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Abstract. Traditional linear methods for forecasting multivariate time
series are not able to satisfactorily model the non-linear dependencies
that may exist in non-Gaussian series. We build on the theory of learn-
ing vector-valued functions in the reproducing kernel Hilbert space and
develop a method for learning prediction functions that accommodate
such non-linearities. The method not only learns the predictive func-
tion but also the matrix-valued kernel underlying the function search
space directly from the data. Our approach is based on learning multiple
matrix-valued kernels, each of those composed of a set of input kernels
and a set of output kernels learned in the cone of positive semi-definite
matrices. In addition to superior predictive performance in the presence
of strong non-linearities, our method also recovers the hidden dynamic
relationships between the series and thus is a new alternative to existing
graphical Granger techniques.

1 Introduction

Traditional methods for forecasting stationary multivariate time series from their
own past are derived from the classical linear ARMA modelling. In these, the
prediction of the next point in the future of the series is constructed as a linear
function of the past observations. The use of linear functions as the predictors is
in part based on the Wold representation theorem (e.g. ﬂa]) and in part, probably
more importantly, on the fact that the linear predictor is the best predictor (in
the mean-square-error sense) in case the time series is Gaussian.

The Gaussian assumption is therefore often adopted in the analysis of time
series to justify the simple linear modelling. However, it is indeed a simplifying
assumption since for non-Gaussian series the best predictor may very well be a
non-linear function of the past observations. A number of parametric non-linear
models has been proposed in the literature, each adapted to capture specific
sources of non-linearity (for example multiple forms of regime-switching models,
e.g. [20)).

In this paper we adopt an approach that does not rely on such prior as-
sumptions for the function form. We propose to learn the predictor as a general
vector-valued function f that takes as input the past observations of the multi-
variate series and outputs the forecast of the unknown next value (vector).
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We have two principal requirements on the function f. The first is the stan-
dard prediction accuracy requirement. That is, the function f shall be such that
we can expect its outputs to be close (in the squared error sense) to the true
future observations of the process. The second requirement is that the function f
shall have a structure that will enable the analysis of the relationships amongst
the subprocesses of the multivariate series. Namely, we wish to understand how
parts of the series help in forecasting other parts of the multivariate series, a con-
cept known in the time-series literature as graphical Granger modelling |11, |9].

To learn such a function f we employ the framework of regularised learning
of vector-valued functions in the reproducing kernel Hilbert space (RKHS) [17].
Learning methods based on the RKHS theory have previously been considered
for time series modelling (e.g. |10, [19, [15]). Though, as Pillonetto et al. note
in their survey [18], their adoption for the dynamical system analysis is not a
commonplace.

A critical step in kernel-based methods for learning vector-valued functions is
the specification of the operator-valued kernel that exploits well the relationships
between the inputs and the outputs. A convenient and well-studied class of
operator-valued kernels (e.g. in |7, 8,[12]) are those decomposable into a product
of a scalar kernel on the input space (input kernel) and a linear operator on the
output space (output kernel).

The kernel uniquely determines the function space within which the function
f is learned. It thus has significant influence on both our objectives described
above. Instead of having to choose the input and the output kernels a priori,
we introduce a method for learning the input and output kernels from the data
together with learning the vector-valued function f.

Our method combines in a novel way the multiple-kernel learning (MKL) ap-
proach [14] with learning the output kernels within the space of positive semidefi-
nite linear operators on the output space [12]. MKL methods for operator-valued
kernels have recently been developed in [13] and |19]. The first learns a convex
combination of a set of operator-valued kernels fixed in advance, the second com-
bines a fixed set of input kernels with a single learned output kernel. To the best
of our knowledge, ours is the first method in which the operator-valued kernel is
learned by combining a set of input kernels with a set of multiple learned output
kernels.

In accordance with our second objective stated above, we impose specific
structural constraints on the function search space so that the learned func-
tion supports the graphical Granger analysis. We achieve this by working with
matrix-valued kernels operating over input partitions restricted to single input
scalar series (similar input partitioning has recently been used in [19]).

