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Abstract

We propose k2-means, a new clustering method which efficiently copes with large
numbers of clusters and achieves low energy solutions. k?-means builds upon the
standard k-means (Lloyd’s algorithm) and combines a new strategy to accelerate the
convergence with a new low time complexity divisive initialization. The accelerated
convergence is achieved through only looking at k,, nearest clusters and using
triangle inequality bounds in the assignment step while the divisive initialization
employs an optimal 2-clustering along a direction. The worst-case time complexity
per iteration of our k%-means is O(nk,d + k®d), where d is the dimension of the
n data points and k is the number of clusters and usually n > k > k,,. Compared
to k-means’ O(nkd) complexity, our k?-means complexity is significantly lower,
at the expense of slightly increasing the memory complexity by O(nk,, + k?). In
our extensive experiments k2-means is order(s) of magnitude faster than standard
methods in computing accurate clusterings on several standard datasets and settings
with hundreds of clusters and high dimensional data. Moreover, the proposed
divisive initialization generally leads to clustering energies comparable to those
achieved with the standard k-means++ initialization, while being significantly
faster.

1 Introduction

The k-means algorithm in its standard form (Lloyd’s algorithm) employs two steps to cluster n data
points of d dimensions and £ initial cluster centers [18]. The expectation or assignment step assigns
each point to its nearest cluster while the maximization or update step updates the k cluster centers
with the mean of the points belonging to each cluster. The k-means algorithm repeats the two steps
until convergence, that is the assignments no longer change in an iteration <.

k-means is one of the most widely used clustering algorithms, being included in a list of top 10
data mining algorithms [25]]. Its simplicity and general applicability vouch for its broad adoption.
Unfortunately, its O(ndki) time complexity depends on the product between number of points 7,
number of dimensions d, number of clusters k, and number of iterations ¢. Thus, for large such values
even a single iteration of the algorithm is very slow.

The simplest way to handle larger datasets is parallelization [27, 26], however this requires more
computation power as well. Another way is to process the data online in batches as done by the
MiniBatch algorithm of Sculley [21]], a variant of the Lloyd algorithm that trades off quality (i.e. the
converged energy) for speed.



To improve both the speed and the quality of the clustering results, Arthur and Vassilvitskii [[1]]
proposed the k-means++ initialization method. The initialization typically results in a higher quality
clustering and fewer iterations for k-means, than when using the default random initialization.
Furthermore, the expected value of the clustering energy is within a 8(In k + 2) factor of the optimal
solution. However, the time complexity of the method is O(ndk), i.e. the same as a single iteration
of the Lloyd algorithm - which can be too expensive in a large scale setting. Since k-means++ is
sequential in nature, Bahman et al. [2] introduced a parallel version k-means|| of k-means++, but
did not reduce the time complexity of the method.

Another direction is to speed up the actual k-means iterations. Elkan [7]], Hamerly [10]] and Drake
and Hamerly [6] go in this direction and use the triangle inequality to avoid unnecessary distance
computation between cluster centers and the data points. However, these methods still require a full
Lloyd iteration in the beginning to then gradually reduce the computation of progressive iterations.
The recent Yinyang k-means method of Ding er al. [5] is a similar method, that also leverages bounds
to avoid redundant distance calculations. While typically performing 2-3 x faster than Elkan method,
it also requires a full Lloyd iteration to start with.

Philbin ez al. [20] introduce an approximate k-means (AKM) method based on kd-trees to speed up
the assignment step, reducing the complexity of each k-means iteration from O(nkd) to O(nmd),
where m < k. In this case m, the distance computations performed per each iteration, controls the
trade-off between a fast and an accurate (i.e. low energy) clustering. Wang et al. [24]] use cluster
closures for further 2.5x speedups.

In this paper we propose k2-means, a method aiming at both fast and accurate clustering. Following
the observation that usually the clusters change gradually and affect only local neighborhoods, in
the assignment step we only consider the k,, nearest neighbours of a center as the candidates for
the clusters members. Furthermore we employ the triangle inequality bounds idea as introduced
by Elkan [7] to reduce the number of operations per each iteration. For initializing k%-means, we
propose a divisive initialization method, which we experimentally prove to be more efficient than
k-means++.

Our k%-means gives a significant algorithmic speedup, i.e. reducing the complexity to O(nk,,d) per
iteration, while still maintaining a high accuracy comparable to methods such as k-means++ for a
chosen k,, < k. Similar to m in AKM, k,, also controls a trade-off between speed and accuracy.
However, our experiments show that we can use a significantly lower k,, when aiming for a high
accuracy.

The paper is structured as follows. In Table[I| we summarize the notations used in this paper. In
Section we introduce our proposed k?-means method and our divisive initialization. In Section
we describe the experimental benchmark and discuss the results obtained, while in Section[d we draw
conclusions.

Algorithm 1 k%-means
1: Given: k, data X, neighbourhood size k,,

2: Initialize centers C' Table 1: Notations
3: Initialize assignments a : {1---n} —
(1, k}. .
4: while Not converged do n number of data points to cluster
. . k number of clusters
5 Build k,,-NN graph 01;0' kn number of nearest clusters
6 Nkn C—{1---k}™ d number of dimensions of the data points
7 for z € X do X the data ()1, ; € R?
8 Get current center for x: c cluster centers C' = (¢;)¥_,,¢; € R?
9 1<+ a(z) a cluster assignments {1,--- ,n} — {1,--- ,k}
10: Assign x to nearest candidate center: a(z:)  cluster assignment of z;, i.e. a(i) ,
11 a(z) « arg min Hm I H a(X') cluster assignment of some set of points X
g V€N, (cr) ! F points assigned to cluster j, (z; € X|a(i) = 7)
12 end for w(X;)  themeanof Xj: g7 3, oy @
. J J
13 forj € {1---k}do lz|| I norm of z € R?
14 ¢j < p(X;) {Update center} O(X;)  energy of Xt 3,y [l — w(X)|P
15 end for N, (c1)  kn nearest neighbours of ¢; in C' (including ¢;)

16: end while
17: return C, a




2 Proposed k*-means

In this section we introduce our k2-means method and motivate the design decisions. The pseudocode
of the method is given in Algorithm|I]

Given some data X = (x;)"_;,z; € R% the k-means clustering objective is to find cluster centers

C= (cj)le, c¢j € R? and cluster assignments a : {1,--- ,n} — {1, , k}, such that the cluster
energy
k
22 le=elP (M
j=lzecX;

is minimized, where X; := (z; € X|a(i) = j) denotes the points assigned to a cluster j. For a data
point x;, we sometimes write a(x;) instead of a(4) for the cluster assignment. Similarly, for a subset
X' of the data, a(X") denotes the cluster assignments of the corresponding points.

