-
manding but challenging. In this paper, we propose NTEM to build a more precise and
efficient TBRS, it also shows great potential to improve the recommendation novelty.
The empirical evaluation on real-world e-commerce datasets shows the com-prehensive
superiority of our methods over other state-of-the-art ones. In the future, we will extend
our model to other domains, like relational learning on social networks.
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