We impose diagonal structure on the output kernels to control the model
complexity. Though this has a cost in the inability to model contemporane-
ous relationships, it addresses the strong over-parametrisation in a principled
manner. It also greatly simplifies the final structure of the problem, which, in
result, suitably decomposes into a set of smaller independent problems solvable
in parallel.



We develop two forms of sparsity-promoting regularisation approaches for
learning the output kernels. These are based on the ¢; and ¢;/¢5 norms respec-
tively and are motivated by the search for Granger-causality relationships. As to
our knowledge, the latter has not been previously used in the context of MKL.

Finally, we confirm on experiments the benefits our methods can bring to
forecasting non-Gaussian series in terms of improved predictive accuracy and the
ability to recover hidden dynamic dependency structure within the time series
systems. This makes them valid alternatives to the state-of-the-art graphical
Granger techniques.

Notation We use bold upper case and lower case letters for matrices and vec-
tors respectively, and the plain letters with subscripts for their elements. For
any matrix or vector the superscript 7 denotes its transpose. Vectors are by
convention column-wise so that x = (z1,...,2,)7 is the n-dimensional vector
x. R,R™ R™*™ are the sets of real scalars, n-dimensional vectors, and m x n
dimensional matrices. R"*" is the set of non-negative matrices, S’ the set of
positive semi-definite m x m matrices and D' the set of non-negative diagonal
matrices. N, is the set of positive integers {1, ..., m}. For any vectors x,y € R",
(x,¥), [|%||1, ||x||2 are the standard inner product, ¢; and ¢, norms in the real
Hilbert spaces. For any square matrix A, Tr(A) denotes the trace. For any two
matrices A,B € R™*" (A B)r := Tr(ATB) is the Frobenius inner product
and [|Allr := /(A,A)r the Frobenius norm. {.,.)r and ||.||# are the inner
product and norm in the Hilbert space F.

2 Problem Formulation

Given a realisation of a discrete stationary multivariate time series process { y: €
Y CR™:t e N,}, our goal is to learn a vector-valued function f : Y? — Y
that takes as input the p past observations of the process and predicts its future
vector value (one step ahead). The function f shall be such that
1. we can expect the prediction to be near (in the Euclidean distance sense)
the unobserved future value
2. its structure allows to analyse if parts (subprocesses) of the series are useful
for forecasting other subprocesses within the series or if some subprocesses
can be forecast independently of the rest; in short, it allows Granger-causality

analysis |11, 9].

For notational simplicity, from now on we indicate the output of the function
fasy € Y C R™ and the input as x € X C R™? (bearing in mind that X = VP is
in fact the p-th order Cartesian product of ) and that the inputs x and outputs
y are the past and future observations of the same m-dimensional series). We
also align the time indexes so that our data sample consists of input-output data
pairs {(yt,xt) ‘'t e Nn}.

Following the standard function learning theory, we will learn f € F by
minimising the regularised empirical squared-error risk (with a regularization



parameter A > 0)

f=arg ming. » R(f)
R(E) =300 llye — £6e) 15 + A I£1[3 - (1)

Here F is the reproducing kernel Hilbert space (RKHS) of R™-valued functions
endowed with the norm [|.|| 7 and the inner product (., .) 7. The RKHS is uniquely
associated with a symmetric positive-semidefinite matrix-valued kernel H : X' x
X — R™*™ with the reproducing property

<y,g(X)> = <ny7g>.7: V(y,x,g) € (y,X,]:) 9

where the map Hy : X — R™*™ is the kernel section of H centred at x such that
Hy, (x;) = H(x;,x;) for all (x;,x;) € (X, X). From the classical result in [17],

the unique solution f of the variational problem () admits a finite dimensional
representation

T
f=>Hyec, (2)
t=1

where the coefficients c¢; € ) are the solutions of the system of linear equations

T
Z (H(xs,xt) + Aést) c=Yys, VseN,, (3)

t=1

where d,; = 1 if s = ¢ and is zero otherwise.