Standard Lloyd obtains an approximate solution by repeating the following until convergence: i) In
the assignment step, each x is assigned to the nearest center in C'. ii) For the update step, each center
is recomputed as the mean of its members.

The assignment step requires O(nk) distance computations, i.e. O(nkd) operations, and dominates
the time complexity of each iteration. The update step requires only O(nd) operations for mean
computations.

To speed up the assignment step, an approximate nearest neighbour method can be used, such as
kd-trees [20} [19] or locality sensitive hashing [12]]. However, these methods ignore the fact that
the cluster centers are moving across iterations and often this movement is slow, affecting a small
neighborhood of points. With this observation, we obtain a very simple fast nearest neighbour
scheme:

Suppose at iteration 4, a data point  was assigned to a nearby center, [ = a(z). After updating the
centers, we still expect ¢; to be close to . Therefore, the centers nearby ¢; are likely candidates for
the nearest center of z in iteration ¢ 4+ 1. To speed up the assignment step, we thus only consider
the k,, nearest neighbours of ¢;, Ny, (¢;), as candidate centers for the points z € X;. Since for each
point we only consider k,, centers in the assignment step (in line 11 of Algorithm [I)), the complexity
is reduced to O(nkyd). In practice, we can set k,, < k.

We also use inequalities as in [[7] to avoid redundant distance computations in the assignment step (in
line 11 of Algorithm[I)). Note that we maintain only nk,, lower bounds, for the neighbourhood of
each point, instead of nk for the Elkan method. We refer to the original Elkan paper [7]] for a detailed
discussion on triangle inequalities and bounds.

As for standard Lloyd, the total energy can only decrease, both in the assignment step (since the
points are moved to closer centers) and in the update step. Thus, the total energy is monotonically
decreasing which guarantees convergence.

As shown by Arthur and Vassilvitskii [[1]], a good initialization, such as k-means++, often leads to a
higher quality clustering compared to random sampling. Since the O(ndk) complexity of k-means++
would negate the benefits of the k2-means computation savings, we propose an alternative fast
initialization scheme, which also leads to high quality clustering solutions.

2.1 Greedy Divisive Initialization (GDI)

For the initialization of our k2-means, we propose a simple hierarchical clustering method named
Greedy Divisive Initialization (GDI), detailed in Algorithm 2] Similarly to other divisive clustering
methods, such as [4}22]], we start with a single cluster and repeatedly split the highest energy cluster
until we reach k clusters.

To efficiently split each cluster, we use Projective Split (Algorithm [3), a variant of k-means with
k = 2, that is motivated by the following observation: Suppose we have points X’ and centers (c1, ¢2)
in the k-means method. Let H be the hyperplane with normal vector ¢y — ¢1, going through p(cq, ¢2)
(see e.g. the top left corner of Figure[T). When we perform the standard k-means assignment step, we
greedily assign each point to its closest centroid to get a solution with a lower energy, thus assigning
the points on one side of H to c;, and the other side of H to co.



Initialization Iteration 1 Iteration 2 Figure 1: Example of two itera-
tions of Projective Split and stan-

dard k-means with & = 2 us-
ing the same initialization. The
dashed line shows the direction de-
fined by two centers (ca —c1). The
solid line shows where the algo-
rithms split the data in each itera-
tion. The splitting line of k-means
always goes through the midpoint
of the two centers, while Projec-
tive Split picks the minimal energy
split along the dashed line. Even
though the initial centers start in
the same cluster, Projective Split
can almost separate the clusters in
a single iteration.

k-means

Projective Split

Although this is the best assignment choice for the current centers c; and cy, this may not be a good
split of the data. Therefore, we depart from the standard assignment step and consider instead all
hyperplanes along the direction ¢y — ¢1 (i.e. with normal vector co — ¢1). We project X’ onto ¢ — ¢;
and “scan” a hyperplane through the data to find the split that gives the lowest energy (lines 4-8 in
Algorithm[3). To efficiently recompute the energy of the cluster splits as the hyperplane is scanned,
we use the following Lemma:

Lemma 1. [I3][Lemma 2.1] Let S be a set of points with mean u(S). Then for any point z € R¢

3l = 2l = 3 e = w(S)IF 41810z = ) @)
We can now compute | )
B(SU{y}) = SZ{ e uls whI? 3)
= lle—u(Su {Z})H? +lly = w(S U {w)I? )
— 0(9) 151145 U {5}) = (S + Iy~ (S U I 5)

where we used Lemmal[T]in (). Equipped with (3) we can efficiently update energy terms in line 8
in Algorithm 3|as we scan the hyperplane through the data X ;, using in total only O(|X]) distance
computations and mean updates. Note that p(S U {y}) is easily computed with an add operation as

(IS5[1(S) +y) /(IS + 1).

Algorithm 2 Greedy Divisive Initialization  Algorithm 3 Projective Split
(GDI)

1: Given:data X; = (2:)}7,

I: Givgn: k, dat.a X 2: Pick two random samples cq, ¢, from X;
2: Assign all points to one cluster 3: while Not Converged do

3 O ={p(X)} a(X) =1 4:  Sort X; along c, — cp:

4: while |C| < k d g #lons

“w 1l>'e1|<h!§ do 50 Py (21 (ca—cp)|zi € X))

: ick highest energy cluster: >
6:  j<+ argg max gb(g)}él) 6:  X; < X, sorted by P;

7: Split the Clustér' 7: Find minimum-energy s;;lit:

: : . o . =~ 3\l =\
8: X, cCa, Xp,cp < ProjectiveSplit(X;) 8 lmin = argmin; ¢((%i)i=1) + &((%i);2, 1)
9: ¢j+c = \lmi

e 9: Xa ¢ (Zy)mim
10: ClCl+1 ¢ Cb ) Trli=1
11 a(Xy) + |C]+1 100 Xp = (1)1
12: C+— CU{cc|+1} 11: CayCh + (Xa), p(Xp)
13: end while 12: end while
14: return C, a 13: return X, cq, Xp, Cp




Complexity ‘ Lloyd Elkan [7] MiniBatch [21] AKM [20] k2-means (ours)
Time O(nkd)  O(nkd + k*d) ~ O(nd + k?d) O(bkd) O(nmd)  O(nknd+ k*d) ~ O(nd + k*d)
Memory | O((n + k)d) O((n + k)d + nk + k?) O((b+k)d) O((n+ k)d) O((n + k)d + nky, + k?)

