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Abstract

We study the computation of approximate pure Nash equilibria in
Shapley value (SV) weighted congestion games, introduced in [19]. This
class of games considers weighted congestion games in which Shapley val-
ues are used as an alternative (to proportional shares) for distributing
the total cost of each resource among its users. We focus on the inter-
esting subclass of such games with polynomial resource cost functions
and present an algorithm that computes approximate pure Nash equilib-
ria with a polynomial number of strategy updates. Since computing a
single strategy update is hard, we apply sampling techniques which al-
low us to achieve polynomial running time. The algorithm builds on the
algorithmic ideas of [7], however, to the best of our knowledge, this is
the first algorithmic result on computation of approximate equilibria us-
ing other than proportional shares as player costs in this setting. We
present a novel relation that approximates the Shapley value of a player
by her proportional share and vice versa. As side results, we upper bound
the approximate price of anarchy of such games and significantly improve
the best known factor for computing approximate pure Nash equilibria in
weighted congestion games of [7].
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1 Introduction

In many applications the state of a system depends on the behavior of individual
participants that act selfishly in order to minimize their own private cost. Non-
cooperative game theory uses the concept of Nash equilibria as a tool for the
theoretical analysis of such systems. A Nash equilibrium is a state in which
no participant has an incentive to deviate to another strategy. While mixed
Nash equilibria, i.e., Nash equilibria in randomized strategies, are guaranteed
to exist under mild assumptions on the players’ strategy spaces and the private
cost functions they are often hard to interpret. As a consequence, attention
is often restricted to pure Nash equilibria, i.e., Nash equilibria in deterministic
strategies.

Rosenthal [26] introduced a class of games, called congestion games that
models a variety of strategic interactions and is guaranteed to have pure Nash
equilibria. In a congestion game, we are given a finite set of players N and
a finite set of resources E. A strategy of each player i is to choose a subset
of the resources out of a set Pi of subsets of resources allowable to her. In
each strategy profile, each player pays for all used resources where the cost of
a resource e ∈ E is a function ce of the number of players using it. Rosenthal
used an elegant potential function argument to show that iterative improvement
steps by the players converge to a pure Nash equilibrium and hence its existence
is guaranteed.

Note that in congestion games each player using a resource has the same
influence on the cost of this resource. To alleviate this limitation, [24] and [10]
studied a natural generalization called weighted congestion games in which each
player i has a weight wi and the joint cost of the resource is fe · ce(fe), where
fe is the total weight of players using e. The joint cost of resource e has to
be covered by the set of players Se using it, i.e.,

∑

i∈Se
χie = fe · ce(fe), where

χie is the cost share of player i on resource e. The cost sharing method of the
game defines how exactly the joint cost of a resource is divided into individual
cost shares χie. For weighted congestion games, the most widely studied cost
sharing method is proportional sharing (PS), where the cost share of a player
is proportional to her weight, i.e., χie = wi · ce(fe). Unfortunately, weighted
congestion games with proportional sharing in general do not admit a pure Nash
equilibrium (see [16] for a characterization).

Kollias and Roughgarden [19] proposed to use the Shapley value (SV) for
sharing the cost of a resource in weighted congestion games. In the Shapley

cost-sharing method, the cost share of a player on a resource is the average
marginal cost increase caused by her over all permutations of the players. Using
the Shapley value restores the existence of a potential function and therefore
the existence of pure Nash equilibria to such games [19].

Potential functions immediately give rise to a simple and natural search
procedure to find an equilibrium by performing iterative improvement steps
starting from an arbitrary state. Unfortunately, this process may take expo-
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nentially many steps, even in the simple case of unweighted congestion games1

and linear cost functions [1]. Moreover, computing a pure Nash equilibrium in
these games is intractable as the problem is PLS-complete [9], even for affine
linear cost functions [1]. This result directly carries over to our game class with
Shapley cost-sharing. Given these intractability results, it is natural to ask for
approximation which is formally captured by the concept of an ρ-approximate
pure Nash equilibrium. This is a state from which no player can improve her
cost by a factor of ρ ≥ 1. Recently, Caragiannis et al. [6] provided an algorithm
to compute ρ-approximate Nash equilibria for unweighted congestion games un-
der proportional sharing. They also generalised their technique to weighted
congestion games [7].

1.1 Our Contributions

We present an algorithm to compute ρ-approximate Nash equilibria in weighted
congestion games under Shapley cost sharing. In games with polynomial cost
functions of degree at most d, our algorithm achieves an approximation factor

asymptotically close to
(

d
ln 2

)d
·poly(d). Similar to [7] our algorithm computes a

sequence of improvement steps of polynomial length that yields a ρ-approximate
Nash equilibrium. Hence, our algorithm performs only a polynomial number of
strategy updates. We show that our algorithm can also be used to compute
ρ-approximate pure Nash equilibria for weighted congestion games with pro-
portional sharing which improves the approximation factor of d2·d+o(d) in [7] to
(

d
ln 2

)d
· poly(d).

We note that our method does not immediately yield an algorithm with
polynomial running time since computing the Shapley cost share of a player
and hence an improvement step is computationally hard. However, we show
that there is a polynomial-time randomized approximation scheme that can be
used instead. This results in a randomized polynomial time algorithm that
computes a strategy profile that is an approximate pure Nash equilibrium with
high probability.

In the course of the analysis we exhibit an interesting relation between the
Shapley cost share of a player and her proportional share. In the case of polyno-
mial cost functions with constant degree, each of them can be approximated by
the other within a constant factor. This insight leads to an alternative proof to
[15] for the existence of approximate pure Nash equilibria in weighted congestion
games with proportional cost sharing.

Finally, we derive bounds on the approximate Price of Anarchy which may be
of independent interest as they allow to bound the inefficiency of approximately
stable states.

