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Abstract. This paper proposes an ensemble method for time series fore-
casting tasks. Combining different forecasting models is a common ap-
proach to tackle these problems. State-of-the-art methods track the loss
of the available models and adapt their weights accordingly. Metalearn-
ing strategies such as stacking are also used in these tasks. We propose a
metalearning approach for adaptively combining forecasting models that
specializes them across the time series. Our assumption is that different
forecasting models have different areas of expertise and a varying rela-
tive performance. Moreover, many time series show recurring structures
due to factors such as seasonality. Therefore, the ability of a method
to deal with changes in relative performance of models as well as re-
current changes in the data distribution can be very useful in dynamic
environments. Our approach is based on an ensemble of heterogeneous
forecasters, arbitrated by a metalearning model. This strategy is designed
to cope with the different dynamics of time series and quickly adapt the
ensemble to regime changes. We validate our proposal using time series
from several real world domains. Empirical results show the competi-
tiveness of the method in comparison to state-of-the-art approaches for
combining forecasters.

Keywords: Dynamic Ensembles, Metalearning, Time Series, Numerical
Prediction, Reproducible Research

1 Introduction

Time series forecasting is an important topic in the machine learning research
community with several applications across different domains. Time series often
comprise non-stationarities and time-evolving complex structures which difficult
the forecasting process.

To cope with these issues a common approach is to combine several forecast-
ing models. Combination strategies typically involve tracking the error of the
available models and adaptively weigh them accordingly. Using stacking [30], a
metalearning approach, to combine the available forecasting models is also a com-
mon approach. This method directly models inter-dependencies between models,
which might be relevant to take into account the diversity among them [5].

In this paper we adopt a metalearning strategy to adaptively combine the
available forecasting models. However, contrary to stacking, we model the indi-
vidual expertise of each forecasting model and specialize them across the time



series. Consequently, the forecasting models are combined in such a way that
they are only picked for predicting in examples that they are good at. Moreover,
as opposed to tracking the error on past instances, our combination approach is
more proactive as it is based on predictions of future loss of models. This can
result in a faster adaptation to changes in the environment.

The motivation for our approach is that different learning models have differ-
ent areas of expertise across the input space [5]. In time series forecasting there
is evidence that forecasting models have a varying relative performance over
time [2]. Moreover, it is also common for the underlying process generating the
time series to have recurrent structures due to factors such as seasonality [12].
In this context, we hypothesize that the metalearning strategy enables the en-
semble to better detect changes in the relative performance of models or changes
between different regimes and quickly adapt itself to the environment.

Specifically, our proposed metalearning strategy, hereby denoted as ADE
(Arbitrated Dynamic Ensemble), is based on an Arbitrating architecture [21].
In that sense, we build a meta-learner for each base-learner that is part of the
ensemble. Each meta-learner is specifically designed to model how apt its base
counterpart is to make a prediction for a given test example. This is accom-
plished by analysing how the error incurred by a given learning model relates
to the characteristics of the data. At test time, the base-learners are weighted
according to their degree of competence in the input observation, estimated by
the predictions of the meta-learners. This is illustrated in Figure 1.

Fig. 1: Example scheme of the workflow of ADE for a new prediction. The base
learners M produce the predictions ŷi, i ∈ {1, . . . ,m} for the next value of
the time series. In parallel, the meta learners Z produce the weights w of each
base learner according to their predictions of error (êi). The final prediction ŷ is
computated using a weighted average of the predictions relative to the weights.

While a given base learner Mi is trained to model the future values of the time
series, its metalearning associate Zi is trained to model the error of Mi. Zi then
can make predictions regarding the error that Mi will incur when predicting the



future values of the time series. In effect, the larger the estimates produced by Zi
(relative to the other models in the ensemble) the lower the weight of Mi will be
in the combination rule. Although arbitrating models is not generally new [21],
it was originally formulated for selecting classifiers. Moreover, we address several
of its limitations which significantly improve its overall ability.

We validate the proposed method in 14 real-world time series. Empirical
experiments suggest that our method is competitive against different adaptive
methods for combining base-learners and other metalearning approaches such
as stacking [30]. We note that all experiments are fully reproducible. Both the
methods and time series data sets are publicly available as an R software package.

