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Abstract

In large scale collective decision making, social choice is a normative study of how one ought
to design a protocol for reaching consensus. However, in instances where the underlying decision
space is too large or complex for ordinal voting, standard voting methods of social choice may be
impractical. How then can we design a mechanism - preferably decentralized, simple, scalable,
and not requiring any special knowledge of the decision space - to reach consensus? We propose
sequential deliberation as a natural solution to this problem. In this iterative method, successive
pairs of agents bargain over the decision space using the previous decision as a disagreement
alternative. We describe the general method and analyze the quality of its outcome when the
space of preferences define a median graph. We show that sequential deliberation finds a 1.208-
approximation to the optimal social cost on such graphs, coming very close to this value with
only a small constant number of agents sampled from the population. We also show lower
bounds on simpler classes of mechanisms to justify our design choices. We further show that
sequential deliberation is ex-post Pareto efficient and has truthful reporting as an equilibrium
of the induced extensive form game. We finally show that for general metric spaces, the second
moment of of the distribution of social cost of the outcomes produced by sequential deliberation
is also bounded.

1 Introduction

Suppose a university administrator plans to spend millions of dollars to update her campus, and
she wants to elicit the input of students, staff, and faculty. In a typical social choice setting, she
could first elicit the bliss points of the students, say “new gym,” “new library,” and “new student
center.” However, voting on these options need not find the social optimum, because it is not clear
that the social optimum is even on the ballot. In such a setting, deliberation between individuals
would find entirely new alternatives, for example “replace gym equipment plus remodeling campus
dining plus money for scholarship.” This leads to finding a social optimum over a wider space of
semi-structured outcomes that the system/mechanism designer was not originally aware of, and
the participants had not initially articulated.

We therefore start with the following premise: The mechanism designer may not be able to
enumerate the outcomes in the decision space or know their structure, and this decision space may
be too big for most ordinal voting schemes. (For instance, ordinal voting is difficult to implement
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in complex combinatorial spaces [24] or in continuous spaces [14].) However, we assume that agents
can still reason about their preferences and small groups of agents can negotiate over this space
and collaboratively propose outcomes that appeal to all of them. Our goal is to design protocols
based on such a primitive by which small group negotiation can lead to an aggregation of societal
preferences without a need to formally articulate the entire decision space and without every agent
having to report ordinal rankings over this space.

The need for small groups is motivated by a practical consideration as well as a theoretical one.
On the practical side, there is no online platform, to the best of our knowledge, that has a successful
history of large scale deliberation and decision making on complex issues; in fact, large online forums
typically degenerate into vitriol and name calling when there is substantive disagreement among
the participants. Thus, if we are to develop practical tools for decision making at scale, a sequence
of small group deliberations appears to be the most plausible path. On the theoretical side, we
understand the connections between sequential protocols for deliberation and axiomatic theories of
bargaining for small groups, e.g. for pairs [33, 8], but not for large groups, and we seek to bridge
this gap.

Summary of Contributions. Our main contributions in this paper are two-fold:

• A simple and practical sequential protocol that only requires agents to negotiate in pairs and
collaboratively propose outcomes that appeal to both of them.

• A canonical analytic model in which we can precisely state properties of this protocol in terms
of approximation of the social optimum, Pareto-efficiency, and incentive-compatibility, as well
as compare it with simpler protocols.

1.1 Background: Bargaining Theory

Before proceeding further, we review bargaining, the classical framework for two-player ne-
gotiation in Economics. Two-person bargaining, as framed in [28], is a game wherein there is a
disagreement outcome and two agents must cooperate to reach a decision; failure to cooperate
results in the adoption of the disagreement outcome. Nash postulated four axioms that the bar-
gaining solution ought to satisfy assuming a convex space of alternatives: Pareto optimality (agents
find an outcome that cannot be simultaneously improved for both of them), symmetry between
agents, invariance with respect to affine transformations of utility (scalar multiplication or additive
translation of any agent’s utility should not change the outcome), and independence of irrelevant
alternatives (informally that the presence of a feasible outcome that agents do not select does not
influence their decision). Nash proved that the solution maximizing the Nash product (that we
describe later) is the unique solution satisfying these axioms. To provide some explanation of how
two agents might find such a solution, [33] shows that Nash’s solution is the subgame perfect equi-
librium of a simple repeated game on the two agents, where the agents take turns making offers,
and at each round, there is an exogenous probability of the process terminating with no agreement.

The two-person bargaining model is therefore clean and easy to reason about. As a conse-
quence, it has been extensively studied. In fact, there are other models and solutions to two-person
bargaining, each with a slightly different axiomatization [20, 21, 27], as well as several experimental
studies [32, 29, 7]. In a social choice setting, there are typically many more than two agents, each
agent having their own complex preferences. Though bargaining can be generalized to n agents
with similar axiomatization and solution structure, such a generalization is considered impractical.
This is because in reality it is difficult to get a large number of individuals to negotiate coherently;
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complexities come with the formation of coalitions and power structures [18, 23]. Any model for
simultaneous bargaining, even with three players [6], needs to take these messy aspects into account.

1.2 A Practical Compromise: Sequential Pairwise Deliberation

In this paper, we take a middle path, avoiding both the complexity of explicitly specifying
preferences in a large decision space that any individual agent may not even fully know (fully
centralized voting), and that of simultaneous n-person bargaining (a fully decentralized cooperative
game). We term this approach sequential deliberation. We use 2-person bargaining as a basic
primitive, and view deliberation as a sequence of pairwise interactions that refine good alternatives
into better ones as time goes by.

More formally, there is a decision space S of feasible alternatives (these may be projects, sets
of projects, or continuous allocations) and a set N of agents. We assume each agent has a hidden
cardinal utility for each alternative. We encapsulate deliberation as a sequential process. The
framework that we analyze in the rest of the paper is captured in Figure 1.

1. In each round t = 1, 2, . . . , T :

(a) A pair of agents ut and vt are chosen independently and uniformly at random with
replacement.

(b) These agents are presented with a disagreement alternative at, and perform bargaining,
which is encoded as a function B(u, v, a) as described below.

(c) Agents ut and vt are asked to output a consensus alternative; if they fail to reach a
consensus then the alternative at is output.

(d) Let ot denote the alternative that is output in round t. We set at+1 = ot, where we
assume a1 is the bliss point of an arbitrary agent.

2. The final social choice is aT . Note that this is equivalent to drawing an outcome at random
from the distribution generated by repeating this protocol several times.

Figure 1: A framework for sequential pairwise deliberation.

Our framework is simple with low cognitive overhead, and is easy to implement and reason
about. Though we don’t analyze other variants in this paper, we note that the framework is flexible.
For instance, the bargaining step can be replaced with any function B(u, v, a) that corresponds to
an interaction between u and v using a as the disagreement outcome; we assume that this function
maximizes the Nash product, that is, it corresponds to the Nash bargaining solution. Similarly,
the last step of social choice could be implemented by a central planner based on the distribution
of outcomes produced.

1.3 Analytical Model: Median Graphs and Sequential Nash Bargaining

The framework in Figure 1 is well-defined and practical irrespective of an analytical model.
However, we provide a simple analytical model for specifying the preferences of the agents in which
we can precisely quantify the behavior of this framework as justification.

Median Graphs. We assume that the set S of alternatives are vertices of a median graph. A
median graph has the property that for each triplet of vertices u, v, w, there is a unique point that
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is common to the three sets of shortest paths (since there may be multiple pairwise shortest paths),
those between u, v, between v, w, and between u,w. This point is the unique median of u, v, w. We
assume each agent u has a bliss point pu ∈ S, and his disutility for an alternative a ∈ S is simply
d(pu, a), where d(·) is the shortest path distance function on the median graph. (Note that this
disutility can have an agent-dependent scale factor.) Several natural graphs are median graphs,
including trees, points on the line, hypercubes, and grid graphs in arbitrary dimensions [22]. As we
discuss in Section 1.5, because of their analytic tractability and special properties, median graphs
have been extensively studied as structured models for spatial preferences in voting theory. Some
of our results generalize to metric spaces beyond median graphs; see Section 5 and Appendix B.