1Note that in the unweighted case, proportional sharing and Shapley cost sharing coincide.
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1.2 Further Related Work

Congestion games have been introduced by Rosenthal [26] who proved the exis-
tence of pure Nash equilibria by an exact potential function. Games admitting a
potential function are called potential games and each potential game is isomor-
phic to a congestion game [25]. Weighted congestion games were introduced by
Milchtaich [24] and studied by Fotakis et al. [10]. Based on the Shapley value
[17], the class of weighted congestion games using Shapley values (instead of
proportional shares) was introduced by [19] and it was shown that such games
are potential games. [14] extends this result by proving that a weighted generali-
sation of Shapley values is the only method that guarantee pure Nash equilibria.
In contrast, proportional sharing does not guarantee existence of equilibria in
general [16]. Further research focuses on the quality of equilibria, measured by
the Price of Anarchy (PoA) [20]. For proportional sharing, Aland et al. [3] show
tight bounds on the PoA. Gkatzelis et al. [13] show that, among all cost-sharing
methods that guarantee existence of pure Nash equilibria, Shapley values min-
imise the worst PoA. Furthermore, tight bounds on PoA for general cost-sharing
methods were given [11]. For the extended model with non-anonymous costs
by using set functions it was also shown that Shapley cost-sharing is the best
method and tight results are given [18, 27].

Computing a pure Nash equilibrium for congestion games was shown to be
PLS-complete [9] even for games with linear cost function [1] or games with only
three players [2]. Chien and Sinclair [8] study the convergence towards (1 + ǫ)-
approximate pure Nash equilibria in symmetric congestion games in polynomial
time under a mild assumption on the cost functions. In contrast, Skopalik
and Vöcking show that this result cannot be generalized to asymmetric games
and that computing a ρ-approximate pure Nash equilibrium is PLS-hard in
general [28]. Caragiannis et al. [6] give an algorithm which computes an (2+ ǫ)-
approximate equilibrium for linear cost functions and an dO(d)-approximate
equilibrium for polynomial cost functions with degree of d. Weighted conges-
tion games with proportional sharing do not posses pure Nash equilibria in
general [10]. However, the existence of d + 1-approximate equilibria for poly-
nomial cost functions and 3

2 -approximate equilibria for concave cost functions
was shown [15] and Caragiannis et al. [7] present an algorithm for weighted con-

gestion games and proportional sharing that computes 3+
√
5

2 + ǫ-approximate

equilibria for linear cost functions and d2d+o(d)-approximate equilibria for poly-
nomial cost functions.

The computation of approximate equilibria requires the computation of
Shapley values. In general, the exact computation is too complex. Mann and
Shapley [23] suggest a sampling algorithm which was later analyzed by Bachrach
et al. [5] for simple coalitional games and by Aziz and de Keijzer [4] for matching
games. Finally, Liben-Nowell et al. [21] and Maleki [22] consider cooperative
games with supermodular functions which correspond to our class.
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2 Our Model

A weighted congestion game is defined as G = (N,E, (wi)i∈N , (Pi)i∈N , (ce)e∈E),
where N is the set of players, E the set of resources, wi is the positive weight
of player i, Pi ⊆ 2E the strategy set of player i and ce the cost function of
resource e (drawn from a set C of allowable cost functions). In this work, C
is the set of polynomial functions with maximum degree d and non-negative
coefficients. The set of outcomes of this game is given by P = P1 × · · · × Pn,
for an outcome, we write P = (P1, . . . , Pn) ∈ P , where Pi ∈ Pi. Let (P−i, P

′
i )

be the outcome that results when player i changes her strategy from Pi to P ′
i

and let (PA, P
′
N\A) be the outcome that results when players i ∈ A play their

strategies in P and players i ∈ N \ A the strategies in P ′. The set of users
of resource e is defined by Se(P ) = {i : e ∈ Pi} and the total weight on e
by fe(P ) =

∑

i∈Se(P ) wi. Furthermore, let SA
e (P ) = {i ∈ A : e ∈ Pi} and

fA
e (P ) =

∑

i∈SA
e (P ) wi be variants of these definitions with a restricted player

set A ⊆ N . The Shapley cost of a player i on a resource e is given as a function of
the player’s identity, the resource’s cost function and her users A, i.e., χe(i, A).
For simplicity, let χie(P ) = χe(i, Se(P )) be an abbreviation if all players are
considered in a state P . Let Ce(x) = x·ce(x). Then, the joint cost on a resource
e is given by Ce(fe(P )) = fe(P )·ce(fe(P )) and the costs of players are such that
Ce(fe(P )) =

∑

i∈Se(P ) χie(P ). The total cost of a player i equals the sum of her

costs in the resources she uses, i.e. Xi(P ) =
∑

e∈Pi
χie(P ). The social cost of the

game is given by SC(P ) =
∑

e∈E fe(P ) · ce(fe(P )) =
∑

e∈E

∑

i∈Se(P ) χie(P ) =
∑

i∈N Xi(P ). Further define the social costs of a subset of players A ⊆ N with
SCA(P ) =

∑

i∈A Xi(P ).
The cost-sharing method is important for our analysis, as it defines how the

joint cost on a resource e is distributed among her users. In this paper, the
methods we focus on are the Shapley value and the proportional cost-sharing,
which we introduce in detail.

Shapley values. For a set of players A, let Π(A) be the set of permutations
π : A→ A {1, . . . , |A|}. For a π ∈ Π(A), define as A<i,π = {j ∈ A : π(j) < π(i)}
the set of players preceding player i in π and as W<i,π

A =
∑

j∈A:π(j)<π(i) wj the
sum of their weights.

For the uniform distribution over Π(A), the Shapley value of a player i on
resource e is given by

χe(i, A) = Eπ∼Π(A)

[

Ce

(

W<i,π
A + wi

)

− Ce

(

W<i,π
A

)]

.

Proportional sharing. The cost of a player i on a resource under proportional
sharing is given by χProp

ie (P ) = wi ·ce(fe(P )). For the rest of the paper, we write

XProp
i (P ) =

∑

e∈E χProp
ie (P ) to indicate when we switch to proportional sharing.

ρ-approximate pure Nash equilibrium. Given a parameter ρ ≥ 1 and
an outcome P , we call as ρ-move a deviation from Pi to P ′

i where the player
improves her cost by more than a factor ρ, formally Xi(P ) > ρ ·Xi(P−i, P

′
i ). We

call the state P an ρ-approximate pure Nash equilibrium (ρ-PNE) if and only if
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no player is able to perform a ρ-move, formally it holds for every player i and
any other strategy P ′

i ∈ Pi that Xi(P ) ≤ ρ ·Xi(P−i, P
′
i ).