2.1 Granger-causality Analysis

To study the dynamical relationships in time series processes, Granger |11] pro-
posed a practical definition of causality based on the accuracy of least-squares
predictor functions. In brief, for two time series processes y and z, y is said
to Granger-cause z (y — z) if given all the other relevant information we can
predict the future of z better (in the mean-square-error sense) using the history
of y than without it.

Though the concept seems rather straightforward, there are (at least) three
points worth considering. First, the notion is purely technical based on the pre-
dictive accuracy of functions with differing input sets; it does not seek to un-
derstand the underlying forces driving the relationships. Second, in practice the
conditioning set of information needs to be reduced to all the available informa-
tion instead of all the relevant information. Third, it only considers relationships
between pairs of (sub-)processes and not the interactions amongst a set of series.

Eichler [9] extended the concept to multivariate analysis through graphi-
cal models. The discussion in the paper focuses on the notion of Granger non-
causality rather than causality and describes the specific Markov properties (con-
ditional non-causality) encoded in the graphs of Granger-causal relationships. In
this sense, the absence of a variable in a set of inputs is more informative of the
Granger (non-)causality than its presence. In result, graphical Granger methods
are typically based on (structured) sparse modelling [4].



3 Function Space and Kernel Specification

The function space F within which f is learned is fully determined by the re-
producing kernel H. Its specification is therefore critical for achieving the two
objectives for the function f defined in Sect.[2l We focus on the class of matrix-
valued kernels decomposable into the product of input kernels, capturing the
similarities in the inputs, and output kernels, encoding the relationships between
the outputs.

To analyse the dynamical dependencies between the series, we need to be
able to discern within the inputs of the learned function f the individual scalar
series. Therefore we partition the elements of the input vectors according to the
source scalar time series. In result, instead of a single kernel operating over the
full vectors, we work with multiple partition-kernels, each of them operating
over a single input series. We further propose to learn the partition-kernels by
combining the MKL techniques with output kernel learning within the cone of
positive semi-definite matrices.

More formally, the kernel we propose to use is constructed as a sum of kernels
H= Z;n HU), where m is the number of the individual scalar-valued series in

the multivariate process (dimensionality of the output space )). Each H) .
XU x xU) — R™*™ is a matrix-valued kernel that determines its own RKHS of
vector-valued functions. The domains X () C RP are sets of vectors constructed
by selecting from the inputs x only the p coordinates i) € N,,p that correspond
to the past of a single scalar time series j.

X0 = {x0) g9 = g, Wi, x € X}, U XD =X

Further, instead of choosing the individual matrix-valued functions HU),
we propose to learn them. We construct each HU) again as a sum of kernels
HOU) = > HUY of possibly uneven number of summands s; of matrix-valued
kernels HU?) : X0 x xU) — R™*™_ For this lowest level HU" we focus on
the family of decomposable kernels HU%) = kU9 L") Here, the input kernels
kUD : x0) x xU) - R capturing the similarity between the inputs are fixed in
advance from a dictionary of valid scalar-valued kernels (e.g. Gaussian kernels
with varying scales). The set £ = {LUY : j = N, i = N, 27" sj = 1} of
output kernels LU? : ) — ) encoding the relations between the outputs is
learned within the cone of symmetric positive semidefinite matrices S'P".

m m

m Sj S5
H= Z HO — Z Z HUD — Z Z (09 1,69 (4)
j=1 j=1i=1 j=1i=1
3.1 Kernel Learning and Function Estimation

Learning all the output kernels L% as full PSD matrices implies learning more
than m? parameters. To improve the generalization capability, we reduce the
complexity of the problem drastically by restricting the search space for L’s to



PSD diagonal matrices D'". This essentially corresponds to the assumption of
no contemporaneous relationships between the series. We return to this point in
Sect.

As explained in Sect. 2] Granger (non-)causality learning typically searches
for sparse models. We bring this into our methods by imposing a further sparsity
inducing regularizer @ : (R™>*™)! — R on the set of the output kernels £. We
motivate and elaborate suitable forms of @ in Sect.

The joint learning of the kernels and the function can now be formulated
as the problem of finding the minimising solution f € 7 and L’s € D of the
regularised functional

JE, L) :=R(f)+7Q(L), 7>0, (5)

where R(f) is the regularised risk from (II). By calling on the properties of the
RKHS, we reformulate this as a finite dimensional problem that can be addressed
by conventional finite-dimensional optimisation approaches. We introduce the
gram matrices KU ¢ S? such that Kt(jl) = kU7 (xgj),xgj)) for all t,s € N,,, the
output data matrix Y € R"*™ such that Y = (y1,...yn)?, and the coefficient
matrix C € R"*™ such that C = (c1,...c,)7.

Using these and (2]) it is easy to show that the minimisation of the regularised
risk R(f) in () with respect to f € F is equivalent to the minimisation with
respect to C € R™ "™ of the objective

R(C) = |IY = Y KUICLU[|} + 2> (CTKUIC,LU)p (6)

ji ji
The finite dimensional equivalent of (Bl is thus the joint minimisation of

J(C,L) := R(C,L) +TQ(L) . (7)

3.2 Sparse Regularization

The construction of the kernel H and the function space F described in Sect.
Bl imposes on the function f the necessary structure that allows the Granger-
causality analysis (as per our 2nd objective set-out in Sect. [2]). As explained in
Sect. 2] the other ingredient we need to identify the Granger non-causalities is
sparsity within the structure of the learned function.

In our methods, the sparsity is introduced by the regularizer @. By construc-
tion of the function space, we can examine the elements of the output kernels
L) (their diagonals) to make statements about the Granger non-causality. We
say the j-th scalar time series is non-causal for the s series (given all the remain-
ing series in the process) if ngsz) =0 for all i € Ny, .

Essentially, any of the numerous regularizers that exist for sparse or struc-
tured sparse learning [3] could be used as @, possibly based on some prior knowl-
edge about the underlying dependencies within the time-series process.



We elaborate here two cases that do not assume any special structure in the
dependencies as the base scenarios. The first is the entry-wise ¢; norm across all
the output kernels so that

£) =3 IIL9 |l = ZZM” ®)

The second is the ¢1 /{2 grouped norm

Qu/2(L Z Z (L) (9)

After developing the learning strategy for these in Sect(s). lIland 2] we provide
some more intuition of their effects on the models and link to some other known
graphical Granger techniques in Sect.

4 Learning Strategy

First of all, we simplify the final formulation of the problem (7)) in Sect. 31l
Rather than working with a set of diagonal matrices L% | we merge the diagonals
into a single matrix A. We then re-formulate the problem with respect to this
single matrix in place of the set and show how this reformulation can be suitably
decomposed into smaller independent sub-problems.

We develop fit-to-purpose approaches for our two regularisers in Sect(s). 1]
and The first - based on the decomposition of the kernel matrices into the
corresponding empirical features and on the variational formulation of norms [3]
- shows the equivalence of the problem with group lasso |22, [23]. The second
proposes a simple alternating minimisation algorithm to obtain the two sets of
parameters.

We introduce the non-negative matrix A € lem such that

A = (diag(L"), ... diag(L™m))" (10)
(each row in A corresponds to the diagonal of one output kernel; if s; = 1 for all
J we have A, = ngsl)). Using this change of variable, the optimisation problem
(@ can be written equivalently as
argming o J(C,A)
J(C,A) := R(C,A) +7Q(A) , (11)

where

R(C,A) =7 (1Y = 3" AGo KYCull3+ A - A, CLKUIC )

3 (iu(Ch) (12)

S



and Q(A) is the equivalent of Q(L) so that

O1(A) = [|Al[1 =) A (13)

and
Q1/2(A) = Z Z (A(ji)s)2 (14)
js [
In equations (I2)) and (I4) we somewhat abuse the notation by using >_; A
to indicate the sum across the rows of the matrix A.