Nash Bargaining. The model for two-person bargaining is simply the classical Nash bargaining
solution described before. Given a disagreement alternative a, agents u and v choose that alternative
o ∈ S that maximizes:

Nash product = (d(pu, a)− d(pu, o))× (d(pv, a)− d(pv, o))

subject to individual rationality, that is, d(pv, o) ≤ d(pv, a) and d(pu, o) ≤ d(pu, a). The Nash
product maximizer need not be unique; in the case of ties we postulate that agents select the
outcome that is closest to the disagreement outcome. As mentioned before, the Nash product is a
widely studied axiomatic notion of pairwise interactions, and is therefore a natural solution concept
in our framework.

Social Cost and Distortion. The social cost of an alternative a ∈ S is given by SC(a) =∑
u∈N d(pu, a). Let a∗ ∈ S be the minimizer of social cost, i.e., the generalized median. We

measure the Distortion of outcome a as

Distortion(a) =
SC(a)

SC(a∗)
(1)

where we use the expected social cost if a is the outcome of a randomized algorithm.

Note that our model is fairly general. First, the bliss points of the agents in N form an
arbitrary subset of S. Further, the alternative chosen by bargaining need not correspond to any
bliss point, so that pairs of agents are exploring the entire space of alternatives when they bargain,
instead of just bliss points. Assuming that disutility is some metric over the space follows recent
literature [3, 2, 9, 10, 16], and our tightest results are for median graphs specifically.

1.4 Our Results

Before presenting our results, we re-emphasize that while we present analytical results for se-
quential deliberation in specific decision spaces, the framework in Figure 1 is well defined regardless
of the underlying decision space and the mediator’s understanding of the space. At a high level,
this flexibility and generality in practice are its key advantages.

Bargaining and Medians. We first show in Section 2 that on a median graph, Nash bargaining
between agents u and v using disagreement outcome a outputs the median of pu, pv, a. Therefore,
B(u, v, a) = Median(pu, pv, a). On a general metric space, we show in Section 5.1 that the Nash
Bargaining outcome would lie on the shortest path between the agents, and the distance from an
agent is proportional to its distance to the disagreement outcome. In a sense, agents only need to
explore options on the shortest path between them.
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Bounding Distortion. Our main result in Section 3 shows that for sequential Nash bargaining
on a median graph, the expected Distortion of outcome aT has an upper bound approaching 1.208
as T → ∞. Surprisingly, we show that in T = log2

1
ε + 2.575 steps, the expected Distortion is

at most 1.208 + ε, independent of the number of agents, the size of the median space, and the
initial disagreement point a1. For instance, the Distortion falls below 1.22 in at most 9 steps of
deliberation, which only requires a random sample of at most 20 agents from the population to
implement.

In Section 3.2, we ask: How good is our numerical bound? We present a sequence of lower
bounds for social choice mechanisms that are allowed to use increasingly richer information about
the space of alternatives on the median graph. This also leads us to make qualitative statements
about our deliberation scheme.

• We show that any social choice mechanism that is restricted to choosing the bliss point of
some agent cannot have Distortion better than 2. More generally, it was recently shown [17]
that even eliciting the top k alternatives for each agent does not improve the bound of 2 for
median graphs unless k = Ω(|S|). In effect, we show that forcing the agents to reason about
cardinal utilities via deliberation leads to new alternatives that are more powerful at reducing
Distortion than simply eliciting and aggregating reasonably detailed ordinal rankings.

• Next consider mechanisms that choose, for some triplet (u, v, w) of agents with bliss points
pu, pv, pw, the median outcome muvw = B(u, v, pw). We show this has Distortion at least
1.316, which means that sequential deliberation is superior to one-shot deliberation that
outputs o1 where a1 is the bliss point of some agent.

• Finally, for every pair of agents (u, v), consider the set of alternatives on a shortest path
between pu and pv. This encodes all deliberation schemes where B finds a Pareto-efficient
alternative for some 2 agents at each step. We show that any such mechanisms has Distortion
ratio at least 9/8 = 1.125. This space of mechanisms captures sequential deliberation, and
shows that sequential deliberation is close to best possible within this space.

Properties of Sequential Deliberation. We next show that sequential deliberation has several
natural desiderata on median graphs in Section 4. In particular:

• Under mild assumptions, the limiting distribution over outcomes of sequential deliberation is
unique.

• For every T ≥ 1, the outcome oT of sequential deliberation is ex-post Pareto-efficient, meaning
that there is no other alternative that has at most that social cost for all agents and strictly
better cost for one agent. This is not a priori obvious, since the outcome at any one round
only uses inputs from two agents; though it is Pareto-efficient for those two agents, it could
very well be sub-optimal for the other agents.

• Interpreted as a mechanism, truthful play is a sub-game perfect Nash equilibrium of sequential
deliberation. More precisely, we consider a different view of the function B(u, v, a) that
encodes Nash Bargaining. Suppose agents u and v report their bliss points, and the platform
implements the function B that computes the median of pu, pv, and a. In a sequential setting,
would any agent have incentive to misreport their bliss point so that they gain an advantage
(in terms of expected distance to the final social choice) in the induced extensive form game?
We show that the answer is negative – on a median graph, truthfully reporting bliss points
is a sub-game perfect Nash equilibrium of the induced extensive form game.
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Beyond Median Graphs. In Section 5, we consider general metric spaces. We show that the
Distortion of sequential deliberation is always at most a factor of 3. More surprisingly, we show
that sequential deliberation has constant distortion even for the second moment of the distribution
of social cost of the outcomes, i.e., the latter is at most a constant factor worse than the optimum
squared social cost. This has the following practical implication: A policy designer can look at the
distribution of outcomes produced by deliberation, and know that the standard deviation in social
cost is comparable to its expected value, which means deliberation eliminates outlier alternatives
and concentrates probability mass on more central alternatives.1 We also show that such a claim
cannot be made for random dictatorship, whose distortion on squared social cost is unbounded.

1.5 Related Work

While the real world complexities of the model are beyond the analytic confines of this work,
deliberation as an important component of collective decision making and democracy is studied in
political science. For examples (by no means exhaustive), see [13, 36]. There is ongoing related
work on Distortion of voting for simple analytical models like points in R [12], and in general metric
spaces [3, 2, 9, 10, 16]. This work focuses on optimally aggregating ordinal preferences, say the
top k preferences of a voter [17]. In contrast, our scheme elicits alternatives as the outcome of
bargaining rounds that require agents to reason about cardinal preferences.. As mentioned before,
we essentially show that for median graphs, unless k is very large, such deliberation has provably
lower distortion than social choice schemes that elicit purely ordinal rankings.

Median graphs and their ordinal generalization, median spaces, have been extensively studied
in the context of social choice. The special cases of trees and grids have been studied as structured
models for voter preferences [35, 5]. For general median spaces, it is known that the Condorcet
winner (that is an alternative that pairwise beats any other alternative in terms of voter preferences)
is strongly related to the generalized median [4, 34, 38] – if the former exists, it coincides with the
latter. Nehring and Puppe [30] shows that any single-peaked domain which admits a non-dictatorial
and neutral strategy-proof social choice function is a median space. Clearwater et al. [11] also
showed that any set of voters and alternatives on a median graph will have a Condorcet winner. In
a sense, these are the largest class of structured and spatial preferences where ordinal voting over
the entire space of alternatives leads to a “clear winner” even by pairwise comparisons. Our work
stems from the assumption that this space may not be fully known to the mechanism designer or
all agents.

Our paper is inspired by the triadic consensus results of Goel and Lee [15]. In that work, the
authors focus on small group interactions with the goal of reaching consensus. In their model,
three people deliberate at the same time, and they choose a fourth individual to whom they grant
their votes. This individual takes these votes and participates in future rounds, until all votes
accumulate with one individual, who is the consensus outcome. The analysis proceeds through
a median graph, on which the authors show that the Distortion of the consensus approaches 1.
However, the protocol crucially assumes individuals know the positions of other individuals, and
requires the space of alternatives to coincide with the space of individuals. We make neither of
these assumptions – in our case, the space of alternatives can be much larger than the number of
agents, and further, individuals interact with others only via bargaining. This makes our protocol
more practical, but at the same time, restricts our Distortion to be bounded away from 1.