In summary, the contributions of this paper are:

– ADE, an arbitrated dynamic ensemble. Arbitrating was originally proposed
for dynamic selection of classifiers [21], whereas we adapt it to time series
forecasting tasks;

– We introduce a blocked prequential procedure in the Arbitrating approach
to obtain out-of-bag predictions in the training set in order to increase the
data used to train the metalearning model;

– A softmax function used to weight the forecasters. This function is commonly
used in neural networks, however, to the best of our knowledge, it has not
been applied yet to dynamically weight base-learners;

– An empirical study comparing different training strategies for the base and
meta levels including a discussion about its implications in terms of predic-
tive performance and computational resources used.

We start by outlining the related work in Section 2; the methodology is
addressed in Section 3, where we formalise ADE and explain our contributions;
the experiments and respective results are presented and discussed in Section 4,
where we also include a brief scalability analysis of ADE. Finally, Section 5
concludes the paper.

2 Related Work

In this section we briefly revise the state-of-the-art methods for adaptively com-
bining models for time series forecasting tasks, listing their characteristics and
limitations as well as highlighting our contributions.

The simple average of the predictions of the available base-learners have been
shown to be a robust combination method [7, 26, 20]. Nonetheless, other more
sophisticated approaches have been proposed.

2.1 Windowing Strategies for Model Combination

AEC is a method for adaptively combining forecasters [25]. It uses an exponential
re-weighting strategy to combine forecasters according to their past performance.
It includes a forgetting factor to give more importance to recent values.



Timmermann argues that for the prediction of stock returns models have only
short-lived periods of predictability [27]. He proposes an adaptive combination
based on the recent R2 of forecasters. If all models have poor explained variance
(low R2) in the recent observations then the forecast is set to the mean value
of those observations. Otherwise, the base-learners are combined by averaging
their predictions with the arithmetic mean.

Newbold and Granger proposed a method which weighs models in a linear
way according to their performance in recent past data [19].

The outlined models are related to our work in the sense that they employ
adaptive heuristics to combine forecasters. However, these heuristics are incre-
mental or sliding summary statistics on relative past performance. Conversely,
we explore differences among base-learners to specialise them across the data
space. Moreover, we use a more proactive heuristic that is based on the predic-
tion of relative future performance of individual forecasters.

2.2 Metalearning Strategies for Model Combination

Metalearning provides a way for modeling the learning process of a learning
algorithm [4]. Several methods follow this approach to improve the combinination
or selection of models [30, 22]. The most popular strategy to combine forecasters
is similar to stacking [30]. Linear regression is used to adaptively estimate the
weights of the base-learners [8].

Our proposal follows a metalearning strategy called arbitrating. This was in-
troduced before for dynamic selection of classifiers [21] (Figure 1). A prediction
is made using a combination of different classifiers that are selected according
to their expertise concerning the input data. The expertise of a model is learned
using a meta-model, one for each available base classifier, which models the loss
of its base counterpart. At runtime, the classifier with the highest confidence is
selected to make a prediction. This work follows a first attempt on adapting the
arbitration approach to numerical prediction tasks. This strategy was applied to
solar radiation forecasting tasks, and the arbitration methodology is extended
by weighing all forecasting models, as opposed to selecting the one with lowest
predicted error [6]. In this paper we introduce other components to arbitrating.
These address several of its drawbacks, such as its inefficient use of the available
data, by using OOB samples from the training set; a more robust combination
rule by using a committee of recent well performing models and weighing them
using a softmax function; and the general translation to the time series forecast-
ing tasks, which is fundamentally different than classification tasks.

3 Arbitrating for Time Series Forecasting

A time series Y is a temporal sequence of values Y = {y1, y2, . . . , yt}, where
yi is the value of Y at time i. We use time delay embedding to represent Y
in an Euclidean space with embedding dimension K. Effectively, we construct
a set of observations which are based on the past K lags of the time series.



This is accomplished by mapping the time series Y into the embedding vectors
VN−K+1 = {v1,v2, . . .vN−K+1} where each vi = 〈yi−(K−1), yi−(K−2), . . . , yi〉.

The proposed methodology in ADE for time series forecasting settles on the
three main steps: (i) An offline training step of M , the set of base-learners which
are used to forecast future values of Y , and the online iterative steps: (ii) Training
or updating of meta-learners Z, which model the expertise of base-learners, and
(iii) prediction of yt+1 using M , dynamically weighed according to Z.

3.1 Learning Base-level Models

In the offline learning phase we train m individual forecasters. Each M j ,∀j ∈
{1, ...,m} is built using the available time series Y Ktr . The objective is to predict
the next value of the series, yt+1. We use the subscripts tr and ts to denote the
training and testing sets, respectively.