From (I2)-([I4) we observe that, with both of our regularizers, problem (I])
is conveniently separable along s into the sum of m smaller independent prob-
lems, one per scalar output series. These can be efficiently solved in parallel,
which makes our method scalable to very large multivariate systems. The final
complexity depends on the choice of the regulariser ) and the appropriate al-
gorithm. The overhead cost can be significantly reduced by precalculating the
gram matrices K(*) in a single preprocessing step and sharing these in between
the m parallel tasks.

(4i)s

4.1 Learning with £; Norm

To unclutter notation we replace the bracketed double superscripts (ij) by a
single superscript d = 1,...,l. We also drop the regularization parameter 7 (fix
it to 7 = 1) as it is easy to show that any other value can be absorbed into the
rescaling of A and the C and A matrices. For each of the s parallel tasks we
indicate A.; = a, C.; = c and Y.; = y so that the individual problems are the
minimisations with respect to a € R{F and ¢ € R" of

P(c,a) :=|ly — ZadecH% + A Z aqgcTKic + Zad . (15)
d ji d

We decompose (for example by eigendecomposition) each of the gram ma-
trices as K¢ = ®4(®9)7T where ®? € R"*" is the matrix of the empirical
features, and we introduce the variables z? = a4(®%)Tc € R" and the set
Z ={z%:2% € R", d € N;}. Using these we rewritd] equation (I5)

~ A|z9||2
P(Z,a) := ||y—Z‘I>dzd||§+Z<”Td”2+ad) : (16)
d

d

We first find the closed form of the minimising solution for a as ag = V/A||z¢||2
for all d. Plugging this back to (@) we obtain

min P(2,a) = [ly - > @23 + 2VA Y [[u]]> - (17)
d d

3 We extend the function z?/y : R x Ry — Ry to the point (0,0) by taking the
convention 0/0 = 0.



Seen as a minimisation with respect to the set Z this is the classical group-
lasso formulation with the empirical features ®¢ as inputs. Accordingly, it can be
solved by any standard method for group-lasso problems such as the proximal
gradient descent method, e.g. [3], which we employ in our experiments. After
solving for Z we can directly recover a from the above minimising identity and
then obtain the parameters c¢ from the set of linear equations

(Z aK?+\L)c=y . (18)
d

The algorithm outlined above takes advantage of the convex group-lasso re-
formulation (7)) and has the standard convergence and complexity properties of
proximal gradient descent. The empirical features ®? can be pre-calculated and
shared amongst the m tasks to reduce the overhead cost.

4.2 Learning with £, /¢; Norm

For the ¢1/¢5 regularization, we need to return to the double indexation (j7)
to make clear how the groups are created. As above, for each of the s parallel
tasks we use the vectors a,c and y. However, for vector a we will keep the (j7)
notation for its elements. The individual problems are the minimisations with
respect to a € Rﬂr and c € R™ of

P(c,a) :=|ly — Za(ji)K(ji)CHg +A Z a(ji)CTK(ji)c + Z Za%ji) (19)
i i J @

We propose to use the alternating minimisation with a proximal gradient
step. At each iteration, we alternatively solve for ¢ and a. For fixed a we obtain
c from the set of linear equations (I8)). With fixed ¢, problem (3] is a group lasso
for a with groups defined by the sub-index j within the double (ji) indexation
of the elements of a. Here, the proximal gradient step takes place to move along
the descend direction for a. Though convex in a and c individually, the problem
(@) is jointly non-convex and therefore can converge to local minima.

5 Interpretation and Crossovers

To help the understanding of the inner workings of our methods and especially
the effects of the two regularizers, we discuss here the crossovers to other existing
methods for MKL and Granger modelling.

£1 Norm The link to group-lasso demonstrated in Sect. 1] is not in itself too
surprising. The formulation in ([H]) can be recognised as a sparse multiple kernel
learning problem which has been previously shown to relate to group-lasso (eg.
[2], [21]). We derive this link in Sect. 4.1l using the empirical feature representa-
tion to i) provide better intuition for the structure of the learned function f, ii)
develop an efficient algorithm for solving problem (I5)).