ρ-approximate Price of Anarchy. Given a parameter ρ ≥ 1, let ρ-PNE ⊆ P
be the set of ρ-approximate pure Nash equilibria and P ∗ the state of optimum,
i.e., P ∗ = minP ′∈P SC(P ′). Then the ρ-approximate price of anarchy (ρ-PoA)

is defined as ρ-PoA = maxP∈ρ-PNE
SC(P )
SC(P∗) .

Kollias and Roughgarden [19] prove that weighted congestion games under
Shapley values are potential games using the following potential.

Potential Function. Given an outcome P and an arbitrary ordering τ of the
players in N , the potential is given by

Φ(P ) =
∑

e∈E

Φe(P ) =
∑

e∈E

∑

i∈Se(P )

χe(i, {j : τ(j) ≤ τ(i), j ∈ Se(P )}). (1)

A-limited potential. We now restrict this potential function by allowing only
a subset of players A ⊆ N to participate and define the A-limited potential as

ΦA(P ) =
∑

e∈E

ΦA
e (P ) =

∑

e∈E

∑

i∈SA
e (P )

χe(i, {j : τ(j) ≤ τ(i), j ∈ SA
e (P )}). (2)

B-partial potential. Consider sets A and B such that B ⊆ A ⊆ N . Then the
B-partial potential of set A is defined by

ΦA
B(P ) = ΦA(P )− ΦA\B(P ) =

∑

e∈E

ΦA
e,B(P ) =

∑

e∈E

ΦA
e (P )− ΦA\B

e (P ). (3)

If the set B contains only one player, i.e., B = {{i}}, then we write ΦA
i (P ) =

ΦA
B(P ). In case of A = N , ΦN

B (P ) = ΦB(P ) =
∑

e∈E Φe,B(P ). Intuitively,
ΦA

B(P ) is the value that the players in B ⊆ A contribute to the A-limited
potential.

ρ-stretch. Similar to ρ-PoA, we define a ratio with respect to the poten-
tial function. Let P̂ be the outcome that minimises the potential, i.e., P̂ =
minP ′∈P Φ(P ′). Then the ρ-stretch is defined as

ρ-Ω = max
P∈ρ-PNE

Φ(P )

Φ(P̂ )
. (4)

A-limited ρ-stretch. Additionally, we define a ρ-stretch restricted to players

in a subset A ⊆ N . Let ρ-PNEA ⊆ P be the set of ρ-approximate pure Nash
equilibria where only players in A participate. The rest of the players have a
fixed strategy P̄N\A. Then we define the A-limited ρ-stretch as

ρ-ΩA = max
P∈ρ-PNEA

Φ(P )

Φ(P̂ )
= max

P∈ρ-PNEA

Φ(PA, P̄N\A)

Φ(P̂A, P̄N\A)
. (5)
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3 Algorithmic Approach and Outline

Our algorithm is based on ideas by Caragiannis et al. [7]. Intuitively, we parti-
tion the players’ costs into intervals [b1, b2], [b2, b3], . . . , [bm−1, bm] in decreasing
order. The cost values in one interval are within a polynomial factor. Note that
this ensures that every sequence of ρ-moves for ρ > 1 of players with costs in
one or two intervals converges in polynomial time.

After an initialization, the algorithm proceeds in phases r from 1 to m− 1.
In each phase r, players with costs in the interval [br,+∞] do α-approximate
moves where α is close to the desired approximation factor. Players with costs
in the interval [br+1, br] make 1 + γ-moves for some small γ > 0. After a
polynomial number of steps no such moves are possible and we freeze all players
with costs in [br,+∞]. These players will never be allowed to move again. We
then proceed with the next phase. Note that at the time players are frozen,
they are in an α-approximate equilibrium. The purpose of the 1 + γ-moves of
players of the neighboring interval is to ensure that the costs of frozen players
do not change significantly in later phases. To that end we utilize a potential
function argument. We argue about the potential of sub games among a subset
of players. We can bound the potential value of an arbitrary q-approximate
equilibrium with the minimal potential value (using the stretch). Compared to
the approach in [7], we directly work with the exact potential function of the
game which significantly improves the results, but also requires a more involved
analysis. We show that the potential of the sub game in one phase is significantly
smaller than br. Therefore, the costs experienced by players moving in phase
r are considerably lower than the costs of any player in the interval [b1, br−1].
The analysis heavily depends on the stretch of the potential function which we
analyze in Section 6. The proof there is based on the technique of Section 5
in which we approximate the Shapley with proportional cost sharing. For the
technical details in both sections we need some structural properties of costs-
shares and the restricted potentials which we show in the next section.

4 Shapley and Potential Properties

The following properties of the Shapley values are extensively used in our proofs.

Proposition 1. Fix a resource e. Then for any set of players S and i ∈ S, we

have for j, j1, j2, j
′, j′1, j

′
2, i1, i2 6∈ S:

a. χe (i, S) ≤ χe (i, S ∪ {j}),

b. χe (i, S ∪ {j
′}) ≥ χe (i, S ∪ {j1, j2}), with j′ 6= i and wj′ = wj1 + wj2 ,

c. χe (i, S ∪ {j1, j2}) ≥ χe (i, S ∪ {j
′
1, j

′
2}), with wj′

1
= wj′

2
=

wj1
+wj2

2 ,

d. χe (i, S) ≥ χe (i1, S\{i} ∪ {i1})+χe (i2, S\{i} ∪ {i1, i2}), with wi1 = wi2 =
wi

2 .
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We proceed to the properties of the restricted types of potential defined before.

Proposition 2. Let A and B be sets of players such that B ⊆ A ⊆ N , P and

P ′ outcomes of the game such that the players in A ⊆ N use the same strategies

in both P and P ′, and z ∈ N an arbitrary player. Then

a. ΦA
B(P ) ≤ ΦB(P ), b. ΦA

B(P ) = ΦA
B(P

′), c. Φz(P ) = Xz(P ).

Next, we show that the potential property also holds for the partial potential.

Proposition 3. Consider a subset B ⊆ N and a player i ∈ B. Given two states,

P and P ′, that differ only in the strategy of player i, then ΦB(P ) − ΦB(P
′) =

Xi(P )−Xi(P
′).

The next lemma gives a relation between partial potential and Shapley val-
ues.

Lemma 4. Given an outcome P of the game, a resource e and a subset B ⊆ N ,

it holds that Φe,B(P ) ≤
∑

i∈B χie(P ) ≤ Φe,B(P ) · (d+ 1).

Summing up over all resources e ∈ E yields the next corollary.

Corollary 5. Given an outcome P of the game and a subset B ⊆ N , it holds

that ΦB(P ) ≤
∑

i∈B Xi(P ) ≤ ΦB(P ) · (d+ 1).

5 Approximating Shapley with Proportional Cost-

Shares

In this section we approximate the Shapley value of a player with her propor-
tional share. This approximation plays an important role in our proofs of the
stretch and for the computation.

Lemma 6. For a player i, a resource e and any state P , the following inequality

holds between her Shapley and proportional cost:

2

d+ 1
· χie(P ) ≤ χProp

ie (P ) ≤
d+ 3

4
· χie(P ).

Summing up over all e ∈ E implies the following corollary.

Corollary 7. For a player i and any state P , the following inequality holds

between her Shapley and proportional cost:

2

d+ 1
·Xi(P ) ≤ XProp

i (P ) ≤
d+ 3

4
·Xi(P ).

Lemma 8. Any ρ-approximate pure Nash equilibrium for a SV weighted con-

gestion game of degree d is a
(d+3)·(d+1)

8 · ρ-approximate pure Nash equilibrium

for the weighted congestion game with proportional sharing.
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6 The Approximate Price of Anarchy and Stretch

Firstly, we upper bound the approximate Price of Anarchy for our game class.

Lemma 9. Let ρ ≥ 1 and d the maximum degree of the polynomial cost func-

tions. Then

ρ-PoA ≤
ρ · (2

1
d+1 − 1)−d

2−
d

d+1 · (1 + ρ)− ρ
.

Similar to the ρ-PoA, we also derive an upper bound on the ρ-stretch which
expresses the ratio between local and global optimum of the potential function.

Lemma 10. Let ρ ≥ 1 and d the maximum degree of the polynomial cost func-

tions. Then an upper bound for the ρ-stretch of polynomial SV weighted con-

gestion games is

ρ-Ω ≤
ρ · (2

1
d+1 − 1)−d · (d+ 1)

2−
d

d+1 · (1 + ρ)− ρ
.

We now proceed to the upper bound of the D-limited ρ-stretch. To do this,
we use the ρ-PoA (Lemma 9) and Lemmas 11 and 12, which we prove next.

Lemma 11. Let ρ ≥ 1, d the maximum degree of the polynomial cost functions

and P̂ = minP ′∈P Φ(P ′). Then

SC(P )

SC(P̂ )
≤

ρ · (2
1

d+1 − 1)−d

2−
d

d+1 · (1 + ρ)− ρ
.

Proof. Let P be an ρ-approximate equilibrium and P ∗ the optimal outcome.
Let P̂ = minP ′∈P Φ(P ′) be the minimizer of the potential and by definition also
a pure Nash equilibrium. Then we can lower bound the ρ-PoA as follows,

ρ-PoA = max
P∈ρ-PNE

SC(P )

SC(P ∗)
≥ max

P∈ρ-PNE

SC(P )

SC(P̂ )
. (6)

Lemma 9 and (6) give that max
P∈ρ-PNE

SC(P )

SC(P̂)
≤ ρ-PoA ≤ ρ·(2

1
d+1 −1)−d

2
−d
d+1 ·(1+ρ)−ρ

.

Lemma 12. Let ρ ≥ 1, d the maximum degree of the polynomial cost functions

and D ⊆ N an arbitrary subset of players. Then

ρ-ΩD ≤
(d+ 1)2 · (d+ 3)

8
·
SC(P )

SC(P̂ )
.

By Lemma 11 and Lemma 12, we get the following desirable corollary.

Corollary 13. For ρ ≥ 1, d the maximum degree of the polynomial cost func-

tions and D ⊆ N an arbitrary subset of players,

ρ-ΩD ≤
(d+ 1)2 · (d+ 3)

8
·

ρ · (2
1

d+1 − 1)−d

2−
d

d+1 · (1 + ρ)− ρ
.
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7 Computation of Approximate Pure Nash Equi-

libria

To compute ρ-approximate pure Nash equilibria in SV congestion games, we
construct an algorithm based on the idea by Caragiannis et al. [7]. The main
idea is to separate the players in different blocks depending on their costs. The
players who are processed first are the ones with the largest costs followed
by the smaller ones. The size of the blocks and the distance between them is
polynomially bounded by the number of players n and the maximum degree d of
the polynomial cost functions ce. Formally, we define Xmax = maxi∈N Xi (P ) as
the maximum cost among all players before running the algorithm. Let BRi (0)
be a state of the game in which only player i participates and plays her best
move. Then, define as Xmin = mini∈N Xi (BRi (0)) the minimum possible cost

in the game. Let γ be an arbitrary constant such that γ > 0, m = log
(

Xmax

Xmin

)

is the number of different blocks and br = Xmax · g
−r the block size for any

r ∈ [0,m], where g = 2 · n · (d+ 1) · γ−3.
The algorithm is now executed in m− 1 phases. Let P be the current state

of the game and, for each phase r ∈ [1,m−1], let P r be the state before phase r.

All players i with Xi (P ) ∈ [br,+∞] perform an s-move with s =
(

1
t-ΩD

− 2γ
)−1

(almost t-ΩD-approximate moves), while all players i with Xi (P ) ∈ [br+1, br]
perform a t-move with t = 1+ γ (almost pure moves). Let BRi (P ) be the best
response of player i in state P . The phase ends when the first and the second
group of players are in an s- and t-approximate equilibrium, respectively. At
the end of the phase, players with Xi (P ) > br have irrevocably decided their
strategy and have been added in the list of finished players. In addition, before
the described phases are executed, there is an initial phase in which all players
with Xi (P ) ≥ b1 can perform a t-move to prepare the first real phase.

For the analysis, let Dr be the set of deviating players in phase r and P r,i

denote the state after player i ∈ Dr has done her last move within phase r.

Theorem 14. An α-approximate pure Nash equilibrium with α ∈
(

d
ln 2

)d
·

poly(d) can be computed with a polynomial number of improvement steps.

Proof. The main argument follows from bounding the D-partial potential of the
moving players in each phase (see Lemma 16). To that end, we first prove that
the partial potential is bounded by the sum of the costs of players when they
did their last move (Lemma 15).

Lemma 15. For every phase r, it holds that ΦDr
(P r) ≤

∑

i∈Dr
Xi

(

P r,i
)

.

We now use the Lemma 15 and the stretch of the previous section to bound
the potential of the moving players by the according block size.

Lemma 16. For every phase r, it holds that ΦDr

(

P r−1
)

≤ n
γ
· br.

It remains to show that the running time is bounded and that the approx-
imation factor holds. For the first, since the partial potential is bounded and
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Algorithm 1 Computation of approximate pure Nash equilibria

Xmax = maxi∈N Xi (P ), Xmin = mini∈N Xi (BRi (0)), m = log
(

Xmax

Xmin

)

γ > 0, g = 2 · n · (d+ 1) · γ−3, br = Xmax · g
−r∀ ∈ [0,m]

t = 1 + γ, s =
(

1
t-ΩD

− 2γ
)−1

while there is a player i ∈ N with Xi (P ) ≥ b1 and who can perform a t-move
do

P ← (P−i,BRi (P ))
end while

for all phases r from 1 to m− 1 do

while there is a non-finished player i ∈ N either with Xi (P ) ∈ [br,+∞]
and who can perform a s-move or with Xi (P ) ∈ [br+1, br] and who can
perform a t-move do

P ← (P−i,BRi (P ))
end while

Add all players i ∈ N with Xi (P ) ≥ br to the set of finished players.
end for

each deviation decreases the potential, we can limit the number of possible
improvement steps (see Lemma 17).

Lemma 17. The algorithm uses a polynomial number of improvement steps.

We show next that every player who has already finished his movements
will not get much worst costs at the end of the algorithm (see Lemma 18) and
that there is no alternative strategy which is more attractive at the end (see
Lemma 19).

Lemma 18. Let i be a player who makes her last move in phase r of the

algorithm. Then, Xi

(

Pm−1
)

≤ (1 + γ2) ·Xi (P
r) .

Lemma 19. Let i be a player who makes her last move in phase r and let P ′
i

be an arbitrary strategy of i. Then, Xi

(

Pm−1
−i , P ′

i

)

≥ (1− γ) ·Xi

(

P r
−i, P

′
i

)

.

Next, we bound the approximation factor of the whole algorithm (see Lemma 20).

Lemma 20. After the last phase of the algorithm, every player i is in an α-

approximate pure Nash equilibrium with α = (1 +O(γ)) · t-ΩD.

The polynomial running time and the approximation factor of α = (1 +
O(γ))·t-ΩD follow directly from Lemma 17 and Lemma 20. Last, using Corollary

13, we show that α ∈
(

d
ln 2

)d
· poly(d).

Lemma 21. The approximation factor α is in the order of
(

d
ln 2

)d
· poly(d).

This completes the proof of Theorem 14.
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We note that a significant improvement below O
(

(

d
ln 2

)d
)

of the approxi-

mation factor would require new algorithmic ideas as the lower bound of the
PoA in [12] immediately yields a corresponding lower bound on the stretch.

This algorithm can be used to compute also approximate pure Nash equi-
libria in weighted congestion games (with proportional sharing). Such a game

can now be approximated by a Shapley game losing only a factor of (d+3)(d+1)
8

(by Lemma 8), which is included in poly(d).

Corollary 22. For any weighted congestion game with proportional sharing, an

α-approximate pure Nash equilibrium with α ∈
(

d
ln 2

)d
· poly(d) can be computed

with a polynomial number of improvement steps.

7.1 Sampling Shapley Values

The previous section gives an algorithm with polynomial running time with re-
spect to the number of improvement steps. However, each improvement step
requires the multiple computations of Shapley values, which are hard to com-
pute. For this reason, one can instead compute an approximated Shapley value
with sampling methods. Since we are only interested in approximate equilibria,
an execution of the algorithm with approximate steps has a negligible impact on
the final result. The technical properties of Shapley values stated in Section 4
also hold for sampled instead of exact Shapley values with high probability.

Theorem 23. For any constant γ, an α-approximate pure Nash equilibrium

with α ∈
(

d
ln 2

)d
· poly(d) can be computed in polynomial time with high proba-

bility.

Proof. We use sampling techniques that follow [21, 23] and adjust them to our
setting.

Algorithm 2 Approximation of the Shapley value by sampling

for all r from 1 to log
(

2nc+3 ·maxi∈N Pi · |E| ·
(

1 + log
(

Xmax

Xmin

))

· (d+ 1) · γ−9
)

do

for all j from 1 to k = 4(|Se(P )|−1)
µ2 do

Pick uniformly at random permutation π of the players Se(P ) using re-
source e
Compute marginal contribution MCj

ie(P ) = Ce

(

W<i,π

Se(P ) + wi

)

−

Ce

(

W<i,π

Se(P )

)

end for

Let MCie(P ) = 1
k

∑k
j=1 MCj

ie(P )
end for

Return the median of all MCie(P )
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Lemma 24. Given an arbitrary state P and an arbitrary but fixed constant c,
Algorithm 2 computes a µ-approximation of χie(P ) for any player i in polyno-

mial running time with probability at least

1−

(

nc · n ·max
i∈N
Pi · |E| ·

(

1 + log

(

Xmax

Xmin

))

· 2 · n2 · (d+ 1) · γ−9

)−1

.

For using the sampling in the computation of an improvement step, a Shapley
value has to be approximated for each alternative strategy of a player and for
each resource in the strategy. In the worst case, each player has to be checked
for an available improvement step.

Lemma 25. Given an arbitrary state P and running the sampling algorithm at

most n ·maxi∈N Pi · |E| times computes an improvement step for an arbitrary

player with probability at least 1−
(

nc ·
(

1 + log
(

Xmax

Xmin

))

· 2n2 · (d+ 1) · γ−9
)−1

.

Lemma 17 gives a bound on the number of improvement steps. Using the
sampling algorithm for µ = 1+ γ, we can bound the total number of samplings:

Lemma 26. During the whole execution of Algorithm 1 the sampling algorithm

for µ = 1+γ is applied at most n ·maxi∈N Pi · |E| ·
(

1 + log
(

Xmax

Xmin

))

·2 ·n2 · (d+

1) · γ−9 times and the computation of the approximate pure Nash equilibrium is

correct with probability at least 1− n−c for an arbitrary constant c.

Summing up, we show that a µ-approximation of one Shapley value can be
computed in polynomial running time with high probability (Lemma 24) and the
sampling algorithm is running at most a polynomial number of times (Lemma
26). Then Theorem 23 follows.
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Appendix

A Proofs for the Properties in Section 4

Proof of Proposition 1. Let k := |S|. By the definition of Shapley values

χe(i, S ∪ {j}) =
1

(k + 1)!

∑

π∈Π(S∪{j})

(

Ce

(

W<i,π

S∪{j} + wi

)

− Ce

(

W<i,π

S∪{j}

))

≥
1

(k + 1)!

∑

π∈Π(S∪{j})

(

Ce

(

W<i,π
S + wi

)

− Ce

(

W<i,π
S

))

=
1

k!

∑

π∈Π(S)

(

Ce

(

W<i,π
S + wi

)

− Ce

(

W<i,π
S

))

= χe(i, S),

proving (a).
For (b) and (c), consider χe (i, S ∪ {j1, j2}). Observe, that only for permu-

tations π ∈ Π(S ∪ {j1, j2}) where either j1 < i < j2 or j2 < i < j1 the corre-
sponding contribution to χe (i, S ∪ {j1, j2}) changes if we change the weight of
j1, j2 but keep their sum the same. Fix a permutation π ∈ Π(S ∪ {j1, j2}) with
j1 < i < j2 and pair it with the corresponding permutation π̂ where only j1 and
j2 are swapped. Then the contribution of π and π̂ to χe (i, S ∪ {j1, j2}) is

1

(k + 2)!
·
(

Ce

(

W<i,π
S + wj1 + wi

)

− Ce

(

W<i,π
S + wj1

))

+Ce

(

W<i,π
S + wj2 + wi

)

− Ce

(

W<i,π
S + wj2

))

. (7)

Since Ce(x + wi)− Ce(x) is convex in x, we get that

(7) ≥
1

(k + 2)!
·
(

Ce

(

W<i,π
S + wj′

1
+ wi

)

− Ce

(

W<i,π
S + wj′

1

)

+Ce

(

W<i,π
S + wj′

2
+ wi

)

− Ce

(

W<i,π
S + wj′

2

))

,

and

(7) ≤
1

(k + 2)!
·
(

Ce

(

W<i,π
S + wj1 + wj2 + wi

)

− Ce

(

W<i,π
S + wj1 + wj2

)

+Ce

(

W<i,π
S + 0 + wi

)

− Ce

(

W<i,π
S + 0

))

.

Part (c) and (b) follow, respectively. Part (d) of the proposition is shown in
[11].

Proof of Proposition 2. We prove the different parts separately:
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a. For each e ∈ E, let Ie(P ) = ΦA
e (P ) − Φ

A\B
e (P ). By definition of the

B-partial potential (3), we have

ΦA
B(P ) = ΦA(P )− ΦA\B(P ) =

∑

e∈E

Ie(P ). (8)

By the definition of limited potential (2), for an arbitrary τ , define Ie(P ),
∀e ∈ E, as

∑

i∈SA
e (P )

χe(i, {j : τ(j) ≤ τ(i), j ∈ SA
e (P )})−

∑

i∈S
A\B
e (P )

χe(i, {j : τ(j) ≤ τ(i), j ∈ SA\B
e (P )}). (9)

Hart and Mas-Collel [17] proved that the potential is independent of the
ordering τ that players are considered. As mentioned before, ΦA(P ) is a
restriction of Φ(P ) where only players in A participate. Thus, indepen-
dence from τ also applies to the limited potential.

Firstly, we focus on the first term of (9) and choose an ordering where the
players in set A are first. Then we observe that by substituting SA

e (P )
with Se(P ), the cost share remains the same. This is due to the fact that
any player coming after the players in set A in the ordering has no impact
in the cost computation. These are the players who belong in set N \ A
(since we assume players in A are first). Therefore, the first term of (9)
equals to

∑

i∈SA
e (P )

χe(i, {j : τ(j) ≤ τ(i), j ∈ Se(P )}).

Following the same technique for the second term of (9), we choose an
ordering in which the players in A \ B are first. Then we can substitute

S
A\B
e (P ) with S

N\B
e (P ) without affecting the term’s value. Therefore, (9)

is equivalent to

∑

i∈SA
e (P )

χe(i, {j : τ(j) ≤ τ(i), j ∈ Se(P )})−

∑

i∈S
A\B
e (P )

χe(i, {j : τ(j) ≤ τ(i), j ∈ SN\B
e (P )}). (10)

For each e ∈ E, define I ′e(P ) to be equal to

∑

i∈S
N\A
e (P )

(

χe(i, {j : τ(j) ≤ τ(i), j ∈ Se(P )})−

χe(i, {j : τ(j) ≤ τ(i), j ∈ SN\B
e (P )})

)

. (11)
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Note that I ′e(P ) ≥ 0, ∀e ∈ E. Intuitively, the first term computes the cost
with respect to all players using resource e, Se(P ). Regarding the second
term, if we take away some of these players, i.e., players in B, then due to
convexity the costs of the remaining players either remain the same or are
reduced. This depends on the position players in B had in the ordering.
To simplify, for the rest of this proof, let

χN
i (P ) = χe(i, {j : τ(j) ≤ τ(i), j ∈ Se(P )}), (12)

χ
N\B
i (P ) = χe(i, {j : τ(j) ≤ τ(i), j ∈ SN\B

e (P )}). (13)

Since I ′e(P ) ≥ 0, we get that for each e ∈ E,

Ie(P ) ≤ Ie(P ) + I ′e(P )

which, by (10), (11), (12) and (13), is equivalent to

∑

i∈SA
e (P )

χN
i (P )−

∑

i∈S
A\B
e (P )

χ
N\B
i (P ) ≤

≤
∑

i∈SA
e (P )

χN
i (P )−

∑

i∈S
A\B
e (P )

χ
N\B
i (P ) +

∑

i∈S
N\A
e (P )

(

χN
i (P )− χ

N\B
i (P )

)

.

(14)

By the assumption B ⊆ A ⊆ N , we get that (N \A) ∪ (A \ B) = N \ B.
Thus inequality (14) becomes

∑

i∈SA
e (P )

χN
i (P )−

∑

i∈S
A\B
e (P )

χ
N\B
i (P ) ≤

∑

i∈Se(P )

χN
i (P )−

∑

i∈S
N\B
e (P )

χ
N\B
i (P ).