The notion of democratic equilibrium [19, 14] considers social choice mechanisms in continuous
spaces where individual agents with complex utility functions perform update steps inspired by

1See also recent work by [37] that considers minimizing the variance of randomized truthful mechanisms.
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gradient descent, instead of ordinal voting on the entire space. However, these schemes do not
involve deliberation between agents and have little formal analysis of convergence. Several works
have considered iterative voting where the current alternative is put to vote against one proposed by
different random agent chosen each step [1, 25, 31], or other related schemes [26]. In contrast with
our work, these protocols are not deliberative and require voting among several agents each step;
furthermore, the analysis focuses on convergence to an equilibrium instead of welfare or efficiency
guarantees.

2 Median Graphs and Nash Bargaining

In this section we will use the notation N for a set of agents, S for the space of feasible
alternatives, and H for a distribution over S. Most of our results are for the analytic model given
earlier wherein the set S of alternatives are vertices of a median graph; see Figure 2 for some
examples.

Definition 1. A median graph G(S, E) is an unweighted and undirected graph with the following
property: For each triplet of vertices u, v, w ∈ S ×S ×S, there is a unique point that is common to
the shortest paths (which need not be unique between a given pair) between u, v, between v, w, and
between u,w. This point is the unique median of u, v, w.

Figure 2: Examples of Median Graphs

In the framework of Figure 1, we assume that at every step, two agents perform Nash bargaining
with a disagreement alternative. The first results characterize Nash bargaining on a median graph.
In particular, we show that Nash bargaining at each step will select the median of bliss points of
the two agents and the disagreement alternative. After that, we show that we can analyze the
Distortion of sequential deliberation on a median graph by looking at the embedding of that graph
onto the hypercube.

Lemma 1. For any median graph G = (S, E), any two agents u, v with bliss points pu, pv ∈ S, and
any disagreement outcome a ∈ S, let M be the median. Then M maximizes the Nash product of u
and v given a, and is the maximizer closest to a.

Proof. Since G is a median graph, M exists and is unique; it must by definition be the intersection of
the three shortest paths between (pu, pv), (pu, a), (pv, a). Note that we can therefore write d(pu, a) =
d(pu,M) + d(M,a) and similarly for d(pv, a). Let α = d(pu,M); β = d(pv,M); and γ = d(a,M).
Suppose Nash bargaining finds an outcome o∗ ∈ S. Let x = d(o∗, pu) and y = d(o∗, pv). Observing
that M lies on the shortest path between pu and pv, and using the triangle inequality, we obtain
that x+ y ≥ α+ β =⇒ β ≤ x+ y − α.

Noting that d(pu, a) = α+ γ and d(pv, a) = β + γ, the Nash product of the point o∗ is:

(α+ γ − x)× (β + γ − y) ≤ (α+ γ − x)(γ − (α− x)) = γ2 − (α− x)2
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This is maximized when x = α and y = β. One possible maximizer is therefore the point o∗ = M .
Suppose d(o∗, a) < γ, then by the triangle inequality, d(pu, o

∗) > α, and similarly d(pv, o
∗) > β.

Therefore, there cannot be a closer maximizer of the Nash product to a than the point M .

Hypercube Embeddings. For any median graph G = (S, E), there is an isometric embedding
φ : G→ Q of G into a hypercube Q [22]. This embedding maps vertices S into a subset of vertices
of Q so that all pairwise distances between vertices in S are preserved by the embedding. A simple
example of this embedding for a tree is shown in Figure 3. We use this embedding to show the
following result, in order to simplify subsequent analysis.

Figure 3: The hypercube embedding of a 4-vertex star graph

Lemma 2. Let G(S, E) be a median graph, and let φ be its isometric embedding into hypercube
Q(V,E′). For any three points t, u, v ∈ S, let MG be the median of vertices t, u, v and let MQ be
the median of vertices φ(t), φ(u), φ(v) ∈ V . Then φ(MG) = MQ.

Proof. By definition, since φ is an isometric embedding [22],

d(x, y) = d(φ(x), φ(y)) for all x, y ∈ S (2)

Since G is a median graph, MG is the unique median of t, u, v ∈ S, which by definition satisfies the
equalities:

d(t, u) = d(t,MG) + d(MG, u)

d(t, v) = d(t,MG) + d(MG, v)

d(u, v) = d(u,MG) + d(MG, v)

Q(V,E′) is a hypercube, and is thus also a median graph, so MQ is the unique median of
φ(t), φ(u), φ(v) ∈ V , which by definition satisfies the equalities

I d(φ(t), φ(u)) = d(φ(t),MQ) + d(MQ, φ(u))

II d(φ(t), φ(v)) = d(φ(t),MQ) + d(MQ, φ(v))

III d(φ(u), φ(v)) = d(φ(u),MQ) + d(MQ, φ(v))

Applying Equation (2) to the first set of equalities shows that φ(MG) satisfies equalities I,II, and
III respectively. But φ(MG) ∈ V and MQ is the unique vertex in V satisfying equalities I,II, and
III. Therefore, φ(MG) = MQ.

3 The Efficiency of Sequential Deliberation

In this section, we show that the Distortion of sequential deliberation is at most 1.208. We then
show that this bound is significant, meaning that mechanisms from simpler classes are necessarily
constrained to have higher Distortion values.
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3.1 Upper Bounding Distortion

Recall the framework for sequential deliberation in Figure 1 and the definition of Distortion in
Equation (1). We first map the problem into a problem on hypercubes using Lemma 2.

Corollary 1. Let G = (S, E) be a median graph, let φ : G → Q be an isometric embedding of G
onto a hypercube Q(V,E′), and let N be a set of agents such that each agent u has a bliss point
pu ∈ S. Then the Distortion of sequential deliberation on G is at most the Distortion of sequential
deliberation on φ(G) where each agent’s bliss point is φ(pu).

Proof. Fix an initial disagreement outcome a1 ∈ S and an arbitrary list of T pairs of agents (u1, v1),
(u2, v2), ..., (uT , vT ). In round 1 bargaining on G, Lemma 1 implies that sequential deliberation
will select o1 = median(a1, p1u, p

1
v). Furthermore, Lemma 2 implies that if we had considered φ(G)

and bargaining on φ(a1), φ(p1u), φ(p1v) instead, sequential deliberation would have selected φ(o1).
Suppose at some round t that we have a disagreement outcome at. Then the same argument yields
that if ot is the bargaining outcome on G, φ(ot) would have been the bargaining outcome on φ(G).
Thus, by induction, we have that if the list of outcomes on G is o1, ..., oT then the list of outcomes
on φ(G) is φ(o1), ..., φ(oT ). But recall that φ(·) is an isometric embedding and the social cost of
an alternative (as defined in Section 1.3) is just its sum of distances to all points in N , so aT and
φ(aT ) have the same social cost.

Furthermore, let a∗ ∈ S denote the generalized median of N . Then, φ(a∗) has the same social
cost as a∗. This means the median of the embedding of N into Q has at most this social cost, which
in turn means that the Distortion of sequential deliberation in the embedding cannot decrease.

Our main result in this section shows that as t → ∞, the Distortion of sequential deliberation
approaches 1.208, with the convergence rate being exponentially fast in t and independent of the
number of agents |N |, the size of the median space |S|, and the initial disagreement point a1. In
particular, the Distortion is at most 1.22 in at most 9 steps of deliberation, which is indeed a very
small number of steps.

Theorem 1. Sequential deliberation among a set N of agents, where the decision space S is a
median graph, yields E[Distortion(at)] ≤ 1.208 + 6

2t .