By embedding the time series to an Euclidean space we are able to apply
standard regression learning models. In this context, M is comprised by a set of
heterogeneous models, such as Gaussian Processes and Neural Networks. Het-
erogeneous models have different inductive biases and assumptions regarding
the process generating the data. Effectively, we expect models to have different
expertise across the time series. The learning step is described in Algorithm 1.

3.2 Learning Meta-level Models

In the metalearning step of ADE the goal is to build algorithms capable of mod-
elling the expertise of each model across the data-space. Our working hypothesis
is that the ensemble can leverage individual learners with different inductive
biases to better cope with the different regimes causing the time series.

Our assumption is that not all models will perform equally well at any
given prediction point. This idea is in accordance with findings reported in prior
work [2]. Systematic evidence was found that some models have varying relative
performance over time and that other models are persistently good (or bad)
throughout the time series. Furthermore, in many environments the dynamic
concepts have a recurring nature, due to, for instance, seasonality. In effect, we
use the meta learners to dynamically weigh base learners and adapt the com-
bined model to changes in the relative performance of the base models, as well
as for the presence of different regimes in the time series.

Algorithm 1 Learning M

Require: Available Time Series Y ; Embedding Dimension K
1: Embed Y into Y Ktr
2: for all M j ∈M do
3: train M j using Y Ktr
4: Return M



Our metalearning approach is based on an arbitrating architecture originally
introduced in [21] (c.f. Section 2 for an explanation of arbitration). Specifically,
a meta-learner Zj ,∀j ∈ {1, . . . ,m} is trained to build the following model:

ej = f(I) (1)

where ej is the absolute error incurred by M j , I is the metafeature set and f
is the regression function. The metafeatures are the embedding vectors, i.e., the
past values of the time series.

We perform this regression analysis on a meta-level to understand how the
error of a given model relates to the dynamics and the structure of the time
series. Effectively, we can capitalise on this knowledge by dynamically combining
base-learners according to the expectation of how they will perform.

Blocked Prequential for Out-of-Bag Predictions In the original formula-
tion of the Arbitrating strategy, the metalearning layer only starts at run-time,
using only information from test observations [21]. This is motivated by the need
for unbiased samples to build reliable metalearners. However, this means that at
the beginning, few observations are available to train the meta learners, which
might result in underfitting.

ADE uses the training set to produce out-of-bag (OOB) predictions which
are then used to compute an unbiased estimate of the loss of each base learner.
By retrieving OOB samples from the training set we are able to significantly
increase the amount of data available to the meta learners. We hypothesize that
this strategy improves the overall performance of the ensemble by improving the
accuracy of each metalearner.

We produce OOB samples by running a blocked prequential procedure [9].
The available embedded time series used for training Y Ktr is split into β equally-
sized and sequential blocks of contiguous observations. In the first iteration, the
first block is used to train the base learners M and the second is used to test
them. Then, the second block is merged with the first one for training M and
the third block is used for testing. This procedure continues until all blocks are
tested. In summary, each metalearner uses all the information available up to
the prediction point. However, each metalearner is trained every λ observations,
so less computation is used to update the models.

Committee of Models for Prediction As described earlier, the predictive
performance of forecasting models has been reported to vary over a given time
series. We address this issue with a committee of models, rather than selecting
a single model [21], where we trim recently poor performing models from the
combination rule for an upcoming prediction (e.g. [14]). Formally, we maintain
the α% base learners with lowest mean absolute error in the last Ω observations,
trimming off the remaining ones. The predictions of the meta-level models are
used to weigh the selected forecasters.



Additionally, if a base learner is consistently out of the committee, its meta-
level pair is not trained. This saves computational resources. The meta-learning
phase is described in Algorithm 2.

Algorithm 2 Metalearning Z

Require: Available observations at runtime Yts; Embedding Dimension K; Training
Signal λ; meta-committee αZ

1: Embed Yts into Y Kts → I
2: for all Zj ∈ αZ and not trained in the last training signal λ do
3: train Zj to model: ej = f(I)
4: Return αZ

3.3 Predicting yt+1

For a new observation yt+1, ADE combines the base learners in M according to
the meta information obtained from the models in Z to generate a prediction.

Initially we form the αM committee with the α% models in M with best
performance in the last Ω observations. The corresponding metalearners are also
discarded from the upcoming prediction so we also form the meta-committee αZ.