Substituting χN
i (P ) and χ

N\B
i (P ) from (12) and (13), we get by (10) that

the previous is equivalent to

Ie(P ) ≤ Φe(P )− ΦN\B
e (P ) ⇔

∑

e∈E

Ie(P ) ≤
∑

e∈E

Φe(P )− ΦN\B
e (P ).

By (8), we conclude to the desirable ΦA
B(P ) ≤ ΦB(P ).

b. By definition (3) of partial potential, we have

ΦA
B(P ) = ΦA(P )− ΦA\B(P ) =

∑

e∈E

(

ΦA
e (P )− ΦA\B

e (P )
)

. (15)

For each e ∈ E and any A′ ⊆ A, observe that SA′

e (P ) = SA′

e (P ′). Thus

∑

i∈SA
e (P )

χe(i, {j : τ(j) ≤ τ(i), j ∈ SA
e (P )})

=
∑

i∈SA
e (P ′)

χe(i, {j : τ(j) ≤ τ(i), j ∈ SA
e (P

′)}).
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Similarly, we prove that Φ
A\B
e (P ) = Φ

A\B
e (P ′). Therefore, using (15), we

have

ΦA
B(P ) =

∑

e∈E

(

ΦA
e (P

′)− ΦA\B
e (P ′)

)

= ΦA
B(P

′).

c. Let P be an outcome of the game. Her contribution in the potential value
is given by

Φz(P ) = Φ(P )− ΦN\{z}(P ) =
∑

e∈E

(

Φe(P )− ΦN\{z}
e (P )

)

=
∑

e∈E

Ie(P ),

(16)

where Ie(P ) equals

∑

i∈Se(P )

χe(i, {j : τ(j) ≤ τ(i), j ∈ Se(P )})

−
∑

i∈S
N\{z}
e (P )

χe(i, {j : τ(j) ≤ τ(i), j ∈ SN\{z}
e }).

Since the potential is independent of the players ordering, we choose the
τ such that player z is last. Then (16) equals to

∑

e∈E

χe(z, {j : τ(j) ≤ τ(z), j ∈ Se(P )}) =
∑

e∈E

χe(z, j : j ∈ Se(P ))

=
∑

e∈E

χze(P ) = Xz(P ).

which completes the proof.

Proof of Proposition 3. By definition of the partial potential (3),

ΦB(P )− ΦB(P
′) = Φ(P )− ΦN\B(P )−

(

Φ(P ′)− ΦN\B(P ′)
)

= Φ(P )− Φ(P ′).

Since the underlying game (considering all players in N) is a potential game
[19], Φ(P )− Φ(P ′) = Xi(P )−Xi(P

′).

Proof of Lemma 4. By definition (3), we have

Φe,B(P ) = Φe(P )− ΦN\B
e (P ) =

∑

e∈E

(

Φe(P )− ΦN\B
e (P )

)

= Ie(P ). (17)
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where Ie(P ) equals to

∑

i∈Se(P )

χe(i, {j : τ(j) ≤ τ(i), j ∈ Se(P )})

−
∑

i∈S
N\B
e (P )

χe(i, {j : τ(j) ≤ τ(i), j ∈ SN\B
e }). (18)

Then we break the first term of (18) to the sum of

∑

i∈S
N\B
e (P )

χe(i, {j : τ(j) ≤ τ(i), j ∈ Se(P )})

+
∑

i∈SB
e (P )

χe(i, {j : τ(j) ≤ τ(i), j ∈ Se(P )}).

We choose an ordering τ in which all players in N \ B come first. Then the
previous sum is equivalent to

∑

i∈S
N\B
e (P )

χe(i, {j : τ(j) ≤ τ(i), j ∈ SN\B
e (P )})

+
∑

i∈SB
e (P )

χe(i, {j : τ(j) ≤ τ(i), j ∈ Se(P )}).

Substituting the previous to the first term of (18) gives

∑

i∈SB
e (P )

χe(i, {j : τ(j) ≤ τ(i), j ∈ Se(P )}).

Combining it with the definition of Ie(P ) yields to

Ie(P ) =
∑

i∈SA
e (P )

χe(i, {j : τ(j) ≤ τ(i), j ∈ Se(P )})

≤
∑

i∈SA
e (P )

χe(i, j : j ∈ Se(P )) =
∑

i∈SA
e (P )

χie(P ) =
∑

i∈A

χie(P ).

Equation (17) completes the proof of the lower bound.
For the upper bound consider a fixed ordering of the players in B. The
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partial potential can be written as

Φe,B(P ) =
(

Φe(P )− ΦN\B
e (P )

)

=
∑

i∈SB
e (P )

χe

(

i,
{

j : τ(j) ≤ τ(i); j ∈ SB
e (P )

}

∪ SN\B
e (P )

)

≥

∫ fN
e (P )

f
N\B
e (P )

ce(x)dx

≥

[

x · ce(x)

d+ 1

]fN
e (P )

f
N\B
e (P )

=
fN
e (P ) · ce(f

N
e (P ))− f

N\B
e (P ) · ce(f

N\B
e (P ))

d+ 1

=
fe (P ) · ce(fe (P ))

d+ 1
−

f
N\B
e (P ) · ce(f

N\B
e (P ))

d+ 1

=

∑

i∈N χie(P )

d+ 1
−

f
N\B
e (P ) · ce(f

N\B
e (P ))

d+ 1
, (19)

where the first inequality follows by repeatedly applying Proposition 1(c) and
1(d) and adding additional players of weight 0 (which do not change the cost
shares). The second inequality holds, since ce is a polynomial of maximum
degree d with non-negative coefficients.

Observe, that f
N\B
e (P ) · ce(f

N\B
e (P )) is the social cost of P on resource e if

only the players in N \B are in the game. By Proposition 1(a), the cost shares
of those players can only increase if the players in B are joining the game, i.e.:

fN\B
e (P ) · ce(f

N\B
e (P )) ≤

∑

i∈N\A
χie(P ).