The re-formulation in terms of the empirical features ®% creates an intuitive
bridge to the classical linear models. Each ®? can be seen as a matrix of features
generated from a subset XU) of the input coordinates relating to the past of a
single scalar time series j. The group-lasso regularizer in equation (I7) has a
sparsifying effect at the level of these subsets zeroing out (or not) the whole
groups of parameters z?. In the context of linear methods, this approach is
known as the grouped graphical Granger modelling [16].

Within the non-linear approaches to time series modelling, Sindhwani et al.
[19] recently derived a similar formulation. There the authors followed a strategy
of multiple kernel learning from a dictionary of input kernels combined with a
single learned output kernel (as opposed to our multiple output kernels). They
obtain their IKL. model, which is in its final formulation equivalent to problem
(I3, by fixing the output kernel to identity.

Though we initially formulate our problem quite differently, the diagonal
constraint we impose on the output kernels essentially prevents the modelling
of any contemporaneous relationships between the series (as does the identity
output kernel matrix in IKL). What remains in our methods are the diagonal
elements, which are non-constant and sparse, and which can be interpreted as
the weights of the input kernels in the standard MKL setting.

£1/¢3 Norm The more complex ¢ /¢y regularisation discussed in Sect. is to
the best of our knowledge novel in the context of multiple kernel learning. It
has again a strong motivation and clear interpretation in terms of the graphical
Granger modelling. The norm has a sparsifying effect not only at the level of
the individual kernels but at the level of the groups of kernels operating over the
same input partitions XU). In this respect our move from the ¢; to the £ /s
norm has a parallel in the same move in linear graphical Granger techniques.
The ¢; norm Lasso-Granger method [1] imposes the sparsity on the individual
elements of the parameter matrices in a linear model, while the ¢1/¢5 of the
grouped-Lasso-Granger [16] works with groups of the corresponding parameters
of a single input series across the multiple lags p.

6 Experiments

To document the performance of our method, we have conducted a set of exper-
iments on real and synthetic datasets. In these we simulate real-life forecasting
exercise by splitting the data into a training and a hold-out set which is unseen
by the algorithm when learning the function f and is only used for the final
performance evaluation.

We compare our methods with the output kernel ¢; regularization (NVARL1)
and and ¢;/¢; (NVARLI12) with simple baselines (which nevertheless are often
hard to beat in practical time series forecasting) as well as with the state-of-the-
art techniques for forecasting and Granger modelling. Namely, we compare with
simple mean and univariate linear autoregressive models (LAR), multivariate
linear vector autoregressive model with ¢5 penalty (LVARL2), the group-lasso



Granger method [16] (LVARL1), and a sparse MKL without the X() input
partitioning (NVAR). Of these, the last two are the most relevant competitors.
LVARLI1, similarly to our methods, aims at recovering the Granger structure
but is strongly constrained to linear modelling only. NVAR has no capability to
capture the Granger relationships but, due to the lack of structural constraints,
it is the most flexible of all the models. R

We evaluate our results with respect to the two objectives for the function f
defined in Sect.[2l We measure the accuracy of the one-step ahead forecasts by the
mean square error (MSE) for the whole multivariate process averaged over 500
hold-out points. The structural objective allowing the analysis of dependencies
between the sub-processes is wired into the method itself (see Sect(s). Bland 21])
and is therefore satisfied by construction. We produce adjacency matrices of the
graphs of the learned dependencies, compare these with the ones produced by
the linear Granger methods and comment on the observed results.

6.1 Technical Considerations

For each experiment we preprocessed the data by removing the training sample
mean and rescaling with the training sample standard deviation. We fix the
number of kernels for each input partition to six (s; = 6 for all j) and use the
same kernel functions for all experiments: a linear, 2nd order and 3rd polynomial,
and Gaussian kernels with width 0.5, 1 and 2. We normalise the kernels so that
the training Gram matrices have trace equal to the size of the training sample.