The weigh of a base learner M j in αM is given by the softmax of its negative
predicted loss. This is formalised by the following equation:

wjt+1 =
exp(−êj)∑

j∈αM exp(−êj)
(2)

where êjt+1 is the prediction made by
α
Zj for the absolute loss that αM j will

incur in yt+1, wjt+1 is the weigh of Mj for observation yt+1 and exp denotes
the exponential function. With the application of the softmax function, which
is widely used in the modelling process of neural networks, the weigh of a given
model decays exponentially as its predicted loss increases. We use this func-
tion (instead of a more traditional linear transformation) to further increase the
influence of the predicted best performing models.

The final prediction is a weighted average of the predictions made by the
base-learners ŷj with respect to wjt+1: ŷt+1 =

∑
j∈αM ŷjt+1 · w

j
t+1.

The prediction step of ADE is described in Algorithm 3.

4 Experiments

In this section we present the experiments carried out to validate ADE. These
address the following research questions:

Q1: How does the performance of the proposed method relates to the perfor-
mance of the state-of-the-art methods for time series forecasting tasks and
state-of-the-art methods for combining forecasting models?



Q2: Is it beneficial to use out-of-bag predictions from the training set to increase
the data used to train the meta learners?
Q3: Is it beneficial to use a weighing scheme in our Arbitrating strategy instead
of selecting the predicted best forecaster as originally proposed [21]?
Q4: How does the performance of ADE vary by the introduction of a committee,
where poor recent base-learners are discarded from the upcoming prediction,
as opposed to weighing all the models?
Q5: Does a non-linear weighting strategy using a softmax function produce
better estimates instead of a traditional linear scaling?
Q6: How does the performance of ADE vary by using different updating strate-
gies for the base and meta models?

To address these questions we used 14 real world time series from four dif-
ferent domains, briefly described in Table 1. In the interest of computational
efficiency we truncated the time series to 2000 values.

Algorithm 3 Predicting yt+1

Require: K, M , Z, α, Ω, αM , αZ
1: Embed the previous K − 1 values into Y Kt+1

2: Get meta-predictions êjt+1 from Zj ∈ αZ

3: Compute weights wjt+1 = exp(−êjt+1)/
∑
Zj∈αZ exp(−ê

j
t+1)

4: Get predictions ŷjt+1 from models M j ∈ αM

5: Compute final prediction ŷt+1 =
∑m
j=1 ŷ

j
t+1 · w

j
t+1

6: Add yt+1 to Yts
7: Update Committees αM and αZ according to α and Ω
8: Return ŷt+1 and go back to the metalearning step (Algorithm 2)

4.1 Experimental Setup

The methods used in the experiments were evaluated using the mean squared
error (MSE) on 10 Monte Carlo repetitions. For each repetition, a random point
in time is chosen from the full time window available for each series, and the
previous window N consisting of 50% of the data set size is used for train-
ing the ensemble while the following window of size 30% is used for testing.
The results obtained by the different methods were compared using the non-
parametric Wilcoxon Signed Rank test. The experiments were carried out using
performanceEstimation [28] R package.

We tested two different embedding dimensions by setting K to 7 and 15.

4.2 Ensemble Setup and Baselines

The base-models M comprising the ensemble are the following:



Table 1: Datasets and respective summary

ID Time series Data source Data characteristics

1 Electricity Total Load

Hospital Energy Loads [10]
Hourly values from Jan. 1, 2016 to Mar.
25, 2016

2 Equipment Load
3 Water Heating Load
4 Gas Energy
5 Gas Heat Energy

6 Ameal
Oporto Water Demand
from different locations [1]

Half-hourly values from Feb. 6, 2013 to
Mar. 19, 2013

7 Preciosa Mar
8 Montes Burgos

9 Global Horiz. Radiation
Solar Radiation
Monitoring [3]

Hourly values from Feb. 16, 2016 to May
5, 2016

10 Direct Normal Radiation
11 Diffuse Horiz. Radiation

12 Sea Level Pressure
Ozone Level Detection [17]

Half-hourly from Feb. 6,
2013 to Mar. 13, 201313 Geo-Potential Height

14 K index

SVM Support Vector Machines [15];
NN Feed Forward Neural Nets [29];
GP Gaussian Processes [15];
GLM Generalized Linear Models [11];
RF Random Forests [31];

GBR Generalized Boosted Regr. [24];

MARS MARS [18];

RBR Rule-based Regression [16];

PPR Projection Pursuit Regr. [23].

Different parameter settings are used for each of the individual learners, adding
up to 40 models.

We use a Random Forest as meta-learner. The parameter λ was set to 10,
which means that at run-time the metalearners are re-trained every 10 observa-
tions. Each set contains the OOB samples from the training set and the observa-
tions from the test set up to the upcoming prediction. In the blocked prequential
procedure used to obtain OOB samples we used 10 folds, i.e., β equal to 10. The
committee for each prediction contains the 50% forecasters with best perfor-
mance in the last 50 observations (α and Ω values are set to 50). We drop only
half the models in the interest of keeping the combined model readily adapt-
able to changes in the environment. An average performing model may suddenly
become important and the combined model should be able to capture these sit-
uations. By setting Ω to 50 we strive for estimates of recent performance that
renders a robust committee. We compare the performance of ADE against the
following 8 approaches:

Stacking: An adaptation of stacking [30] for times series, where a meta-model is
learned using the base-level predictions as attributes. To preserve the temporal
order of observations, the out-of-bag predictions used to train the metalearner
(a random forest) are obtained using a blocked prequential procedure (c.f. Sec-
tion 3.2). We tried different strategies for training the metalearner (e.g. holdout)
but blocked prequential presented the best results;
Arbitrating: The original arbitrating approach [21], c.f. Section 2;



S: A static heterogeneous ensemble. All base learners are simply averaged using
the arithmetic mean [26];
S-W: A weighted linear combination of the models, with weights according to
their performance using all past information [14];
AEC: The adaptive combination procedure AEC [25], c.f. Section 2;
S-WRoll: The adaptive combination method, with a linear combination of the
forecasters according to their recent performance [19];
ERP: The adaptive combination procedure proposed by Timmermann [27], c.f.
Section 2;
ARIMA: A state-of-the-art method for time series forecasting. We use the im-
plementation in the forecast R package [13], which automatically tunes ARIMA
to an optimal parameter setting;

The following variants of ADE were tested:

ADE-Arb: A variant of ADE in which at each time point the best model is
selected to make a prediction. Here best is the one with lowest predicted loss.
This is in accordance with the original arbitrating architecture [21];
ADE-meta-runtime: A variant of ADE in which there is no blocked prequen-
tial procedure to obtain OOB samples to increase the data provided to the
metalearners. In this scenario Z is trained in data obtained only at run-time,
which is also in accordance with the original arbitrating strategy;
ADE-all-models: A variant of ADE, but without the formation of a commit-
tee. In this case, all forecasting models are weighed according to their expertise
in the input data;
ADE-linear-committee: A variant of ADE, but using a linear transformation
for weighting the base learners according to their predicted loss, instead of the
proposed softmax;
ADE-meta-GP: A variant of ADE, but using a Gaussian Process with a linear
kernel as meta-learner instead of a Random Forest;

All the variants of the proposed method use a random forest as meta-learner.

4.3 Results

Table 2 presents the paired comparisons between the proposed method, ADE,
and the baselines. The numbers represent wins and losses of the proposed method.
The numbers in parenthesis represent statistically significant wins and losses.
The average rank for each model is also presented with the corresponding devi-
ation. Figures 2 and 3 represent the critical difference diagrams for the post-hoc
Bonferroni-Dunn test relative to the other baselines in the literature and base-
lines which are variants of ADE, respectively. In the interest of space we present
the post-hoc test results only for K equal to 7. The analysis for K equal to 15
leads to similar conclusions.

The proposed method achieves competitive performance with respect to the
baselines and ADE variants. Relative to S, S-W, AEC, S-WRoll and ERP,
state of the art approaches for combining individual forecasters, and ARIMA,



Table 2: Paired comparisons between the proposed method and the baselines for
different embedding dimensions in the 14 time series. The Rank column stands
for the average rank and respective standard deviation of each model. A rank of
1 in an experiment means that the model was the best method.

Method K = 7 K = 15

ADE ADE
Looses Wins Rank Looses Wins Rank

S 3 (2) 11 (11) 10.0± 3.3 3 (2) 11 (10) 9.9± 3.3
S-W 5 (4) 9 (8) 6.3± 3.0 6 (3) 8 (8) 6.6± 3.8
ARIMA 3 (3) 11 (11) 11.1± 5.5 3 (3) 11 (11) 10.6± 5.3
Stacking 7 (5) 7 (5) 5.9± 5.2 3 (1) 11 (8) 7.0± 4.2
Arbitrating 4 (0) 10 (6) 7.8± 4.8 1 (0) 13 (9) 9.0± 3.9
AEC 4 (2) 10 (10) 8.6± 3.9 2 (0) 12 (11) 9.3± 2.7
S-WRoll 5 (4) 9 (7) 7.4± 3.4 4 (2) 10 (9) 8.1± 3.6
ERP 3 (2) 11 (11) 10.0± 3.3 3 (2) 11 (11) 10.6± 3.8
ADE-Arb 1 (0) 13 (7) 8.4± 3.1 2 (0) 12 (8) 6.9± 3.9
ADE-meta-runt. 6 (0) 8 (5) 5.8± 3.9 3 (1) 11 (6) 5.6± 3.0
ADE-all-models 5 (2) 9 (3) 6.0± 2.3 3 (2) 11 (3) 5.1± 3.3
ADE-linear-com. 5 (4) 9 (6) 6.4± 3.3 5 (5) 9 (7) 6.1± 3.2
ADE-meta-GP 6 (0) 8 (6) 6.1± 3.0 4 (3) 10 (7) 6.0± 2.6
ADE – – 5.2 ± 2.8 – – 4.1 ± 3.1

S−W

Stacking

ADE

Arbitrating

S−WRollS

ARIMA

AEC

ERP

Critical Difference = 2.8; Baseline = ADE

10 9 8 7 6 5 4 3 2 1

Average Rank

Fig. 2: Critical difference diagram for the post-hoc Bonferroni-Dunn test relative
to baselines (K = 7)

a state of the art method for time series forecasting, the difference is significant.
These results answer the research question Q1 regarding the performance of
ADE relative to the state-of-the-art approaches for time series forecasting tasks.

Comparing the proposed method against Stacking, a widely used metalearn-
ing strategy for combining models, the performance is no significantly different,
although our method presents a better average rank. Relative to the original
arbitrating architecture, denoted as Arbitrating, the proposed method shows
a systematic improvement, which results in a much better average rank. This
proves that the introduced components are fundamental for the achieved per-
formance, which answers question Q3 regarding the comparison between ADE
and the original arbitration approach. In the following, we discuss the effect of
different components in the results.



ADE

ADE−meta−runtime

ADE−all−models

ADE−linear−com

ADE−meta−GP

ADE−Arb

Critical Difference = 1.8; Baseline = ADE

7 6 5 4 3 2 1

Average Rank

Fig. 3: Critical difference diagram for the post-hoc Bonferroni-Dunn test relative
to ADE variants (K = 7)

ADE also shows consistent advantage over the performance of ADE-meta-
runtime and ADE-all-models. This suggests that indeed it is worthwhile to
get OOB predictions from the available data to improve the fit of the metalearn-
ers and to prune the ensemble for each prediction (as opposed to combining all
the forecasters). These results answer our research questions Q2 and Q4 regard-
ing the comparison of ADE to the respective components. The comparison be-
tween ADE and ADE-linear-committee shows that the softmax function ren-
ders a superior predictive performance relative to the linear transformation. In
effect, a non-linear transformation indeed produces better estimates than a tra-
ditional linear scaling (question Q5). Comparing the proposed method against
ADE-Arb, which used the predicted best model for forecasting, the difference
is statistically significant, according to the post-hoc Bonferroni-Dunn test.

Regarding the embedding dimension, different values do not seem to alter
the results significantly. Conversely, using Random Forests in the metalearning
layer produced better results than with Gaussian Processes.

4.4 Further Analysis

Meta-level Performance We analysed the performance of the metalearning
layer. The evaluation measure is mean absolute error. That is, the average ab-
solute difference between the predicted error and the actual error that the base-
level models incurred.

Figure 4 presents the average rank and respective deviation of each meta-
model in Z, across the datasets, grouped by type of base-level learner. Here, we
focus on the Random Forests as meta-level algorithm. The numbers suggest that
the RBR models are the most predictable, while the NN are the least predictable
ones.