Table 2: Time and memory complexity per iteration for Lloyd, Elkan, MiniBatch, AKM and our
k2-means.

Complexity | random k-means++ GDI (ours)
Time O(k) O(nkd) O(n(logk)(d+logn)) ~ O(nk(d+ logn))
Memory O(k) O(n+k) O(n + kd)

Table 3: Time and memory complexity for initialization.

Compared to standard k-means with k& = 2, our Projective Split takes the optimal split along the
direction ¢y — ¢4 but greedily considers only this direction. In Figure [[|we show how this can lead to
a faster convergence.

2.2 Time Complexity

Table shows the time and memory complexity of Lloyd, Elkan, MiniBatch, AKM, and our k?-means.

The time complexity of each k?-means iteration is dominated by two factors: building the nearest
neighbour graph of C' (line 6), which costs O(k?) distance computations, as well as computing
distances between points and candidate centers (line 11), which initially costs nk,, distance com-
putations. Elkan and k2-means use the triangle inequality to avoid redundant distance calculations
and empirically we observe the O(nkd) and O(nk,,d) terms (respectively) gradually reduce down to
O(nd) at convergence.

In MiniBatch k-means processes only b samples per iteration (with b < n) but needs more iterations
for convergence. AKM limits the number of distance computations to m per iteration, giving a
complexity of O(nmd).

Table [3| shows the time and memory complexity of random, k-means++ and our GDI initialization.
For the GDI, the time complexity is dominated by calls to Projective Split. If we limit Projective
Split to maximum O(1) iterations (2 in our experiments) then a call to ProjectiveSplit(X;) costs
O(|X;|) distance computations and vector additions, O(|X|) inner products and O(| X | log | X;|)
comparisons (for the sort), giving in total O(]X;|(log | X ;| + d)) complexity. However, the resulting
time complexity of GDI depends on the data.

For pathological datasets, it could happen for each call to ProjectiveSplit(X’), that the minimum split
is of the form {y}, X’ \ {y}, i.e. only one point y is split off. In this case, for |X| = n, the total
complexity will be O(n(logn+d)+ (n —1)(log(n — 1) +d) +--- + (n — k)(log(n — k) + d)) =
O(nk(d +logn)).[|

A more reasonable case is when at each call ProjectiveSplit(X") splits each cluster into two similarly
large clusters, i.e. the minimum split is of the form (X, X}) where | X,| =~ | X;|. In this case the
worst case scenario is when in each split the highest energy cluster is the largest cluster (in no. of
samples), resulting a total complexity of O(nlog k(d + logn)). [| Therefore the time complexity of
GDI is somewhere between O(nlog k(d + logn)) ~ O(n(d + logn)k).

In our experiments we count vector operations for simplicity (i.e. dropping the O(d) factor), as
detailed in the next section. To fairly account for the O(|X ;| log | X;|) complexity of the sorting step
in ProjectiveSplit, we artificially count it as | X;|log, (] X;|)/d vector operations.

3 Experiments

For a fair comparison between methods implemented in various programming languages, we use
the number of vector operations as a measure of complexity, i.e. distances, inner products and

' A simple example of such a pathological dataset is X = (z;)".; C R where z; = 0, 2 = 1,
x3 = ¢(x1,x2), Ta = ¢(x1,22,23) and T, = ¢(21,- -+, Tn). The size of x,, grows extremely fast though,
e.g. 10 ~ 1581397605569 and x14 has 195 digits.

2If we split all clusters of approximately equal size simultaneously, we need O(log k) passes and perform
O(n(d + logn)) computations in each pass.



average convergence energy minimum convergence energy | average runtime complexity
Dataset random k-means++ GDI | random k-means++ GDI | k-means++ GDI
cnnvoc 1.000 1.000 0.994 1.000 1.000 0.995 1.000 0.096
covtype 1.507 1.000 0.983 1.384 1.000 0.991 1.000 0.116
mnist 1.000 1.000 0.999 1.000 1.000 0.999 1.000 0.093
mnist50 1.000 1.000 0.999 1.000 1.000 0.999 1.000 0.119
tinygist10k | 0.999 1.000 0.994 1.000 1.000 0.996 1.000 0.098
usps 1.019 1.000 0.996 1.016 1.000 0.996 1.000 0.099
yale 1.024 1.000 1.008 1.025 1.000 1.005 1.000 0.103
average 1.078 1.000 0.996 1.061 1.000 0.997 1.000 0.103

Table 4: Comparison of energy and runtime complexity for random, k-means++, and our GDI
initialization. The results are displayed relative to k-means++, averaged over 20 x 3 configurations.
Random initialization does not require distance computations.

additions. While the operations all share an O(d) complexity, the distance computations are most
expensive accounting for the constant factor. However, since the runtime of all methods is dominated
by distance computations (i.e. more than 95% of the runtime), for simplicity we count all vector
operations equally and refer to them as “distance computations”, using the terminology from [[7].

3.1 Datasets

In our experiments we use datasets with 2414-150000 samples ranging from 50 to 32256 dimensions
as listed in Table[5] The datasets are diverse in content and feature representation.

To create cnnvoc we extract 4096-dimensional CNN features [[15] for 15662 bounding boxes, each
belonging to 20 object categories, from PASCAL VOC 2007 [8]] dataset. covtype uses the first
150000 entries of the Covertype dataset [3]] of cartographic features. From the mnist database [[16]]
of handwritten digits we also generate mnist50 by random projection of the raw pixels to a 50-
dimensional subspace. For tinygist10k we use the first 10000 images with extracted gist features
from the 80 million tiny images dataset [23]. cifar represents 50000 training images from the
CIFAR [14] dataset. usps [11] has scans of handwritten digits (raw pixels) from envelopes. yale
contains cropped face images from the Extended Yale B Database [9} [17].

3.2 Methods

We compare our k%-means with relevant clustering methods: Lloyd (standard k-means), Elkan [[7]
(accelerated Lloyd), MiniBatch [21]] (web-scale online clustering), and AKM [20]] (efficient search
structure).

Aside from our GDI initialization, we also use random initialization and k-means++ [1]] in our
experiments. For k-means++ we use the provided Matlab implementation. We Matlab implement
MiniBatch k-means according to Algorithm 1 in [21] and use the provided codes for Elkan and AKM.
Lloyd++ and Elkan++ combine k-means++ initialization with Lloyd and Elkan, respectively.

We run all methods, except MiniBatch, for a maximum of 100 iterations. For MiniBatch k-means
we use b = 100 samples per batch and ¢ = n/2 iterations. For the Projective Split, Algorithm we
perform only 2 iterations.

3.3 Initializations

We compare k-means++, random and our GDI initialization by running 20 trials of k-means (Lloyd)
clustering with & € {100, 200, 500} on the datasets (excluding cifar and tiny10k due to the prohibitive
cost of standard Lloyd with a high number of clusters). Table @ reports minimum and average cluster
energy as well as the average number of distance computations, relative to k-means++, averaged over
the settings of £ (i.e. 20 X 3 experiments for each row).

Our GDI gives a (slightly) better average and minimum convergence energy than the other initializa-
tions, while its runtime complexity is an order of magnitude smaller than in the case of k-means++
initialization.

The corresponding expanded Table 7 of the supplementary materials shows that speedup of GDI over

k-means++ improves as k grows, and at k£ = 500 is typically more than an order of magnitude. This
makes GDI a good choice for the initialization of k?-means.



Dataset ‘ k ‘AKM Elkan++ Elkan Lloyd++ Lloyd k°-means Dataset ‘ k ‘AKM Elkan++ Elkan Lloyd++ Lloyd k°-means

cifar 50 [ 1.0 2.6 3.7 1.0 1.0 9.5 cifar 50 - 17.8 - 1.0 - 37.9
n = 50000 | 200 | 1.9 3.0 4.6 1.0 1.1 26.2 200 | 1.2 24.2 - 1.0 - 139.8
d = 3072 1000| 4.9 3.0 5.1 1.0 1.2 86.7 1000 | 11.3 175 282 1.0 2.6 373.6
cnnvoc 50 | 13.8 2.1 2.9 1.0 1.4 9.0 cnnvoc 50 | 24 9.3 - 1.0 - 26.2
n = 15662 | 200 | 22.6 2.0 2.8 1.0 1.2 19.2 200 | 3.7 9.3 - 1.0 - 59.7
d = 4096 1000| 3.3 1.9 2.8 1.0 0.9 20.2 1000| 5.8 8.1 - 1.0 - -

covtype 50 - 6.1 - 1.0 - 351 covtype 50 - 28.9 - 1.0 - 172.0
n = 150000 | 200 | - 6.3 - 1.0 - 78.7 200 | - 40.2 - 1.0 - 442.4
d =54 1000| - 8.5 - 1.0 - 176.6 1000| - 4.5 - 1.0 - -

mnist 50 | 7.3 3.6 53 1.0 15 12.3 mnist 50 | 1.1 173 266 1.0 2.9 39.3
n = 60000 | 200 | 1.9 3.7 5.7 1.0 1.2 24.6 200 | - 258 - 1.0 - 81.0
d =184 1000| 4.7 3.6 59 1.0 0.8 434 1000| 9.0 29.8 - 1.0 - 141.1
mnist50 50 | 12.7 3.7 54 1.0 13 8.8 mnist50 50 - 18.7 - 1.0 - 31.0
n = 60000 | 200 | 1.9 42 6.7 1.0 1.2 223 200 | 2.1 26.6 - 1.0 - 80.3
d =50 1000| 3.1 4.1 6.6 1.0 0.8 38.0 1000| 5.1 227 - 1.0 - 9.1
tinygist10k 50 | 16.2 24 3.6 1.0 1.4 11.7 tinygist10k 50 | 125 125 20.1 1.0 3.6 50.1
n = 10000 | 200 | 12.8 23 35 1.0 1.3 223 200 | 4.7 11.0 - 1.0 - 71.8
d =384 1000| 1.5 2.1 - 1.0 - 13.6 1000| 2.6 7.8 - 1.0 - -

usps 50 | 53 4.1 - 1.0 - 11.8 usps 50 - 12.6 - 1.0 - 317
n = 7291 200 | 16.8 4.4 - 1.0 - 23.6 200 | 3.4 14.6 - 1.0 - 54.4
d =256 1000 | 18.5 2.7 - 1.0 - - 1000| - 94 - 1.0 - -

yale 50 | 2.1 42 6.3 1.0 0.6 17.9 yale 50 | 2.8 9.5 - 1.0 - 325
n = 2414 200 | 21.9 29 - 1.0 - 13.9 200 | 20.8 6.5 - 1.0 - 18.7
d = 32256 |1000| - 1.9 - 1.0 - - 1000| - 4.0 - 1.0 - -

avg. speedup 8.7 3.6 4.7 1.0 1.1 33.0 avg. speedup 59 17.9 25.0 1.0 3.0 104.1

Table 5: Algorithmic speedup in reaching an Table 6: Algorithmic speedup in reaching the
energy within 1% from the final Lloyd++ energy. same energy as the final Lloyd++ energy. (-)
(-) marks failure in reaching the target of 1% marks failure in reaching the target of 0% relative
relative error. For each method, the parameter(s) error. For each method, the parameter(s) that
that gave the highest speedup at 1% error is used. gave the highest speedup at 0% error is used.

3.4 Performance

Our goal is fast accurate clustering, where the cluster energy differs only slightly from Lloyd with
a good initialization (such as k-means++) at convergence. Therefore, we measure the runtime
complexity needed to achieve a clustering energy that is within 1% of the energy obtained with
Lloyd++ at convergence. In the supplementary material we report on performance for more reference
levels (0%, 0.5% and 2%).

For a given budget i.e. the maximum number of iterations and parameters such as m for AKM and &,
for k2 means, it is not known beforehand how well the algorithms approximate the targeted Lloyd++
energy. For a fair comparison we use an oracle to select the best parameters and the number of
iterations for each method, i.e. the ones that give the highest speedup but still reach the reference
error. In practice, one can use a rule of thumb or progressively increase k, m and the number of
iterations until a desired energy has been reached.

