Skip to main content

Using Inharmonic Strings in Musical Instruments

  • Conference paper
  • First Online:
Mathematics and Computation in Music (MCM 2017)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 10527))

Included in the following conference series:

Abstract

Uniform strings have a harmonic sound; nonuniform strings have an inharmonic sound. This paper experiments with musical instruments based on nonuniform/inharmonic strings. Given a precise description of the string, its spectrum can be calculated using standard techniques. Dissonance curves are used to motivate specific choices of spectrum. A particular inharmonic string consisting of three segments (two equal unwound segments surrounding a thicker wound portion) is used in the construction of the hyperpiano. A second experiment designs a string with overtones that lie on steps of the 10-tone equal tempered scale. The strings are sampled, and digital (software) versions of the instruments are made available along with a call for composers interested in writing for these new instruments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bohlen, H.: 13 tonstufen in der duodezeme. Acustica 39, 76–86 (1978)

    Google Scholar 

  2. Caldersmith, G.: Designing a guitar family. Appl. Acoust. 46(1), 3–17 (1995)

    Article  Google Scholar 

  3. Cope, D.: Techniques of the Contemporary Composer, p. 12. Schirmer Books, NY (1997)

    Google Scholar 

  4. Hobby, K., Sethares, W.A.: Inharmonic strings and the hyperpiano. Appl. Acoust. 114, 317–327 (2016). http://sethares.engr.wisc.edu/papers/hyperOctave.html

    Article  Google Scholar 

  5. Kalotas, T.M., Lee, A.R.: The transverse modes of a string with variable mass density. Acustica 76, 20–26 (1992)

    MATH  Google Scholar 

  6. Kinsler, L.E., Frey, A.R., Coppens, A.B., Sanders, J.V.: Fundamentals of Acoustics, 4th edn, pp. 22–45. Wiley, Hoboken (1999)

    Google Scholar 

  7. Mathews, M.V., Pierce, J.R., Reeves, A., Roberts, L.A.: Harmony and new scales. In: Sundberg, J. (ed.) Harmony and Tonality, Royal Swedish Academy of Music, Stockholm (1987)

    Google Scholar 

  8. Mathews, M.V., Pierce, J.R., Reeves, A., Roberts, L.A.: Theoretical and experimental explorations of the bohlen-pierce scale. J. Acoust. Soc. Am. 84, 1214–1222 (1988)

    Article  Google Scholar 

  9. Mathieu, W.A.: Harmonic Experience: Tonal Harmony from its Natural Origins to its Modern Expression, p. 487. Rochester, Inner Traditions International (1997)

    Google Scholar 

  10. Max/MSP. J. Acoust. Soc. Am. 115, 2565 (2004). https://cycling74.com/. Accessed 21 Mar 2017

  11. Milne, A., Sethares, W.A., Plamondon, J.: Tuning continua and keyboard layouts. J. Math. Music. 2(1), 1–19 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  12. Partch, H.: Genesis of a Music, pp. 1–544. Da Capo Press, New York (1974)

    Google Scholar 

  13. Piston, W.: Harmony, 5th edn. W. W. Norton & Co. Inc., New York (1987)

    Google Scholar 

  14. Plomp, R., Levelt, W.J.M.: Tonal consonance and critical bandwidth. J. Acoust. Soc. Am. 38, 548–560 (1965)

    Article  Google Scholar 

  15. Sethares, W.A.: Local consonance and the relationship between timbre and scale. J. Acoust. Soc. Am. 94(3), 1218–1228 (1993)

    Article  MathSciNet  Google Scholar 

  16. Sethares, W.A.: Tuning, Timbre, Spectrum, Scale, 2nd edn, pp. 1–426. Springer, Heidelberg (2004). https://doi.org/10.1007/978-1-4471-4177-8

    Google Scholar 

  17. Sethares, W.A., Milne, A., Tiedje, S., Prechtl, A., Plamondon, J.: Spectral tools for dynamic tonality and audio morphing. Comput. Music J. 33(2), 71–84 (2009)

    Article  Google Scholar 

  18. Terhardt, E.: Pitch, consonance, and harmony. J. Acoust. Soc. Am. 55(5), 1061–1069 (1974)

    Article  Google Scholar 

  19. Website for “Inharmonic Strings and the Hyperpiano”. http://sethares.engr.wisc.edu/papers/hyperInstruments.html. Accessed 21 Mar 2017

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Kevin Hobby , William A. Sethares or Zhenyu Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Hobby, K., Sethares, W.A., Zhang, Z. (2017). Using Inharmonic Strings in Musical Instruments. In: Agustín-Aquino, O., Lluis-Puebla, E., Montiel, M. (eds) Mathematics and Computation in Music. MCM 2017. Lecture Notes in Computer Science(), vol 10527. Springer, Cham. https://doi.org/10.1007/978-3-319-71827-9_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-71827-9_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-71826-2

  • Online ISBN: 978-3-319-71827-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics