Skip to main content

Lexicographic Orientation Algorithms

  • Chapter
  • First Online:
  • 1686 Accesses

Part of the book series: Springer Monographs in Mathematics ((SMM))

Abstract

Graph orientation, which provides a link between graphs and digraphs, is an actively studied area in the theory of graphs and digraphs. One of the fundamental problems asks whether a given graph admits an orientation that satisfies a prescribed property and to find such an orientation if it exists. In this chapter, we demonstrate a very simple orientation technique known as the lexicographic orientation method. We show how this method can be applied to obtain different types of orientations for various classes of graphs, and further extended to solve some orientation completion problems.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   44.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   89.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. J. Bang-Jensen. Locally semicomplete digraphs: a generalization of tournaments. J. Graph Theory, 14(3):371–390, 1990.

    Article  MathSciNet  Google Scholar 

  2. J. Bang-Jensen and C.J. Casselgren. Restricted cycles factors and arc-decompositions of digraphs. Discrete Appl. Math., 193:80–93, 2015.

    Article  MathSciNet  Google Scholar 

  3. J. Bang-Jensen and J. Huang. Quasi-transitive digraphs. J. Graph Theory, 20(2):141–161, 1995.

    Article  MathSciNet  Google Scholar 

  4. J. Bang-Jensen, J. Huang, and X Zhu. Completing orientations of partially oriented graphs. J. Graph Theory, 87(3) 285–304, 2018.

    Article  MathSciNet  Google Scholar 

  5. F. Boesch and R. Tindell. Robbins’s theorem for mixed multigraphs. Amer. Math. Mon., 87(9):716–719, 1980.

    Article  MathSciNet  Google Scholar 

  6. M. Chudnovsky, A. Scott, and P.D. Seymour. Disjoint paths in tournaments. Adv. Math., 270:582–597, 2015.

    Article  MathSciNet  Google Scholar 

  7. O.D. de Gevigney. On Frank’s conjecture on \(k\)-connected orientations. Preprint arXiv:1212.4086v1, December 2012.

  8. O.D. de Gevigney, S. Klein, V.H. Nguyen, and Z. Szigeti. Sandwich problems on orientations. J. Brazilian Comput. Soc., 18:85–93, 2012.

    Article  MathSciNet  Google Scholar 

  9. X. Deng, P. Hell, and J. Huang. Linear-time representation algorithms for proper circular-arc graphs and proper interval graphs. SIAM J. Comput., 25(2):390–403, 1996.

    Article  MathSciNet  Google Scholar 

  10. T. Feder, P. Hell, and J. Huang. List homomorphisms and circular arc graphs. Combinatorica, 19:487–505, 1999.

    Article  MathSciNet  Google Scholar 

  11. L.R. Ford, Jr. and D.R. Fulkerson. Flows in networks. Princeton University Press, Princeton, NJ, 1962.

    MATH  Google Scholar 

  12. S. Fortune, J.E. Hopcroft, and J. Wyllie. The directed subgraph homeomorphism problem. Theor. Comput. Sci., 10:111–121, 1980.

    Article  MathSciNet  Google Scholar 

  13. T. Gallai. On directed paths and circuits. In Theory of Graphs (Proc. Colloq., Tihany, 1966), pages 115–118. Academic Press, 1968.

    Google Scholar 

  14. T. Gallai. Transitiv orientbare Graphen. Acta Math. Acad. Sci. Hungar, 18:25–66, 1967.

    Article  MathSciNet  Google Scholar 

  15. M.R. Garey and D.S. Johnson. Computers and intractability. W. H. Freeman, San Francisco, 1979.

    MATH  Google Scholar 

  16. A. Ghouila-Houri. Caractérisation des graphes non orientés dont on peut orienter les arětes de manière à obtenir le graphe d’une relation d’ordre. C. R. Acad. Sci. Paris, 254:1370–1371, 1962.

    MathSciNet  MATH  Google Scholar 

  17. P.C. Gilmore and A.J. Hoffman. A characterization of comparability graphs and interval graphs. Canad. J. Math., 16:539–548, 1964.

    Article  MathSciNet  Google Scholar 

  18. M.C. Golumbic. Algorithmic graph theory and perfect graphs. Academic Press, New York, 1980. With a foreword by Claude Berge.

    Google Scholar 

  19. M.C. Golumbic. The complexity of comparability graph recognition and coloring. Computing, 18(3):199–208, 1977.

    Article  MathSciNet  Google Scholar 

  20. M.C. Golumbic, H. Kaplan, and R. Shamir. Graph sandwich problems. J. Algor., 19:449–473, 1995.

    Google Scholar 

  21. M. Habib, R.M. McConnell, C. Paul, and L. Viennot. Lex-BFS and partition refinement, with applications to transitive orientation, interval graphs recognition and consecutive ones testing. Theor. Comput. Sci., 234:59–84, 2000.

    Article  MathSciNet  Google Scholar 

  22. P. Hell and J. Huang. Lexicographic orientation and representation algorithms for comparability graphs, proper circular arc graphs, and proper interval graphs. J. Graph Theory, 20(3):361–374, 1995.

    Article  MathSciNet  Google Scholar 

  23. P. Hell and J. Huang. Two remarks on circular arc graphs. Graphs Combin., 13:65–72, 1997.

    Article  MathSciNet  Google Scholar 

  24. J. Huang. On the structure of local tournaments. J. Combin. Theory, Ser. B, 63(2):200–221, 1995.

    Article  MathSciNet  Google Scholar 

  25. J. Huang. Representation characterizations of chordal bipartite graphs. J. Combin. Theory Ser. B, 96:673–683, 2006.

    Article  MathSciNet  Google Scholar 

  26. J. Huang. Tournament-like oriented graphs. PhD thesis, School of Computing Science, Simon Fraser University, Canada, 1992.

    Google Scholar 

  27. J. Huang. Which digraphs are round? Australas. J. Combin., 19:203–208, 1999.

    MathSciNet  MATH  Google Scholar 

  28. P. Klavik, J. Kratochvil, Y. Otachi, I. Rutter, T. Saitoh, M. Saumell, and T. Vyskocil. Extending partial representations of proper and unit interval graphs. In SWAT 2014: 14th Scandinavian Symposium and Workshops on Algorithm Theory, volume 8503 of Lect. Notes Comput. Sci., pages 253–264. Springer, 2014.

    Google Scholar 

  29. C.G. Lekkerkerker and J.Ch. Boland. Representation of a finite graph by a set of intervals on the real line. Fund. Math., 51:45–64, 1962.

    Article  MathSciNet  Google Scholar 

  30. F. Maffray and M. Preissmann. A translation of Gallai’s paper: ‘Transitiv orientierbare graphen’. In Perfect Graphs, J.L.R. Alfonsín and B.A. Bruce ed., pages 25–66. Wiley, 2001.

    Google Scholar 

  31. R.M. McConnell. Linear time recognition of circular-arc graphs. Algorithmica, 37:93–147, 2003.

    Article  MathSciNet  Google Scholar 

  32. R.M. McConnell and J.P. Spinrad. Modular decomposition and transitive orientation. Discrete Math., 201:189–241, 1999.

    Article  MathSciNet  Google Scholar 

  33. A. Pnueli, A. Lempel, and A. Even. Transitive orientation of graphs and identification of permutation graphs. Canad. J. Math., 23:160–175, 1971.

    Article  MathSciNet  Google Scholar 

  34. H.E. Robbins. A theorem on graphs with an application to a problem on traffic control. Amer. Math. Mon., 46:281–283, 1939.

    Article  Google Scholar 

  35. F.S. Roberts. Graph Theory and its Applications to Problems of Society. NSF-CMBS Monograph No. 29. SIAM, Philadelphia, PA, 1978.

    Google Scholar 

  36. D.J. Rose, R.E. Tarjan, and G.S. Lueker. Algorithmic aspects of vertex elimination on graphs. SIAM J. Comput., 5:266–283, 1976.

    Article  MathSciNet  Google Scholar 

  37. B. Roy. Nombre chromatique et plus longs chemins d’un graphe. Rev. Fr. Inf. Rech. Opér., 1(5):129–132, 1967.

    MathSciNet  MATH  Google Scholar 

  38. D.J. Skrien. A relationship between triangulated graphs, comparability graphs, proper interval graphs, proper circular-arc graphs, and nested interval graphs. J. Graph Theory, 6(3):309–316, 1982.

    Article  MathSciNet  Google Scholar 

  39. J. Spinrad. Circular-arc graphs with clique cover number two. J. Combin. Theory Ser. B, 44:300–306, 1988.

    Article  MathSciNet  Google Scholar 

  40. C. Thomassen. Highly connected non-\(2\)-linked digraphs. Combinatorica, 11(4):393–395, 1991.

    Article  MathSciNet  Google Scholar 

  41. C. Thomassen. Strongly 2-connected orientations of graphs. J. Combin. Theory Ser. B, 110:67–78, 2015.

    Article  MathSciNet  Google Scholar 

  42. W.T. Trotter and J.I. Moore. Characterization problems for graphs, partially ordered sets, lattices, and families of sets. Discrete Math., 16:361–381, 1976.

    Article  MathSciNet  Google Scholar 

  43. A.C. Tucker. An efficient test for circular arc graphs. SIAM J. Comput., 9:1–24, 1980.

    Article  MathSciNet  Google Scholar 

  44. A.C. Tucker. Characterizing circular-arc graphs. Bull. Amer. Math. Soc., 76:1257–1260, 1970.

    Article  MathSciNet  Google Scholar 

  45. A.C. Tucker. Colouring a family of circular arcs. SIAM J. Appl. Math., 29:439–502, 1975.

    Article  MathSciNet  Google Scholar 

  46. A.C. Tucker. Matrix characterization of circular-arc graphs. Pacific J. Math., 39:535–545, 1971.

    Article  MathSciNet  Google Scholar 

  47. L.M. Vitaver. Determination of minimal coloring of vertices of a graph by means of Boolean powers of the incidence matrix. Dokl. Akad. Nauk SSSR, 147:758–759, 1962.

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jing Huang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Huang, J. (2018). Lexicographic Orientation Algorithms. In: Bang-Jensen, J., Gutin, G. (eds) Classes of Directed Graphs. Springer Monographs in Mathematics. Springer, Cham. https://doi.org/10.1007/978-3-319-71840-8_12

Download citation

Publish with us

Policies and ethics