To measure performance we run AKM, Elkan++, Elkan, Lloyd++, Lloyd, MiniBatch, and k2-means
with & € {50,200, 1000} on various datasets, with 3 different seeds and report average speedups
over Lloyd++ when the energy reached is within 1% from Lloyd++ at convergence in Table

Each method is stopped once it reaches the reference energy and for AKM and k2-means, we use the
parameters m and k,, from {3, 5, 10, 20, 30, 50, 100, 200} that give the highest speedup.

Table [5|shows that for most settings, our k2-means has the highest algorithmic speedup at 1% error.
It benefits the most when both the number of clusters and the number of points are large, e.g. for
k = 200 at least 19x speedup for all datasets with n > 7000 samples. We do not reach the target
energy for usps and yale with & = 1000, because k,, was limited to 200.

Figure 3| show the convergence curves corresponding to cifar and mnist50 entries in Table[5] On cifar
the benefit of k2-means is clear since it reaches the reference error significantly faster than the other
methods. On mnist50 k2-means is considerably faster than AKM for k = 1000 but AKM reaches the
1% reference faster for kK = 50. We show more convergence curves in the supplementary material.

In all settings of Table [5] Elkan++ gives a consistent up to 8.5x speedup (since it is an exact
acceleration of Lloyd++). For some settings Elkan is faster than Elkan++ in reaching the desired
accuracy. This is due to the faster initialization. MiniBatch fails in all but one case (mnist, £ = 50) to
reach the reference error of 1% and is thus not shown.

For accurate clustering, when the reference energy is the Lloyd++ convergence energy (i.e. 0% error),
Table E] shows that the speedups of k2-means are even higher. For this setting, the second fastest
method is Elkan++, which is designed for accelerating the exact Lloyd++.
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Figure 2: Cluster Energy (relative to best Lloyd++ energy) vs distance computations on cifar and
mnist50 for k¥ € {50,1000}. For AKM and k*-means, we use the parameter with the highest
algorithmic speedup at 1% error.

In the supplementary material we report extra results at more energy reference levels and also more
plots showing the convergence of the compared methods on different datasets.

4 Conclusions

We proposed k2-means, a simple yet efficient method ideally suited for fast and accurate large scale
clustering (n > 10000, £ > 100, d > 50). k2-means combines an efficient divisive initialization
with a new method to speed up the k-means iterations by using the k,, nearest clusters as the new
set of candidate centers for the cluster members as well as triangle inequalities. The algorithmic
complexity of our k%-means is sublinear in k for n >> k and experimentally shown to give a high
accuracy on diverse datasets. For accurate clustering, k2-means requires an order of magnitude fewer
computations than alternative methods such as the fast approximate k-means (AKM) clustering.
Moreover, our efficient divisive initialization leads to comparable clustering energies and significantly
lower runtimes than the k-means++ initialization under the same conditions.

References

[1] D. Arthur and S. Vassilvitskii. k-means++: The advantages of careful seeding. In Proceedings of the
eighteenth annual ACM-SIAM symposium on Discrete algorithms, pages 1027-1035. Society for Industrial
and Applied Mathematics, 2007.

[2] B. Bahmani, B. Moseley, A. Vattani, R. Kumar, and S. Vassilvitskii. Scalable k-means++. Proceedings of
the VLDB Endowment, 5(7):622-633, 2012.

[3] C. Blake, E. Keogh, and C. Merz. Uci repository of machine learning databases., 1998.

[4] D. Boley. Principal direction divisive partitioning. Data mining and knowledge discovery, 2(4):325-344,
1998.



(5]

(6]

(71
(8]

(9]

(10]

(11]

(12]

(13]

(14]

(15]

(16]
(17]

(18]

(19]

[20]

[21]

(22]

(23]

[24]

[25]

[26]

(27]

Y. Ding, Y. Zhao, X. Shen, M. Musuvathi, and T. Mytkowicz. Yinyang k-means: A drop-in replacement
of the classic k-means with consistent speedup. In Proceedings of the 32nd International Conference on
Machine Learning (ICML-15), pages 579-587, 2015.

J. Drake and G. Hamerly. Accelerated k-means with adaptive distance bounds. In 5th NIPS workshop on
optimization for machine learning, 2012.

C. Elkan. Using the triangle inequality to accelerate k-means. In /ICML, volume 3, pages 147-153, 2003.

M. Everingham, L. Van Gool, C. K. Williams, J. Winn, and A. Zisserman. The pascal visual object classes
(voc) challenge. International journal of computer vision, 88(2):303-338, 2010.

A. Georghiades, P. Belhumeur, and D. Kriegman. From few to many: Illumination cone models for face
recognition under variable lighting and pose. IEEE Trans. Pattern Anal. Mach. Intelligence, 23(6):643—-660,
2001.

G. Hamerly. Making k-means even faster. In SDM, pages 130-140. SIAM, 2010.

J. J. Hull. A database for handwritten text recognition research. Pattern Analysis and Machine Intelligence,
IEEE Transactions on, 16(5):550-554, 1994.

P. Indyk and R. Motwani. Approximate nearest neighbors: towards removing the curse of dimensionality.
In Proceedings of the thirtieth annual ACM symposium on Theory of computing, pages 604—-613. ACM,
1998.

T. Kanungo, D. M. Mount, N. S. Netanyahu, C. D. Piatko, R. Silverman, and A. Y. Wu. A local search
approximation algorithm for k-means clustering. In Proceedings of the eighteenth annual symposium on
Computational geometry, pages 10-18. ACM, 2002.

A. Krizhevsky and G. Hinton. Learning multiple layers of features from tiny images, 2009.

A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet classification with deep convolutional neural
networks. In Advances in neural information processing systems, pages 1097-1105, 2012.

Y. LeCun, C. Cortes, and C. J. Burges. The mnist database of handwritten digits, 1998.

K. Lee, J. Ho, and D. Kriegman. Acquiring linear subspaces for face recognition under variable lighting.
IEEE Trans. Pattern Anal. Mach. Intelligence, 27(5):684-698, 2005.

S. P. Lloyd. Least squares quantization in pcm. Information Theory, IEEE Transactions on, 28(2):129-137,
1982.

M. Muja and D. G. Lowe. Fast approximate nearest neighbors with automatic algorithm configuration.
VISAPP (1), 2, 2009.

J. Philbin, O. Chum, M. Isard, J. Sivic, and A. Zisserman. Object retrieval with large vocabularies and
fast spatial matching. In Computer Vision and Pattern Recognition, 2007. CVPR’07. IEEE Conference on,
pages 1-8. IEEE, 2007.

D. Sculley. Web-scale k-means clustering. In Proceedings of the 19th international conference on World
wide web, pages 1177-1178. ACM, 2010.

T. Su and J. Dy. A deterministic method for initializing k-means clustering. In Tools with Artificial
Intelligence, 2004. ICTAI 2004. 16th IEEE International Conference on, pages 784-786. IEEE, 2004.

A. Torralba, R. Fergus, and W. T. Freeman. 80 million tiny images: A large data set for nonparametric object
and scene recognition. Pattern Analysis and Machine Intelligence, IEEE Transactions on, 30(11):1958—
1970, 2008.

J. Wang, J. Wang, Q. Ke, G. Zeng, and S. Li. Fast approximate k-means via cluster closures. In 2012 I[EEE
Conference on Computer Vision and Pattern Recognition, 2012.

X. Wu, V. Kumar, J. R. Quinlan, J. Ghosh, Q. Yang, H. Motoda, G. J. McLachlan, A. Ng, B. Liu, S. Y.
Philip, et al. Top 10 algorithms in data mining. Knowledge and Information Systems, 14(1):1-37, 2008.

Y. Xu, W. Qu, Z. Li, G. Min, K. Li, and Z. Liu. Efficient k -means++ approximation with mapreduce.
Parallel and Distributed Systems, IEEE Transactions on, 25(12):3135-3144, Dec 2014.

W. Zhao, H. Ma, and Q. He. Parallel k-means clustering based on mapreduce. In Cloud Computing, pages
674-679. Springer, 2009.



k?-means for fast and accurate large scale clustering
—supplementary material-

Abstract

This document is the supplementary material of our paper, providing further experimental
results. We show a more detailed comparison of the initializations, convergence curves
for more datasets and settings as well as a more detailed speedup table when the reference
energy is taken at 0%, 0.5%, 1% and 2% deviation from the Lloyd++ convergence energy.

Additional experimental results

In the expanded Table[7] corresponding to Table 4 in the paper, we see that the speedup of GDI over k-means++
improves as k grows, and at k£ = 500 is typically more than an order of magnitude.

In Figure [3| we show the convergence curves corresponding to cifar, cnnvoc, mnist and mnist50 for k£ €
{50, 200, 1000}, which correspond to entries in Table 5 in the paper. For the same datasets we further show
in Figure E] the convergence curves of all parameters tried for k2-means and AKM. Note that we do not try
parameters k, and m that are larger than k.

In Tables [SOT0| and [T1] we show a detailed speedup table when the reference energy is taken at 0%, 0.5%,
1% and 2% deviation from the Lloyd++ convergence energy. The algorithmic speedups of our method are the
largest when the aim is to reach the same energy as the final Lloyd++ energy (i.e. 0% error). However, for a
less accurate result, i.e. when the reference is taken at 2% from Lloyd++, Table shows that k*-means is still
competitive with AKM.

We conclude that our k*-means reaches its full potential when used for accurate clustering, that is, low
clustering energies comparable with the energies at the convergence of a standard Lloyd with a robust k-means++
initialization. In such conditions, k*-means is clearly orders of magnitude faster than Lloyd++ and significantly
faster than the efficient AKM and Elkan++.

average convergence energy | minimum convergence energy | average runtime complexity
Dataset k |random k-means++ GDI |random k-means++ GDI |k-means++ GDI
cnnvoc 100 1.00 1.00 1.00 | 1.00 1.00 1.00 1.00 0.16
200| 1.00 1.00 0.99 1.00 1.00 0.99 1.00 0.09
500| 1.00 1.00 0.99 1.00 1.00 0.99 1.00 0.04
covtype 100| 1.51 1.00 0.99 1.47 1.00 0.99 1.00 0.19
200| 1.58 1.00 0.98 1.38 1.00 0.99 1.00 0.11
500 1.43 1.00 0.99 1.30 1.00 0.99 1.00 0.05
mnist 100| 1.00 1.00 1.00 | 1.00 1.00 1.00 1.00 0.15
200| 1.00 1.00 1.00 | 1.00 1.00 1.00 1.00 0.09
500 1.00 1.00 1.00 | 1.00 1.00 1.00 1.00 0.04
mnist50 100| 1.00 1.00 1.00 | 1.00 1.00 1.00 1.00 0.19
200| 1.00 1.00 1.00 | 1.00 1.00 1.00 1.00 0.11
500 1.00 1.00 1.00 | 1.00 1.00 1.00 1.00 0.05
tinygistlOk 100| 1.00 1.00 1.00 | 1.00 1.00 1.00 1.00 0.16
200| 1.00 1.00 0.99 | 1.00 1.00 1.00 1.00 0.09
500| 1.00 1.00 0.99 | 1.00 1.00 1.00 1.00 0.04
usps 100| 1.01 1.00 0.99 1.01 1.00 1.00 1.00 0.16
200| 1.01 1.00 0.99 1.01 1.00 0.99 1.00 0.09
500 1.04 1.00 1.00 1.04 1.00 1.00 1.00 0.05
yale 100| 1.01 1.00 1.00 1.00 1.00 0.99 1.00 0.16
200 1.02 1.00 1.00 1.02 1.00 1.00 1.00 0.10
500 1.05 1.00 1.03 1.05 1.00 1.02 1.00 0.05

Table 7: Comparison of energy and runtime complexity for random, k-means++, and our GDI
initialization. The results are displayed relative to k-means++, averaged over 20 seeds. Random
initialization does not require distance computations.