Proof. By Corollary 1, we can assume the decision space is a D-dimensional hypercube Q so that
decision points (and thus bliss points) are vectors in {0, 1}D. For every dimension k, let fk be the
fraction of agents whose bliss point has a 1 in the kth dimension, and let pu,k be the 0 or 1 bit in
the kth dimension of the bliss point pu for agent u. Let a∗ ∈ {0, 1}D be the minimum social cost
decision point, i.e., a∗ := argmina∈QSC(a). Clearly, a∗k is 1 if fk > 1/2 and 0 otherwise [assume
w.l.o.g. that a∗k = 0 for fk = 1/2], so for every dimension k, the total distance to a∗k, summed over
N is: ∑

u∈N
|a∗k − pu,k| = |N |min{fk, 1− fk}

Now, note that sequential deliberation defines a Markov chain on Q. The state in a given step
is just at, and the randomness is in the random draw of the two agents. Let H∗ be the stationary
distribution of the Markov chain. Then we can write

lim
t→∞

E[Distortion(at)] = Ea∈H∗ [Distortion(a)]

To write down the transition probabilities, we assume this random draw is two independent
uniform random draws from N , with replacement. We also note that Lemma 1 implies that on
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Q, sequential deliberation will pick the median in every step, i.e., given a disagreement outcome
at and two randomly drawn agents with bliss points pu, pv, the new decision point will be ot =
median(pu, pv, a

t). On a hypercube, the median of three points is just the dimension-wise majority.
Thus, we get a 2-state Markov chain in each dimension k, with transition probabilities

Pr[otk = 1|atk = 1] = f2k + 2fk(1− fk) and Pr[otk = 1|atk = 0] = f2k

Let P∗k = limt→∞ Pr[otk = 1], and let H∗k denote this stationary distribution for the corresponding
2-state Markov chain. Then,

P∗k =
(
2fk − f2k

)
P∗k +

(
f2k
)

(1− P∗k) ⇒ P∗k =
f2k

1 + 2f2k − 2fk

By linearity of expectation, the total expected distance for every dimension k, summed over u ∈ N
to the final outcome is given by

Eak∈H∗k

[∑
u∈N
|ak − pu,k|

]
= |N |

((
f2k

f2k + (1− fk)2

)
(1− fk) +

(
1−

f2k
f2k + (1− fk)2

)
fk

)
= |N |

(
fk(1− fk)

f2k + (1− fk)2

)
Without loss of generality, let fk ∈ [0, 1/2] so that for dimension k, the total distance to a∗k is |N |fk.
Then the ratio of the expected total distance to H∗k to the total distance to a∗k is at most:

Eak∈H∗k
[∑

u∈N |pu,k − ak|
]∑

u∈N |pu,k − a∗k|
≤ maxfk∈[0,1/2]

1− fk
f2k + (1− fk)2

≤ 1.208

Since the above bound holds in each dimension of the hypercube, we can combine them as:

Ea∈H∗ [Distortion(a)] =

∑D
k=1 Eak∈H∗k

[∑
u∈N |pu,k − ak|

]∑D
k=1

∑
u∈N |pu,k − a∗k|

≤ 1.208

Convergence Rate. Now that we have bounded the Distortion of the stationary distribution,
we need to consider the convergence rate. We will not bound the mixing time of the overall Markov
chain. Rather, note that in the preceding analysis, we only used the marginal probabilities H∗k
for every dimension k. Furthermore, the Markov chain defined by sequential deliberation need not
walk along edges on Q, so we can consider separately the convergence of the chain to the stationary
marginal in each dimension.

After t steps, let Pkt = Pr[otk = 1] and let Htk denote this distribution. Assume fk ∈ [0, 1/2]. If

the total variation distance2 between Htk and H∗k is ε
f2k

f2k+(1−fk)2
, then it is easy to check that the

expected total distance to Htk is within a (1+ε) factor of the expected distance to H∗k, which implies
a Distortion of at most 1.208 + ε in that dimension. We therefore bound how many steps it takes

to achieve total variation distance ε
f2k

f2k+(1−fk)2
in any dimension k; if this bound holds uniformly

for all dimensions k, this would imply the overall Distortion is at most 1.208 + ε, completing the
proof.

2total variation distance is particularly simple for these distributions with support of just two points:
TV D(Ht

k,H∗k) = |Pkt − P ∗k |
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For any dimension k, two executions of the 2-state Markov chain along that dimension couple if
the agents picked in a time step have the same value in that dimension. At any step, this happens
with probability at least

(
f2k + (1− fk)2

)
. Therefore, the probability that the chains have not

coupled in t steps is at most (
1−

(
f2k + (1− fk)2

))t
= (2fk(1− fk))t

We therefore need T large enough so that

(2fk(1− fk))T ≤ ε
f2k

f2k + (1− fk)2

⇒ T = max
fk∈[0,1/2]

 log 1
ε

log 1
2fk(1−fk)

+
log 1

f2k
+ log(f2k + (1− fk)2)

log 1
2fk(1−fk)


⇒ T ≤ log2

1

ε
+ 2.575

Since this bound of T holds uniformly for all dimensions, this directly implies the theorem.

3.2 Lower Bounds on Distortion

We will now show that the Distortion bounds of sequential deliberation are significant, meaning
that mechanisms from simpler classes are constrained to have higher Distortion values. We present
a sequence of lower bounds for social choice mechanisms that use increasingly rich information
about the space of alternatives on a median graph G = (S, E) with a set of agents N with bliss
points VN ⊆ S.

We first consider mechanisms that are constrained to choose outcomes in VN . For instance,
this captures the random dictatorship that chooses the bliss point of a random agent as the final
outcome. It shows that the compromise alternatives found by deliberation do play a role in reducing
Distortion.

Lemma 3. Any mechanism constrained to choose outcomes in VN has Distortion at least 2.

Proof. It is easy to see that the k-star graph (the graph with a central vertex connected to k other
vertices none of which have edges between themselves) is a median graph. Consider an |N |-star
graph where VN are the non central vertices; that is, each and every agent has a unique bliss
point on the periphery of the star. Then any mechanism constrained to choose outcomes in VN
must choose one of these vertices on the periphery of the star. The social cost of such a point is
(|N |−1)×2, whereas the social cost of the optimal central vertex is clearly just |N |. The Distortion
goes to 2 as |N | grows large.

We draw more contrasts between sequential deliberation and random dictatorship in appendix A.
In particular, we show that sequential deliberation dominates random dictatorship on every instance
for median graphs, and converges to a Distortion of one for nearly unanimous instances, unlike ran-
dom dictatorship. We next consider mechanisms that are restricted to choosing the median of the
bliss points of some three agents in N . In particular, this captures sequential deliberation run for
T = 1 steps, as well as mechanisms that generalize dictatorship to an oligarchy composed of at
most 3 agents. This shows that iteratively refining the bargaining outcome has better Distortion
than performing only one iteration.

11



Lemma 4. Any mechanism constrained to choose outcomes in VN or a median of three points in
VN must have Distortion at least 1.316.

Proof. Let G be a median graph; in particular let G be the D-dimensional hypercube {0, 1}D.
For every dimension, an agent has a 1 in that dimension of their bliss point independently with
probability p. In expectation p|N | agents’ bliss points have a 1 in any given dimension. We assume
0 < p < 1/2 is an absolute constant. For a∗ being the all 0’s vector, E[SC(a∗)] = D|N |p, where
the randomness is in the construction. Now, suppose D = polylog(|N |). Then, for any β < 1, with
probability at least 1 − 1

poly(|N |)
every three points in VN has at least β(3p2 − 2p3)D ones. By

union bounds, for some α ∈ (β, 1), the social cost of any median of three points in VN is at least:

E[SC(a)] ≥ D|N |α
[
(3p2 − 2p3)(1− p) + p(1− 3p2 + 2p3)

]
= D|N |α

(
4p4 − 8p3 + 3p2 + p

) (3)

where again, the randomness is in the construction. Then there is nonzero probability that

E[SC(a)]

E[SC(a∗)]
≥ α

(
4p3 − 8p2 + 3p+ 1

)
(4)

If we choose the argmax of Equation 4, we get nonzero probability over the construction that the
Distortion is at least (1.316)α. Letting α grow close to 1 and noting that the nonzero probability
over the construction implies the existence of one such instance completes the argument.

We finally consider a class of mechanisms that includes sequential deliberation as a special case.
We show that any mechanism in this class cannot have Distortion arbitrarily close to 1. This also
shows that sequential deliberation is close to best possible in this class.

Lemma 5. Any mechanism constrained to choose outcomes on shortest paths between pairs of
outcomes in VN must have Distortion at least 9/8 = 1.125.

Proof. The construction of the lower bound essentially mimics that of Lemma 4. In this case
however, we get that each point on a shortest path between two agents has at least α(p2 × (1 −
p) + (1− p2)× p)D ones, so

E[SC(a)] ≥ D|N |α
[
p2 × (1− p) + (1− p2)× p

]
= D|N |α

(
−2p3 + p2 + p

)
So there is nonzero probability over the construction that

E[SC(a)]

E[SC(a∗)]
≥ α

(
−2p2 + p+ 1

)
where the maximum of −2p2 + p+ 1 over p < 1/2 is 9/8 when p = 1/4. The rest of the argument
follows as in Lemma 4.

The significance of the lower bound in Lemma 5 should be emphasized: though there is always
a Condorcet winner in median graphs, it need not be any agent’s bliss point, nor does it need to
be Pareto optimal for any pair of agents. The somewhat surprising implication is that any local
mechanism (in the sense that the mechanism chooses locally Pareto optimal points) is constrained
away from finding the Condorcet winner.
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4 Properties of Sequential Deliberation

In this section, we study some natural desirable properties for our mechanism: uniqueness of
the stationary distribution of the Markov chain, ex-post Pareto-efficiency of the final outcome, and
subgame perfect Nash equilibrium.

Uniqueness of the Stationary Distribution We first show that the Markov chain correspond-
ing to sequential deliberation converges to a unique stationary distribution on the actual median
graph, rather than just showing that the marginals and thus the expected distances from the
perspectives of the agents converge.

To prove uniqueness, it will be helpful to note that the Markov chain defined by sequential
bargaining on G by N only puts nonzero probability mass on points in the median closure M(VN )
of VN (see Definition 2 and Figure 4 for an example). This is the state space of the Markov chain,
and there is a directed edge (i.e., nonzero transition probability) from x to v if there exist u,w ∈ VN
such that v = M(x, u, w) (where M(x, u, w) is the median of x, u, w by a slight abuse of notation).

Definition 2. Let VN ⊆ S be the set of bliss points of agents in N . A point v is in M(VN ) if
v ∈ VN or if there exists some sequence (x1, y1), (x2, y2), . . . , (xt, yt) such that every point in every
pair in the sequence is in VN and there is some z ∈ VN s.t.

v = M(xt, yt,M(xt−1, yt−1,M(. . .M(x1, y1, z) . . .)))3

∈ VN

= M(x1, y1, z)

/∈M(VN )

Figure 4: The median closure of the red points is given by the red and blue points.

Theorem 2. The Markov chain defined in Theorem 1 has a unique stationary distribution.

Proof. Let G = (S, E) be a median graph, let N be a set of agents, and let VN ⊆ S be the set of
bliss points of the agents in N . The Markov chain will have a unique stationary distribution if it is
aperiodic and irreducible. To see that the chain is aperiodic, note that for any state ot = v ∈M(VN )
of the Markov chain at time t, there is a nonzero probability that ot+1 = v. This is obvious if v ∈ VN ,
as the agent corresponding to that bliss point might be drawn twice in round t+1 (remember, agents
are drawn independently with replacement from N ). If instead v /∈ VN , we know by definition of
M(VN ) that there exist u,w ∈ VN and x ∈ M(VN ) such that v = median(u,w, x). But then
v = median(u,w, v). Clearly we can write d(u, v) = d(u, v)+d(v, v) and d(w, v) = d(w, v)+d(v, v),
then the fact that v = median(u,w, x) implies that d(u,w) = d(u, v) + d(v, w). Taken together,
these equalities imply that v is the median chosen in round t+ 1. So in either case, there is some
probability that ot+1 = v. The period of every state is 1, and the chain is aperiodic.

To argue that the chain is irreducible, suppose for a contradiction that there exist t, v ∈M(VN )
such that there is no path from t to v. Then v /∈ VN , since all nodes in VN clearly have an

3To interpret this sequence, note that z represents the initial disagreement alternative drawn as the bliss point
of a random agent. (xt, yt) are the bliss points of the random agents drawn to bargain in every round. v therefore
represents a feasible outcome of sequential deliberation.
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incoming edge from every other node in M(VN ). Then by definition there exists some sequence
(x1, y1), (x2, y2), . . . , (xt, yt) ∈ VN and some z ∈ VN such that

v = M(xt, yt,M(xt−1, yt−1,M(. . .M(x1, y1, z) . . .))).

Since z ∈ VN , z must have an incoming edge from t. But then there is a path from t to v. This
is a contradiction; the chain must be irreducible as well. Both properties together show that the
Markov chain has a unique stationary distribution.

Pareto-Efficiency The outcome of sequential deliberation is ex-post Pareto-efficient on a median
graph. In other words, in any realization of the random process, suppose the final outcome is o;
then there is no other alternative a such that d(a, v) ≤ d(o, v) for every v ∈ N , with at least one
inequality being strict. This is a weak notion of efficiency, but it is not trivial to show; while it is easy
to see that a one shot bargaining mechanism using only bliss points is Pareto efficient by virtue of
the Pareto efficiency of bargaining, sequential deliberation defines a potentially complicated Markov
chain for which many of the outcomes need not be bliss points themselves.

Theorem 3. Sequential deliberation among a set N of agents, where the decision space S is a
median graph and the initial disagreement point a1 is the bliss point of some agent, yields an ex-
post Pareto Efficient alternative.

Proof. Let G = (S, E) be a median graph, letN be a set of agents, and let VN ⊆ S be the set of bliss
points of the agents in N . It follows from the proof of Corollary 1 that without loss of generality we
can suppose S is a hypercube embedding. Consider some realization (x1, y1), (x2, y2), ..., (xT , yT ) of
sequential bargaining, where (xt, yt) ∈ S ×S are the bliss points of the agents drawn to bargain in
step t. Let oT denote the final outcome. For the sake of contradiction assume there is an alternative
z that Pareto-dominates oT , i.e., d(z, v) ≤ d(oT , v) for each v ∈ N , with at least one inequality
being strict.

VN   
01100
10100
00001
11000

t xt 

yt
at
!
ot

Kt

1 10100
00001

01100
!

00100
{2}

2 10100
11000

00100
!

10100
{5}

3 00001
01100

10100
!

00100
∅

4 01100
00001

00100
!

00100
{1,4}

Figure 5: An example of sequential deliberation with Kt labeled. The dimensions are numbered
1, 2, . . . , 5.

Recall that on the hypercube, the median of three points has the particularly simple form of
the dimension wise majority. Let Kt be the set of dimensions of the hypercube S that are “de-
cided” by the agents in round t in the sense that these agents agree on that dimension (and
can thus ignore the outside alternative in that dimension) and all future agents disagree on
that dimension (and thus keep the value decided by bargaining in round t). Formally, Kt ={
k : xtk = ytk and ∀t′ > t, xt

′
k 6= yt

′
k

}
. Then by the majority property of the median on the hyper-

cube, for any dimension k such that k ∈ Kt for some t ∈ {1, . . . , T}, it must be that oTk = xtk. An
example is shown in Figure 5.
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Consider the final round T . It must be that ∀k ∈ KT , zk = oTk . If this were not the case, z
would not be pairwise efficient (i.e., on a shortest path from xT to yT ), whereas oT is pairwise
efficient by definition of the median, so one of the agents in round T would strictly prefer oT to z,
violating the dominance of z over oT .

Next, consider round T−1. Partition the dimensions of S into KT ,KT−1 and all others. Suppose
for a contradiction that ∃k ∈ KT−1 such that zk 6= oTk , where xT−1k = yT−1 = oTk by definition.
Then the agents in round T − 1 must strictly prefer oT to z on the dimensions in KT−1. But for
k ∈ KT , we know that zk = oTk , so the agents are indifferent between z and oT on the dimensions
in KT . Furthermore, for k /∈ KT ∪ KT−1, xT−1k 6= yT−1k , so at least one of the two agents at least
weakly prefers oT to z on the remaining dimensions. But then at least one agent must strictly
prefer oT to z, contradicting the dominance of z over oT .

Repeating this argument yields that for all k ∈ K1 ∪ K2 ∪ . . . ∪ KT , zk = oTk . For all other
dimensions, oTk takes on the value a1, which is the bliss point of some agent. Since that agent must
weakly prefer z to oT , z must also take the value of her bliss point on these remaining dimensions.
But then z = oT , so z does not Pareto dominate oT , a contradiction.

Truthfulness of Extensive Forms Finally, we show that sequential deliberation has truth-
telling as a sub-game perfect Nash equilibrium in its induced extensive form game. Towards this
end, we formalize a given round of bargaining as a 2-person non-cooperative game between two
players who can choose as a strategy to report any point v on a median graph; the resulting outcome
is the median of the two strategy points chosen by the players and the disagreement alternative
presented. The payoffs to the players are just the utilities already defined; i.e., the player wishes
to minimize the distance from their true bliss point to the outcome point. Call this game the
non-cooperative bargaining game (NCBG).

The extensive form game tree defined by non-cooperative bargaining consists of 2T alternating
levels: Nature draws two agents at random, then the two agents play NCBG and the outcome
becomes the disagreement alternative for the next NCBG. The leaves of the tree are a set of points
in the median graph; agents want to minimize their expected distance to the final outcome.

Theorem 4. Sequential NCBG on a median graph has a sub-game perfect Nash equilibrium where
every agent truthfully reports their bliss point at all rounds of bargaining.

Proof. The proof is by backward induction. Let G = (S, E) be a median graph. In the base case,
consider the final round of bargaining between agents u and v with bliss points pu and pv and
disagreement alternative a. The claim is that u playing pu and v playing pv is a Nash equilibrium.
By Lemma 2, we can embed G isometrically into a hypercube Q as φ : G → Q and consider the
bargaining on this embedding. Then for any point z that agent u plays

d(pu,M(z, pv, a)) = d(φ(pu),M(φ(z), φ(pv), φ(a)))

The median on the hypercube is just the bitwise majority, so if u plays some z where for some
dimension φk(z) 6= φk(pu), it can only increase u’s distance to the median. So playing pu is a best
response.

For the inductive step, suppose u is at an arbitrary subgame in the game tree with t rounds
left, including the current bargain in which u must report a point, and assuming truthful play in all
subsequent rounds. Let {(x1, y1), (x2, y2), ..., (xt, yt)} represent (x1, y1) as the outside alternative
and other agent bliss point against which u must bargain, (x2, y2) as the bliss points of the agents
drawn in the next round, and so on. We want to show that it is a best response for agent u to
choose pu, i.e., to truthfully represent her bliss point. Define

M t
u := M(xt, yt,M(xt−1, yt−1,M(. . .M(x1, y1, pu) . . .)))
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where M(·) indicates the median, guaranteed to exist and be unique on the median graph. Also,
for any point z, similarly define

M t
z := M(xt, yt,M(xt−1, yt−1,M(. . .M(x1, y1, z) . . .)))

Suppose by contradiction that pu is not a best response for agent u, then there must exist z 6= pu
and some r > 0 such that d(pu,M

r
u) > d(pu,M

r
z ). We embed G isometrically into a hypercube Q

as φ : G → Q. Then by the isometry property, d(φ(pu), φ(M r
u)) > d(φ(pu), φ(M r

z )). By the proof
of Corollary 1, we can pretend the process occurs on the hypercube.

Consider some dimension k. If φk(x
t) = φk(y

t) for some t ≤ r, then this point becomes the
median in that dimension, so the median becomes independent of φk(w), where w is the initial
report of agent u. Till that time, the bargaining outcome in that dimension is the same as φk(w).
In either case, for all times t ≤ r and all k, we have:

|φk(pu)− φk(M t
u)| ≤ |φk(pu)− φk(M t

z)|

Summing this up over all dimensions, d(φ(pu), φ(M t
u)) ≤ d(φ(pu), φ(M t

z)), which is a contradiction.
Therefore, pu was a best response for agent u4. Therefore, every agent truthfully reporting their
bliss points at all rounds is a subgame perfect Nash equilibrium of Sequential NCBG.

5 General Metric Spaces

We now work in the very general setting that the set S of alternatives are points in a finite
metric space equipped with a distance function d(·) that is a metric. As before, we assume each
agent u ∈ N has a bliss point pu ∈ S. An agent’s disutility for an alternative a ∈ S is simply
d(pu, a). We first present results for the Distortion, and subsequently define the second moment, or
Squared-Distortion. For both measures, we show that the upper bound for sequential deliberation
is at most a constant regardless of the metric space.

Theorem 5. The Distortion of sequential deliberation is at most 3 when the space of alternatives
and bliss points lies in some metric, and this bound is tight.

Proof. Each agent u ∈ N has a bliss point pu ∈ S. An agent’s disutility for an alternative a ∈ S
is simply d(pu, a). Let a∗ ∈ S be the social cost minimizer, i.e., the generalized median. For
convenience, let Za = d(a, a∗) for a ∈ S. By a slight abuse of notation, let Zi = d(pi, a

∗) for i ∈ N ,
i.e., the distance from agent i’s bliss point to a∗.

We will only use the assumption that B(u, v, a) finds a Pareto efficient point for u and v, so
rather than taking an expectation over the choice of the disagreement alternative, we take the worst
case. Let a∗ be the social cost minimizer with social cost OPT . We can write then write expected

4It is important to note that we are not assuming that agent u will not bargain again in the subgame; there are
no restrictions on the values of {(x1, y1), (x2, y2), ..., (xt, yt)}.
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worst case social cost of a step of deliberation as:∑
i∈N

∑
j∈N

1

|N |2
max
a∈S

∑
k∈N

d(B(i, j, a), pk)

≤
∑
i,j∈N

1

|N |2
max
a∈S

∑
k∈N

d(B(i, j, a), a∗) + Zk = OPT +
∑
i,j∈N

1

|N |
max
a∈S

(d(B(i, j, a), a∗))
[
Triangle inequality

]
≤ OPT +

∑
i,j∈N

1

2|N |
max
a∈S

(d(B(i, j, a), pi) + Zi + d(B(i, j, a), pj) + Zj)
[
Triangle inequality

]
≤ OPT +

∑
i,j∈N

1

2|N |
(2Zi + 2Zj)

[
Pareto efficiency of B(·)

]
= 3OPT

Since this holds for the worst case choice of disagreement alternative, it holds over the whole
sequential process. The tight example is a weighted graph that can be constructed as follows: start
with a star with a single agent’s bliss point located at each leaf of the star (i.e., an |N |-star) where
every edge in the star has weight (or distance) 1. Now, for every pair of agents, add a vertex
connected to the bliss points of both of the agents with weight 1− ε for ε > 0. Then as |N | → ∞,
every round of Nash bargaining selects one of these pairwise vertices. But the central vertex of
the star has social cost |N | whereas the pairwise vertices all have social cost approaching 3|N | as
ε→ 0.

The bound of 3 above is quite pessimistic. The metric space employed in the lower bound is
contrived in the following sense: Every pair of agents has some unique (to that pair) alternative
they very slightly prefer to the social optimum. For structured spaces, we expect the bound to
be much better. We have already shown this for median spaces. In appendix B, we provide more
evidence in this direction by considering a structured space motivated by budgeting applications
that is not a median graph. For this space, we show that sequential deliberation has Distortion at
most 4/3.

5.1 Second Moment of Social Cost

We now show that for any metric space, sequential deliberation has a crucial advantage in
terms of the distribution of outcomes it produces. For this, we consider the second moment, or
the expected squared social cost. Recall that the social cost of an alternative a ∈ S is given by
SC(a) =

∑
u∈N d(pu, a). Let a∗ ∈ S be the minimizer of social cost, i.e., the generalized median.

Then define:

Squared-Distortion =
E[(SC(a))2]

(SC(a∗))2

where the expectation is over the set of outcomes a produced by Sequential Deliberation.5

We will show that sequential deliberation has Squared-Distortion upper bounded by a constant.
This means the standard deviation in social cost of the distribution of outcomes is comparable to
the optimal social cost. This has a practical implication: A policy designer can run sequential
deliberation for a few steps, and be sure that the probability of observing an outcome that has γ
times the optimal social cost is at most O(1/γ2). In contrast, we show that Random Dictatorship

5The motivation for considering Squared-Distortion instead of the standard deviation is that the latter might
prefer a more deterministic mechanism with a worse social cost, a problem that the Squared-Distortion avoids.
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(choosing an agent uniformly at random and using her bliss point as the solution) has unbounded
Squared-Distortion, which means its standard deviation in social cost cannot be bounded. A
different way of viewing our result is that deliberation between agents eliminates the outlier agent,
and concentrates probability mass on central outcomes.

For convenience, let Za = d(a, a∗) for a ∈ S. By a slight abuse of notation, let Zi = d(pi, a
∗)

for i ∈ N , i.e., the distance from agent i’s bliss point to a∗. We will need the following technical
lemma bounding these distances. The lemma addresses the following question: given an arbitrary
agent u, how far away can the outcome of a bargaining round with agents i and j and disagreement
alternative a be from pu? The answer is that it cannot be much further than the values of Zu and
the smaller of Zi, Zj , Za. The two min functions in the bound serve to eliminate outliers, and this
is crucial for bounding the Squared-Distortion.

Lemma 6. For all i, j, u ∈ N and a ∈ S we have that

d(B(i, j, a), pu) ≤ Zu + 2 min (Zi, Zj) + min (Za,max (Zi, Zj))

Proof. Assume w.l.o.g. that Zi ≤ Zj . Then the lemma statement reduces to

d(B(i, j, a), pu) ≤ Zu + 2Zi + min (Za, Zj) (5)

Recall that Nash bargaining asserts that given a disagreement alternative a, agents i and j choose
that alternative o ∈ S that maximizes:

Nash product = (d(pi, a)− d(pi, o))× (d(pj , a)− d(pj , o))

Maximizing this on a general metric yields that d(B(i, j, a) will be chosen on the pi to pj shortest

path (that is, the Pareto efficient frontier) at a distance of
d(pi,pj)

2 +
d(pi,a)−d(pj ,a)

2 from pi. Therefore,
we have that:

d(B(i, j, a), pi) =
d(pi, pj)

2
+
d(pi, a)− d(pj , a)

2
(6)

Now we can show equation 5 by repeatedly using the triangle inequality. We have

d(B(i, j, a), pu) ≤ d(pi, pu) + d(B(i, j, a), pi)

= d(pi, pu) +
d(pi, pj)

2
+
d(pi, a)− d(pj , a)

2

[
equation 6

]
≤ d(pi, a

∗) + d(pu, a
∗) +

d(pi, a
∗) + d(pj , a

∗) + d(pi, a
∗) + d(a, a∗)

2
− d(pj , a)

2

= Zu + 2Zi +
Zj + Za − d(pj , a)

2

Note that we can apply the triangle inequality again to get two bounds, since Zj ≤ d(pj , a) + Za
and Za ≤ d(pj , a) + Zj . Since both bounds must hold, we have that d(B(i, j, a), pu) ≤ Zu + 2Zi +
min (Za, Zj).

It is not hard to see that this bound is tight in the worst case. Suppose agents pi, pj , pu form
the leaves of a 3-star (with weight 1 edges) and a is the center of the star. Now suppose there
is a point o connected to pi and to pj each by edges of weight 1 − ε for ε > 0. o will clearly
be the bargaining outcome, so d(B(i, j, a), pu) = 3 − ε. But the right hand side of the inequality,
Zu + 2 min (Zi, Zj) + min (Za,max (Zi, Zj)) = 3, so the inequality becomes tight as ε→ 0.

Using this characterization, we show that the Squared-Distortion bound remains constant even
for general metrics.
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Theorem 6. The Squared-Distortion of sequential deliberation for T ≥ 1 is at most 41 when the
space of alternatives and bliss points lies in some metric. Furthermore, the Squared-Distortion of
random dictatorship is unbounded.

Proof. Let OPT be the squared social cost of a∗. Note that OPT does not depend on T . In
particular, OPT =

(∑
i∈N Zi

)2
=
∑

i,j∈N ZiZj .
For arbitrary T , the disagreement alternative in the final step of bargaining generated by se-

quential deliberation. We will therefore rely on the first moment bound given in Theorem 5 for
such an outcome. Let ALG be the expected squared social cost of sequential deliberation with T
steps, where the disagreement alternative a ∈ S is used in the final round of bargaining. i and j
are the last two agents to bargain, and pk is the bliss point of an arbitrary agent. We can write
ALG as

ALG =
∑
i∈N

∑
j∈N

1

|N |2

(∑
k∈N

d(B(i, j, a), pk)

)2

≤ 1

|N |2
∑
i,j∈N

(∑
k∈N

Zk + 2 min (Zi, Zj) + min (Za,max (Zi, Zj))

)2 [
By lemma 6

]
=

1

|N |2
∑
i,j∈N

(
2|N |min (Zi, Zj) + |N |min (Za,max (Zi, Zj)) +

(∑
k∈N

Zk

))2

Now we expand the square and analyze term by term, using the facts that min (x, y)2 ≤ x× y
and max (x, y) ≤ x+ y.

=
1

|N |2
∑
i,j∈N

(
4|N |2 min (Zi, Zj)

2 + |N |2 min (Za,max (Zi, Zj))
2 +

(∑
k∈N

Zk

)2

+ 4|N |2 min (Zi, Zj) min (Za,max (Zi, Zj)) + 4|N |min (Zi, Zj)

(∑
k∈N

Zk

)

+ 2|N |min (Za,max (Zi, Zj))

(∑
k∈N

Zk

))

≤ 1

|N |2
∑
i,j∈N

(
4|N |2ZiZj + |N |2 min (Za,max (Zi, Zj))

2 +OPT

+ 4|N |2ZiZa + 4|N |Zi

(∑
k∈N

Zk

)
+ 2|N |Za

(∑
k∈N

Zk

))

We can trivially sum out the terms not involving a, leaving us with inequality 7.

ALG ≤ 9OPT +
∑
i,j∈N

(
Za(Zi + Zj) + 4ZiZa +

2

|N |
Za

(∑
k∈N

Zk

))
(7)

Note that the triangle inequality implies that for any i ∈ N , Za ≤ d(a, pi) + Zi. Applying this
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repeatedly in inequality 7 and simplifying yields:

ALG ≤ 9OPT +
∑
i,j∈N

(
6ZiZj + 5d(a, pj)Zi + d(a, pi)Zj +

2

|N |
(d(a, pi) + Zi)

(∑
k∈N

Zk

))

= 17OPT +
∑
i∈N

2d(a, pi)

(∑
k∈N

Zk

)
+
∑
j∈N

5d(a, pj)Zi + d(a, pi)Zj


Recall that Theorem 5 implies that

∑
i∈N d(a, pi) ≤ 3

∑
i∈N Zi.

ALG ≤ 17OPT + 6OPT + 15OPT + 3OPT = 41OPT

It is easy to see that Random Dictatorship has an unbounded Squared-Distortion. Recall that
Random Dictatorship chooses the bliss point of an agent chosen uniformly at random. Consider
the simple graph with two nodes, a fraction f of the agents on one node and 1−f on the other. Let
f < 1/2. Then the expected squared social cost of Random Dictatorship is just f(1−f)2+(1−f)f2

whereas the optimal solution has squared social cost f2, so Random Dictatorship has Squared-
Distortion (1− f)2/f + (1− f), which is unbounded as f → 0.

Though we omit the proof, we can show using a simpler analysis that the Squared Distortion
of sequential deliberation for median spaces is at most a factor of 3.

6 Open Questions

Our work is the first step to developing a theory around practical deliberation schemes. We
suggest several future directions. First, we do not have a general characterization of the Distortion
of sequential deliberation for metric spaces. We have shown that for general metric spaces there is a
small but pessimistic bound on the Distortion of 3, but that for specific metric spaces the Distortion
may be much lower. We do not have a complete characterization of what separates these good and
bad regimes.

More broadly, an interesting question is extending our work to take opinion dynamics into ac-
count, i.e., proving stronger guarantees if we assume that when two agents deliberate, each agent’s
opinion moves slightly towards the other agent’s opinion and the outside alternative. Furthermore,
though we have shown that all agents deliberating at the same time does not improve on dictator-
ship, it is not clear how to extend our results to more than two agents negotiating at the same time.
This runs into the challenges in understanding and modeling multiplayer bargaining [18, 23, 6].

Finally, it would be interesting to conduct experiments to measure the efficacy of our framework
on complex, real world social choice scenarios. There are several practical hurdles that need to be
overcome before such a system can be feasibly deployed. In a related sense, it would be interesting
to develop an axiomatic theory for deliberation, much like that for bargaining [28], and show that
sequential deliberation arises naturally from a set of axioms.
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A Random Dictatorship and N-Person Bargaining on Median Graphs

A simple baseline algorithm for our problem is Random Dictatorship: Output the bliss point
pu of a random agent u ∈ N . Such an algorithm also satisfies the desiderata that we presented in
Section 4: The outcome is trivially Pareto-efficient and the mechanism is truthful. The Distortion
of Random Dictatorship on social cost is at most 2, and Theorem 3 shows this bound is tight. We
now show two ways that sequential deliberation is superior to Random Dictatorship despite their
seeming similarity. These statements are stronger than what the worst-case Distortion bounds
imply.