Analyzing Training Strategies In this section we address the research ques-
tion Q6. In a dynamic environment it is common to update the model over
time, either online or in chunks of observations. This is because time-dependent
data is prone to changes in the underlying distribution and continuous training
of models ensures that one has an up-to-date model. Since ADE settles on two
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Fig. 4: Mean rank of the meta-models in terms of accuracy for predicting the
performance of models obtained with several algorithms across the 14 datasets
(K = 7) and corresponding standard-deviation.

layers of models we analysed different approaches for updating these and study
their implications in predictive performance and computational resources used.

In the main experiments the base learners are not updated and meta-learners
are updated in chunks of λ observations. Besides this strategy (which we denote
as A) we try three other approaches:

B: M and Z are both trained only in the training set;
C: Both M and Z are re-trained every λ observations, which is particularly
interesting if the models in M are typical online methods (e.g. ARIMA);
D: M is re-trained every λ observations but Z is trained only in the training
data.

In these experiments we set λ to 1 meaning that re-training occurs at every
prediction step. The test size is set to 15% of the time series total length. Other
parameters follow the setup in the main experiments. We compare the four
above-mentioned strategies in the 14 problems using the mean absolute scaled
error (MASE). This is a scale invariant metric and is defined as follows:∑n

i=1 |ei|
n
n−1

∑n
i=2 |yi − yi−1|

(3)

The results of this analysis are presented in Table 3. These show the average
MASE and average runtime and corresponding deviations of ADE using the dif-
ferent retraining strategies across the 14 problems. The results for the predictive
performance are comparable across the methods, although the ones that update
the metalearners show a slightly lower error.

In terms of computational effort the strategies that update the base learners
are significantly more expensive. Retraining the meta learners is faster than
updating the base learners because of the formation of the committee in which
only half the meta learners (according to the experimental setup) are retrained.

Finally, the results suggest that updating the meta learners and not updating
the base learners (A) is better than the inverted strategy (D), both in predictive
performance and runtime. In particular, the difference in computational time is
mainly due to the selection of models included in the committee. In strategy A,



A B C D

0.60±0.18 0.62±0.17 0.60±0.18 0.62±0.17

(a)

A B C D

22.4±6.6 2.1±0.5 156.4±38.2 130.3±31.5

(b)

Table 3: Average MASE and respective deviation of the different retraining
strategies in terms of predictive performance (a) and computational time spent
in minutes (b) across the 14 problems.

the models outside the committee are not updated since they will not be used.
Conversely, in strategy D, every base learner is updated.

4.5 Discussion

We empirically showed the advantages of the proposed method with respect to
several state-of-the-art approaches for time series forecasting tasks.

One of the main limitations of ADE is that it is not able to directly model
inter-dependencies between forecasters, which might be important to account for
the diversity among models. We plan to address this issue in the future. Nonethe-
less, its performance is competitive with the widely used stacking method [30],
which directly models these dependencies.

Some of the design decisions behind ADE are based on prior work regarding
the variance in relative performance of forecasting models over a time series [2]
and with potential recurring structures with the time series. However, there are
cases in which time series change into new concepts and base learners may get
outdated. Although we do not explicitly cover these scenarios, a simple strategy
to address this issue is to track the loss of the ensemble. If its performance de-
creases beyond tolerance new base-learners are introduced (e.g. [12]) or existing
ones are re-trained. Since an arbitration approach provides a modular architec-
ture, models can be added (or removed) as needed.

5 Conclusions

We presented a new adaptive ensemble method for time series forecasting tasks.
Our strategy for adaptively combining forecasters is based on metalearning,
which provides a way of learning about the learning process of models [4]. Con-
sequently, we are able to model their expertise in the different parts of the data
and adapt the combined model to changes in the underlying environment and/or
changes in relative performance of base learners. By analyzing each forecaster
separately we specialize them in the sense that they will not be used for predic-
tion – or they do but with a minor relevance – in observations that they are bad
at.



ADE is motivated by the assumption that different forecasting models have
varying performance over time. This is justified by prior evidence in that di-
rection [2]. Moreover, it is not uncommon for time series to show recurrent
structures.

We proved the competitiveness of our approach in fourteen real-world time
series against several baselines. These include state-of-the-art methods for adap-
tively combining forecasters and the most widely used metalearning strategy
for model combination (stacking [30]). The effect of the different adaptations of
arbitrating on the results was empirically analised.

We argue that despite the competitive predictive performance, the proposed
method does not directly model inter-dependencies between the available learn-
ers. We plan to investigate this issue in future work.

In the interest of reproducible science that the authors support, all methods
and datasets are publicly available as an R software package3.
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