|Dataset [ n [ d [ k [AKM Elkan++ Elkan Lloyd++ Lloyd MiniBatch k:2—means‘

cifar 50000 | 3072 | 50 - 17.8 - 1.0 - - 37.9
100 | - 20.7 - 1.0 - - 70.6
200 1.2 242 - 1.0 - - 139.8
500 9.0 205 319 1.0 29 - 287.9
1000 11.3 175 282 1.0 2.6 - 373.6
cnnvoc 15662 | 4096 | 50 | 2.4 9.3 - 1.0 - - 26.2
100 | 1.3 11.0 - 1.0 - - 4.3
200 | 3.7 9.3 - 1.0 - - 59.7
500 | 5.7 9.2 - 1.0 - - 79.2
1000| 5.8 8.1 - 1.0 - - -
covtype  [150000| 54 | 50 - 28.9 - 1.0 - - 172.0
100 | - 343 - 1.0 - - 287.2
200 - 40.2 - 1.0 - - 442.4
500 - 474 - 1.0 - - 816.9
1000| - 4.5 - 1.0 - - -
mnist 60000 | 784 | 50 | 1.1 173 26.6 1.0 29 - 39.3
100 | 2.7 205 - 1.0 - - 56.8
200 - 25.8 - 1.0 - - 81.0
500| 5.0 23.6 - 1.0 - - 108.1
1000{ 9.0  29.8 - 1.0 - - 141.1
mnist50 60000 | 50 | 50 - 18.7 - 1.0 - - 31.0
100 14 223 - 1.0 - - 39.7
200 | 2.1 26.6 - 1.0 - - 80.3
500| 34 232 - 1.0 - - 79.8
1000| 5.1 22.7 - 1.0 - - 94.1
tinygist10k| 10000 | 384 | 50 | 12.5 125 20.1 1.0 3.6 - 50.1
100 | 3.0 1.7 17.0 1.0 2.8 - 53.5
200 | 4.7 11.0 - 1.0 - - 71.8
500| 6.2 10.7 - 1.0 - - 71.7
1000| 2.6 7.8 - 1.0 - - -
usps 7291 | 256 | 50 - 12.6 - 1.0 - - 31.7
100 | - 15.0 - 1.0 - - 46.4
200 | 3.4 14.6 - 1.0 - - 544
500 - 10.8 - 1.0 - - 47.6
1000| - 94 - 1.0 - - -
yale 2414 |32256| 50 | 2.8 9.5 - 1.0 - - 32.5
100 | - 8.0 - 1.0 - - -
200|208 6.5 - 1.0 - - 18.7
500|21.6 53 - 1.0 - - -
1000| - 4.0 - 1.0 - - -

Table 8: Algorithmic speedup in reaching the same energy as the final Lloyd++ energy. (-) marks
failure in reaching the target of 0% relative error. For each method, the parameter(s) that gave the
highest speedup at 0% error is used.



lDataset [ n [ d [ k [AKM Elkan++ Elkan Lloyd++ Lloyd MiniBatch kQ-meansl

cifar 50000 [ 3072 | 50 | 0.8 4.1 5.6 1.0 1.1 - 10.8
100 | 0.7 4.7 7.2 1.0 1.4 - 20.1
200| 1.6 4.5 6.7 1.0 1.2 - 324
500| 3.0 4.1 6.5 1.0 1.2 - 69.0
1000| 4.6 4.1 6.7 1.0 1.2 - 101.0
cnnvoc 15662 | 4096 | 50 | 8.8 2.8 3.8 1.0 1.3 - 8.7
100 | 4.0 2.6 33 1.0 1.0 - 129
200 7.8 2.7 3.7 1.0 1.2 - 21.9
500 | 2.7 2.4 34 1.0 1.0 - 26.0
1000| 2.9 2.4 - 1.0 - - 18.2
covtype 150000{ 54 | 50 - 9.8 - 1.0 - - 56.8
100 | - 7.5 - 1.0 - - 62.4
200 - 8.1 - 1.0 - - 96.8
500 | - 12.5 - 1.0 - - 249.8
1000| - 12.0 - 1.0 - - 190.0
mnist 60000 | 784 | 50 | 1.0 4.7 6.6 1.0 1.2 - 124
100 | 1.2 4.9 7.1 1.0 1.2 - 18.3
200| 1.5 6.1 9.3 1.0 1.3 - 31.8
500 | 2.9 5.5 8.6 1.0 1.1 - 44.5
1000| 3.7 4.9 7.7 1.0 0.6 - 46.3
mnist50 60000 | 50 | 50 | 7.5 5.4 7.6 1.0 1.2 - 11.1
100 | 1.1 6.1 9.0 1.0 1.2 - 18.7
200 1.8 6.7 10.5 1.0 1.4 - 30.1
500| 1.9 5.8 9.0 1.0 0.8 - 35.6
1000| 2.6 5.5 8.7 1.0 0.6 - 36.7
tinygist10k| 10000 | 384 | 50 | 11.6 34 5.1 1.0 1.6 - 14.2
100 | 7.9 3.1 4.4 1.0 1.2 - 16.3
200| 7.8 3.1 4.6 1.0 1.3 - 24.8
500| 2.3 2.6 4.0 1.0 0.8 - 25.3
1000| 1.3 2.5 - 1.0 - - -
usps 7291 | 256 | 50 - 5.8 - 1.0 - - 154
100 | 0.7 6.5 - 1.0 - - 23.5
200 | 17.0 5.8 - 1.0 - - 25.2
500 | 15.6 4.1 - 1.0 - - 23.5
1000| - 33 - 1.0 - - -
yale 2414 |32256| 50 | 2.6 6.0 - 1.0 - - 23.6
100 | 1.1 3.6 - 1.0 - - 12.7
200 | 14.2 3.5 - 1.0 - - 13.7
500 | 14.4 2.6 - 1.0 - - -
1000| - 2.0 - 1.0 - - -

Table 9: Algorithmic speedup in reaching an energy within 0.5% from the final Lloyd++ energy. (-)
marks failure in reaching the target of 0.5% relative error. For each method, the parameter(s) that
gave the highest speedup at 0.5% error is used.