We search for the hyper-parameter A by a 5-fold cross-validation within a 15-
long logarithmic grid A € {1073, ...,10%}y/nl, where n is the training sample size
and [ is the number of kernels or groups (depending on the method). In each grid
search, we use the previous parameter values as warm starts. We do not perform
an exhaustive search for the optimal lag for each of the scalar input series by
some of the classical testing procedures (based on AIC, BIC etc.). We instead
fix it to p = 5 for all series in all experiments and rely on the regularization to
control any excess complexity.

We implemented our own tools for all the tested methods based on variations
of proximal gradient descent with ISTA line search [5]. The full Matlab code is
available at https://bitbucket.org/dmmlgeneva/nonlinear-granger

6.2 Synthetic Experiments

We have simulated data from a five dimensional non-Gaussian time-series process
generated through a linear filter of a 5-dimensional i.i.d. exponential white noise
e; with identity covariance matrix (re-centered to zero and re-scaled to unit
variance). The matrix ¥ = [0.7,1.3,0,0,0;0,0.6,—1.5,0,0;0,—1.2,1.46,0, 0; 0,
0,0,0.6,1.4;0,0,0,1.3,—0.5] in the filter y; = e;+ Pe,_1 is such that the process
consists of two independent internally interrelated sub-processes, one composed
of the first 3 scalar series, the other of the remaining two series. This structural
information, though known to us, is unknown to the learning methods (not
considered in the learning process).


https://bitbucket.org/dmmlgeneva/nonlinear-granger

We list in Table [ the predictive performance of the tested methods in terms
of the average hold-out MSE based on training samples of varying size. Our
methods clearly outperform all the linear models. The functionally strongly con-
strained linear LVARLI performs roughly on par with our methods for the small
sample sizes. But for larger sample sizes, the higher flexibility of the function
space in our methods yields significantly more accurate forecasts (as much as
10% MSE improvement).

Table 1: Synthetic experiments: MSE (a) for 1-step ahead forecasts (hold-out
sample average)

Train size 300 700 1000 |
Mean 0.925  (0.0a7) | 0.923 (0.047) | 0.923 (0.047)
LAR 0.890 (0.045) | 0.890 (0.044) | 0.890 (0.044)
LVAR 0.894 (0.045) | 0.836 (0.041) | 0.763 (0.035)

LVARLI1 0.787 (0.037)| 0.737 (0.031)| 0.722 (0.030)
NVAR__ || 0.835 (.oa)| 0.735 (0s2)] 0.719 (0.030)

NVARL1 0.754 (0.034)| 0.706 (0.030) | 0.679 (0.028)
NVARLI12|| 0.808 (0.040)| 0.710 (0.031) | 0.684 (0.029)

Train size 1500 2000 3000 |
Mean 0.923  (0.0a7) | 0.922 (0.047) | 0.922 (0.047)
LAR 0.888  (0.045) | 0.889 (0.045) | 0.888 (0.045)
LVAR 0.751 (0.034) | 0.741 (0.033) | 0.687 (0.028)
LVARLI1 0.710 (0.020) | 0.701 (0.028) | 0.693 (0.028)
NVAR 0.699 (0.028) | 0.682 (0.027) | 0.662 (0.026)

NVARL1 0.654 (0.026) | 0.640 (0.025)|0.626 (0.025)
NVARLI12 || 0.659 (0.027)| 0.685 (0.028) | 0.657 (0.027)

In brackets is the average standard deviation (std) of the MSEs. Results for NVARL1
and NVARLI12 in bold are significantly better than all the linear competitors, in italics
are significantly better than the non-linear NVAR (using one-sided paired-sample t-test
at 10% significance level).

The structural constraints in our methods also help the performance when
competing with the unstructured NVAR method, which has mostly less accurate
forecasts. At the same time, as illustrated in Fig. [l our methods are able to
correctly recover the Granger-causality structure (splitting the process into the
two independent subprocesses by the zero off-diagonal blocks), which NVAR by
construction cannot.

6.3 Real Data Experiments

We use data on water physical discharge publicly available from the website
of the Water Services of the US geological survey (http://www.usgs.gov/).
Our dataset consists of 9 time series of daily rates of year-on-year growth at
measurement sites along the streams of Connecticut and Columbia rivers.


http://www.usgs.gov/
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Fig. 1: Schematics of the learned adjecency matrices of Granger-causality graphs
for the three sparse learning methods across varying training sample size. A
scalar time series y; does not Granger-cause series y; (given all the other series)
if the element e;; in the adjecency matrix is zero (white). The displayed adjecency
matrices were derived from the learned matrices A by summing the respective
elements across individual kernels. The values are rescaled so that the largest
element in each matirx is equal to 1 (black).

The prediction accuracy of the tested methods is listed in Table 2l Our non-
linear methods perform on par with the state-of-the-art linear models. This on
one hand suggests that for the analysed dataset the linear modelling seems sufli-
cient. On the other hand, it confirms that our methods, which in general have the
ability to learn more complex relationships by living in a richer functional space,
are well behaved and can capture simpler dependencies as well. The structure
encoded into our methods, however, benefits the learning since the unstructured
NVAR tends to perform less accurately.

The learned dynamical dependence structure of the time series is depicted
in Fig. @ In the dataset (and the adjacency matrices), the first 4 series are
the Connecticut measurement sites starting from the one highest up the stream
and moving down to the mouth of the river. The next 5 our the Columbia
measurement sites ordered in the same manner.

From inspecting the learned adjacency matrices, we observe that all the
sparse methods recover similar Granger-causal structures. Since we do not know
the ground truth in this case, we can only speculate about the accuracy of the
structure recovery. Nevertheless, it seems plausible that there is little dynamical
cross-dependency between the Connecticut and Columbia measurements as the
learned graphs suggest (the two rivers are at the East and West extremes of the
Us).

7 Conclusions

We have developed a new method for forecasting and Granger-causality mod-
elling in multivariate time series that does not rely on prior assumptions about
the shape of the dynamical dependencies (other than being sparse). The method



Table 2: Real-data experiments: MSE (sa) for 1-step ahead forecasts (hold-out
sample average)

Train size 300 700 1000 |
Mean 0.780 (0.053) | 0.795 (0.054) | 0.483 (0.026)
LAR 0.330 (0.023) [ 0.340 (0.024) | 0.152 (0.013)

LVARL2 0.302 (0.021) [0.311 (0.022) | 0.140 (0.012)
LVARLI1 0.310 (0.022) [ 0.310 (0.023) | 0.140 (0.012)
NVAR __1|0.328 (0.023]0.316 (0023 | 0.148 (0.013)_

NVARL1 |[[0.308 (0.023)|0.317 (0.024) | 0.140 (0.012)
NVARLI12 [|0.321 (0.023) [ 0.322 (0.024) | 0.141 (0.012)

Train size 1500 2000 3000 |
Mean 0.504 (0.03) |0.464 (0.027)|0.475 (0.017)
LAR 0.181 (0.015) [0.179 (0.013) | 0.187 (0.008)

LVARL2 0.167 (0.014) | 0.164 (0.013) | 0.170 (0.007)
LVARLI1 0.165 (0.014) [ 0.163 (0.013) | 0.170 (0.008)
"NVARL1 [[0.164 (0.014) [0.161 (0.013) | 0.167 (0.007)
NVARL12 [ 0.162 (0.014) | 0.160 (0.012) | 0.166 (0.007)

In brackets is the average standard deviation (std) of the MSEs.

is based on learning a combination of multiple operator-valued kernels in which
the multiple output kernels are learned as sparse diagonal matrices. We have
documented on experiments that our method outperforms linear competitors
in the presence of strong non-linearities and is able to correctly recover the
Granger-causality structure which non-structured kernel methods cannot do.
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