Theorem 7. For any set of agents N and outcomes S that define a median graph, the expected
social cost of sequential deliberation is at most that of Random Dictatorship.

Proof. As in the proof of Theorem 1, we consider the hypercube embedding, and decompose the
social cost along each dimension k. Let fk denote the fraction of agents mapping to 1 along
dimension k. Then, the previous proof showed that the social cost of sequential deliberation is

Social Cost of Sequential Deliberation = |N |
(

fk(1− fk)
1 + 2f2k − 2fk

)
Random Dictatorship would choose an agent mapping to 1 with probability fk, in which case a
fraction (1− fk) of agents pay cost 1, and vice versa. Therefore its social cost is

Social Cost of Random Dictatorship = |N | (2fk(1− fk))

It is an easy exercise to show that for all fk ∈ [0, 1], the former cost is at most the latter cost. Since
this holds dimension by dimension, the overall social cost for sequential deliberation is at most that
of Random Dictatorship.

This shows that instance by instance, sequential deliberation does at least as well on the first
moment of social cost as Random Dictatorship, and in addition, it has bounded second moment in
the worst case, which Random Dictatorship does not have.

A different comparison between sequential deliberation and Random Dictatorship concerns the
convergence to optimality under the “easy case” of nearly unanimous agents, i.e., when most agents
have exactly the same bliss point. The result for sequential deliberation is a simple corollary of
Theorem 1 but is presented here for purpose of its comparison with Random Dictatorship.
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Definition 3. A set of agents N is said to be ε-unanimous on a set of outcomes S if all but an
ε fraction of the agents have the same bliss point in S.

Corollary 2. Sequential deliberation with a ε-unanimous set of agents on a median graph has
Distortion at most (1 + ε). In contrast, Random Dictatorship has Distortion 2− ε.

Proof. As in Theorem 1, we can analyze sequential deliberation on the hypercube. As before, let fk
be the fraction of agents with a 1 in dimension k and assume w.l.o.g. that fk ∈ [0, 1/2] so that the
optimal point is the all 0 vector. In the proof of Theorem 1, we derived the following as a bound
for the Distortion of sequential deliberation.

maxfk∈[0,1/2]
1− fk

1 + 2f2k − 2fk
≤ 1.208 (8)

If ε ≥ 0.208 then the result is immediate. Otherwise, note that under ε-unanimity, it must in fact
be the case that fk ∈ [0, ε], so the maximization is over a more restricted domain. Furthermore, for
ε < 0.208, the function in Equation 8 is monotonically increasing and thus obtains its maximum
at the right boundary ε. It is easy to see this by taking the derivative. Thus, for ε < 0.208, the
expected Distortion of the limiting distribution of sequential deliberation is upper bounded by

maxfk∈[0,ε]
1− fk

1 + 2f2k − 2fk
=

1− ε
1 + 2ε2 − 2ε

≤ 1− ε
1 + 2ε2 − 2ε− 2ε3

1+ε

= 1 + ε

In contrast it is easy to see that even for the simple median graph consisting of two points (the
one dimensional hypercube), Random Dictatorship can have Distortion 2 even as the agents are
ε-unanimous. On such a graph, the optimal social cost is just ε|N | but Random Dictatorship has
expected social cost (1 − ε)ε|N | + ε(1 − ε)|N | = 2ε(1 − ε)|N |. The ratio goes to 2 as ε goes to 0.
This shows Random Dictatorship can actually obtain its worst case Distortion even on the simplest
possible instances.

N-Person Nash Bargaining. Finally, we present a canonical instance of bargaining that de-
volves into Random Dictatorship by allowing all agents to bargain in a single round. Consider a
line metric. Suppose n1 > 0 agents lie at 0, and n2 = N − n1 > 0 agents at the point 1. Suppose
the disagreement outcome o is any point x ∈ [0, 1]. Suppose all N agents simultaneously bargain
to maximize the Nash product of the increase in their utility with respect to o. It is easy to show
the following result:

Theorem 8. N -person Nash bargaining for N agents whose bliss points lie at 0 and 1 on a line,
with the disagreement outcome x ∈ [0, 1], outputs the same point x as the final outcome.

This follows because any deviation makes at least one agent strictly less happy, and this agent
will stick to disagreeing. Suppose x corresponds to the bliss point of a random agent, then this
mechanism coincides with Random Dictatorship and has Distortion 2. This shows that the Distor-
tion of N -person Nash bargaining even with a random bliss point as disagreement outcome is worse
than pairwise deliberation. Note that the result only needs enough agents so that there is one agent
at 0 and the other at 1. This confirms (on the line) the intuitive observation that deliberation in
large groups tends to break down and produce random outcomes.
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B Distortion of Deliberation on the Unit Simplex

We have shown that for general metric spaces there is a small but pessimistic bound on the
Distortion of 3, but that for median graphs, the Distortion is much lower. This begs the question:
Are there spaces beyond median graphs for which sequential deliberation has Distortion much less
than 3? Though we leave the characterization of such spaces as an open question, we show that
our results do extend beyond median graphs. Consider the following special case motivated by
budgeting applications. The outcome space S is the d-dimensional standard simplex. Agents are
located at the vertices of this simplex, and the distances are `1. It is clear that this is not a median
space; in fact, the shortest paths between pairs of vertices from a triplet do not intersect. We can
view the vertices as items of unit size, and the restriction to a simplex as a unit budget constraint.
Agents’ bliss points correspond to single items, while the outcome space is all possible fractional
allocations. We show that the Distortion of sequential deliberation in this setting is 4/3, while
the corresponding bound for random dictatorship is again 2. Though this setting is stylized in the
sense that approval voting on items coincides with the social optimum, our scheme itself is general
and not tied to the designer knowing that utilities lie in this specific space.

The space S is the d-dimensional standard simplex:

S =

~x ∈ <d |
d∑
j=1

xj = 1; xj ≥ 0 ∀j ∈ {1, 2, . . . , d}


The are N agents whose bliss points are its vertices. We denote the vertex with xj = 1 as vj .

Suppose the probability mass of agents located at vertex j is pj , so that
∑d

j=1 pj = 1.
Consider a disagreement alternative ~a ∈ S, and Nash bargaining between agents at vi and vj

with j 6= i. It is easy to check that this produces the outcome with oi = (1 + ai − aj)/2, and
oj = (1 + aj − ai)/2. When i = j, we have oi = 1.

Let πσ denote the distribution over alternatives σ ∈ S in steady state. Define the expected
value of coordinate i as:

si =
∑
σ

πσσi ∀i ∈ {1, 2, . . . , d}

The steady state conditions imply the set of equations:∑
σ

πσσi = p2i +
∑
σ

πσ
∑
j 6=i

2pipj

(
1 + σi − σj

2

)
The LHS is the expected value of σi according to distribution π. The RHS is how the value evolves
in one step, which should yield the same quantity. By definition of si, we therefore have:

si = p2i +
∑
j 6=i

2pipj

(
1 + si − sj

2

)
∀i ∈ {1, 2, . . . , d}

and
∑d

i=1 si = 1. Solving for this system, we obtain:

si =
pi

1− pi
× 1∑d

j=1
pj

1−pj

Note next that the optimal social cost is OPT = mini(1 − pi). Without loss of generality,
assume this is 1− p1. Let α = p1, so that OPT = 1−α. The social cost with respect to the steady
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state distribution is given by

ALG =
∑
σ

πσ
∑
i

pi(1− σi) =
∑
i

pi(1− si) = 1−
∑
i

pisi

= 1−
∑

i
p2i

1−pi∑
j

pj
1−pj

=
α+

∑
j>1 pj

α
1−α +

∑
j>1

pj
1−pj

=
1

α
1−α +

∑
j>1

pj
1−pj

≤ 1
α

1−α +
∑

j>1 pj
=

1
α

1−α + 1− α
=

1− α
1− α+ α2

Therefore, the Distortion of sequential deliberation is at most

max
α∈[0,1]

1

1− α+ α2
=

4

3

Note that on this instance, the distortion of random dictatorship is

α(1− α) +
∑

i>1 pi(1− pi)
1− α

≤ 1 + α ≤ 2

and this bound can easily be shown to be tight.
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