Dataset [ n | d [ k [AKM Elkan++ Elkan Lloyd++ Lloyd MiniBaich k*-means|

cifar 50000 | 3072 | 50 | 1.0 2.6 3.7 1.0 1.0 - 9.5
100 | 1.0 3.1 4.8 1.0 1.3 - 15.7
200| 1.9 3.0 4.6 1.0 1.1 - 26.2
500 | 3.1 3.0 49 1.0 1.2 - 59.0
1000| 4.9 3.0 5.1 1.0 1.2 - 86.7
cnnvoc 15662 | 4096 | 50 | 13.8 2.1 29 1.0 1.4 - 9.0
100 (142 2.0 2.6 1.0 1.1 - 11.2
200226 20 2.8 1.0 1.2 - 19.2
500 | 15.1 1.9 2.8 1.0 1.1 - 25.8
1000| 3.3 1.9 2.8 1.0 0.9 - 20.2
covtype  [150000| 54 | 50 - 6.1 - 1.0 - - 35.1
100 | - 5.6 - 1.0 - - 46.9
200 - 6.3 - 1.0 - - 78.7
500 | - 8.1 - 1.0 - - 175.8
1000| - 8.5 - 1.0 - - 176.6
mnist 60000 | 784 | 50 | 7.3 3.6 53 1.0 1.5 0.5 12.3
100 | 4.2 33 4.9 1.0 1.1 - 14.6
200 1.9 3.7 5.7 1.0 1.2 - 24.6
500 | 3.5 3.8 6.2 1.0 1.1 - 39.8
1000| 4.7 3.6 59 1.0 0.8 - 434
mnist50 | 60000 | 50 | 50 |12.7 3.7 54 1.0 1.3 - 8.8
100 | 8.3 4.1 6.2 1.0 1.2 - 15.0
200| 1.9 4.2 6.7 1.0 1.2 - 22.3
500 | 2.2 42 6.8 1.0 1.0 - 33.1
1000| 3.1 4.1 6.6 1.0 0.8 - 38.0
tiny 10k 10000 | 3072 | 50 | 1.5 29 4.0 1.0 1.0 - 12.3
100 1.3 2.7 4.1 1.0 1.2 - 21.0
200 | 2.0 29 4.5 1.0 1.1 - 354
500| 2.3 2.7 44 1.0 0.6 - 49.0
1000| 2.2 2.6 - 1.0 - - 51.8
tinygist10k| 10000 | 384 | 50 | 16.2 2.4 3.6 1.0 14 - 11.7
100 [ 129 22 33 1.0 1.2 - 14.2
200|12.8 23 35 1.0 1.3 - 22.3
500 | 2.5 2.1 33 1.0 1.0 - 26.2
1000| 1.5 2.1 - 1.0 - - 13.6
usps 7291 | 256 | 50 | 5.3 4.1 - 1.0 - - 11.8
100 | 7.2 4.7 7.1 1.0 0.6 - 19.0
200 | 16.8 44 - 1.0 - - 23.6
500 19.6 33 - 1.0 - - 23.8
1000| 185 2.7 - 1.0 - - -
yale 2414 |32256] 50 | 2.1 4.2 6.3 1.0 0.6 - 17.9
100 | 1.2 29 - 1.0 - - 12.0
200219 29 - 1.0 - - 13.9
500181 23 - 1.0 - - -
1000| - 1.9 - 1.0 - - -

Table 10: Algorithmic speedup in reaching an energy within 1% from the final Lloyd++ energy. (-)
marks failure in reaching the target of 1% relative error. For each method, the parameter(s) that gave
the highest speedup at 1% error is used.



lDataset [ n [ d [ k [AKM Elkan++ Elkan Lloyd++ Lloyd MiniBatch kQ-meansl

cifar 50000 | 3072 | 50 | 1.5 1.9 29 1.0 1.2 - 94
100 | 1.9 2.1 33 1.0 1.3 - 15.6
200| 2.3 2.1 34 1.0 1.2 - 26.2
500 | 4.6 2.2 3.7 1.0 1.3 - 53.5
1000| 5.6 23 39 1.0 1.3 - 81.7
cnnvoc 15662 | 4096 | 50 | 15.5 1.5 2.1 1.0 1.3 - 8.1
100 |27.6 1.5 2.1 1.0 1.2 - 11.9
200 (410 15 2.2 1.0 1.3 - 19.5
500|559 15 23 1.0 1.2 - 29.9
1000| 4.5 1.5 2.4 1.0 1.1 - 28.2
covtype  [150000| 54 | 50 - 4.2 - 1.0 - - 23.9
100 | - 42 - 1.0 - - 36.4
200 - 4.4 - 1.0 - - 61.2
500 - 5.1 - 1.0 - - 123.9
1000| - 55 - 1.0 - - 1549
mnist 60000 | 784 | 50 | 141 23 35 1.0 1.4 1.4 10.0
100 | 16.8 2.2 34 1.0 1.2 1.0 124
200300 24 3.9 1.0 1.2 0.3 20.6
500|675 2.6 44 1.0 1.2 - 35.1
1000| 87.8 2.6 4.5 1.0 1.0 - 42.4
mnist50 60000 | 50 | 50 | 129 23 34 1.0 1.2 1.0 6.6
100|183 2.6 4.2 1.0 1.3 1.1 11.6
200|232 2.8 4.6 1.0 1.2 0.8 19.2
500 | 2.8 2.9 5.0 1.0 1.1 0.2 31.0
1000| 4.1 29 5.0 1.0 1.0 - 36.2
tinygist10k| 10000 | 384 | 50 | 20.3 1.7 2.7 1.0 1.4 - 10.3
100|242 1.7 2.6 1.0 1.3 - 15.1
200 | 33.3 1.8 2.8 1.0 1.3 - 21.8
500| 2.9 1.7 2.8 1.0 1.2 - 30.6
1000| 2.3 1.7 2.7 1.0 0.7 - 23.7
usps 7291 | 256 | 50 | 9.5 2.7 3.7 1.0 0.6 0.2 9.7
100|105 3.3 52 1.0 0.8 - 15.1
200|30.1 33 53 1.0 0.5 - 21.5
500|26.7 2.7 - 1.0 - - 23.5
1000| 25.2 2.2 - 1.0 - - 11.6
yale 2414 |32256| 50 | 2.2 3.0 49 1.0 0.9 - 14.2
100 | 1.7 23 3.7 1.0 04 - 12.9
200|283 23 - 1.0 - - 14.9
500296 2.0 - 1.0 - - -
1000| - 1.6 - 1.0 - - -

Table 11: Algorithmic speedup in reaching an energy within 2% from the final Lloyd++ energy. (-)
marks failure in reaching the target of 2% relative error. For each method, the parameter(s) that gave
the highest speedup at 2% error is used.
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Figure 3: Cluster Energy (relative to best Lloyd++ energy) vs distance computations on cifar, cnnvoc,
mnist and mnist50 for & € {50,200, 1000}. For AKM and k?-means, we use the parameter with the
highest algorithmic speedup at 1% error.
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Figure 4: Cluster Energy (relative to best Lloyd++ energy) vs distances computed for AKM and our
k2-means methods with different parameters and number of clusters, on the cifar, cnnvoc, mnist and
mnist50 datasets.
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