Combining this with (19) completes the proof of the claim:

Φe,B(P ) ≥

∑

i∈N χie(P )

d+ 1
−

∑

i∈N\B χie(P )

d+ 1
=

∑

i∈B χie(P )

d+ 1

Proof of Corollary 5. By the definition of the partial potential (3) and by ap-
plying Lemma 4, we directly have

ΦB(P ) =
∑

e∈E

Φe,B(P ) ≤
∑

e∈E

∑

i∈B

χie(P ) =
∑

i∈B

Xi(P )

and
∑

i∈B

Xi(P ) =
∑

i∈B

∑

e∈E

χie(P ) =
∑

e∈E

∑

i∈B

χie(P ) ≤
∑

e∈E

Φe,B(P ) · (d+ 1)

= ΦB(P ) · (d+ 1).
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B Proofs for the Approximation, PoA and Stretch

in Section 5 and 6

Proof of Lemma 6. Since ce is a polynomial of maximum degree d with non-
negative coefficients, it suffices to show the inequalities for all monomial cost
functions ce(x) = xr, with r = {0, . . . , d}. Fix some resource e with monomial
cost function and a player i assigned to e, i.e., e ∈ Pi. Denote Y = {j 6= i : e ∈
Pj} and w = wi. Define y =

∑

j∈Y wj and z = w
y
. By Proposition 1 (b), we can

upper bound χie(P ) by replacing Y with a single player of weight y, i.e.,

χie(P ) ≤
1

2

(

(y + w)r+1 − yr+1
)

+
1

2
· wr+1 = yr+1 ·

1

2
·
(

(z + 1)r+1 − 1 + zr+1
)

= yr+1 ·



zr+1 +
1

2
·

r
∑

j=1

(

r + 1

j

)

· zj



 =: A.

Similarly, by repeatedly using Proposition 1 (c) and by adding additional players
of weight 0, we can lower bound χie(P ) by

1

y
·

∫ y

0

(

(x+ w)r+1 − xr+1
)

dx =
1

y
·

1

r + 2
·
(

(y + w)r+2 − yr+2 − wr+2
)

= yr+1 ·
1

r + 2
·
(

(z + 1)
r+2
− 1− zr+2

)

= yr+1 ·
1

r + 2
·

r+1
∑

j=1

(

r + 2

j

)

· zj =: B.

The proportional cost of player i, χProp
ie (P ), equals to

w · ce(y + w) = w · (y + w)r = yr+1 · z · (z + 1)r = yr+1 ·

r+1
∑

j=1

(

r

j − 1

)

· zj.

To complete the proof we give an upper bound on A

χ
Prop

ie (P )
and a lower bound

on B

χ
Prop

ie (P )
. We have,

A

χProp
ie (P )

=
zr+1 + 1

2

∑r
j=1

(

r+1
j

)

· zj

∑r+1
j=1

(

r
j−1

)

· zj
=

zr+1 + 1
2

∑r
j=1

(

r+1
j

)

· zj

zr+1 +
∑r

j=1

(

r
j−1

)

· zj
,

which is upper bounded by

A

χProp
ie (P )

≤ max

(

1, max
1≤j≤r

(

r+1
j

)

2 ·
(

r
j−1

)

)

= max

(

1, max
1≤j≤r

r + 1

2 · j

)

≤
d+ 1

2
.

(20)
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This implies the lower bound on χProp
ie (P ) in the statement of the lemma. On

the other hand, by first order conditions,

B

χProp
ie (P )

=

1
r+2 ·

∑r+1
j=1

(

r+2
j

)

· zj

∑r+1
j=1

(

r
j−1

)

· zj
,

which achieves its extreme values at the roots of

g(z) :=

r+1
∑

j=1

r+1
∑

k=1

(j − k)

(

r + 2

j

)(

r

k − 1

)

· zk+j−1.

Claim 27. The function g : z →
∑r+1

j=1

∑r+1
k=1(j − k)

(

r+2
j

)(

r
k−1

)

· zk+j−1 has a

unique positive real root at z = 1.

Proof. We will show that g(z) has a unique positive real root at z = 1, is negative
for z < 1 and positive for z > 1. To this end, by combining coefficients of the
same monomial, we get

g(z) =

r+1
∑

σ=2

σ−1
∑

j=1

(2j − σ)

(

r + 2

j

)(

r

σ − j − 1

)

· zσ−1

+

2r+2
∑

σ=r+3

r+1
∑

j=σ−r−1

(2j − σ)

(

r + 2

j

)(

r

σ − j − 1

)

· zσ−1,

where by symmetry the coefficient for σ = r + 2 is 0. Pairing summands j and
σ − j, we get

g(z) =
r+1
∑

σ=2

⌊σ−1

2
⌋

∑

j=1

(2j − σ)

((

r + 2

j

)(

r

σ − j − 1

)

−

(

r + 2

σ − j

)(

r

j − 1

))

· zσ−1

+

2r+2
∑

σ=r+3

r+1
∑

j=⌈ σ
2
⌉
(2j − σ)

((

r + 2

j

)(

r

σ − j − 1

)

−

(

r + 2

σ − j

)(

r

j − 1

))

· zσ−1.

Define β(σ, j) := (2j − σ) ·
(

(

r+2
j

)(

r
σ−j−1

)

−
(

r+2
σ−j

)(

r
j−1

)

)

. Now observe that

(

r + 2

j

)(

r

σ − j − 1

)

=
(σ − j)(r + 2− (σ − j))

j(r + 2− j)
·

(

r + 2

σ − j

)(

r

j − 1

)

.

Since (σ−j)(r+2−(σ−j))
j(r+2−j) ≥ 1 for all (σ, j) where 2 ≤ σ ≤ r + 1 and 1 ≤ j ≤ σ−1

2

and for all (σ, j) where r + 3 ≤ σ ≤ 2r + 2 and σ
2 ≤ j ≤ r + 1, we get that

β(σ, j) ≤ 0 when σ ≤ r + 1 and β(σ, j) ≥ 0 when σ ≥ r + 3 for all j in the
corresponding range. Descartes’ rule of signs implies that g(z) has at most one
positive real root. Simple arithmetic shows that z = 1 is a root of g(z).
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By the previous lemma, we conclude that B

χ
Prop

ie (P )
is minimized for z = 1,

i.e.,

B

χProp
ie (P )

≥

1
r+2 ·

∑r+1
j=1

(

r+2
j

)

∑r+1
j=1

(

r
j−1

) =
1

r+2 · (2
r+2 − 2)

2r
≥

4

r + 3
≥

4

d+ 3
,

which completes the proof of the upper bound in the lemma.

Proof of Lemma 8. Let P be a ρ-approximate equilibrium in the SV weighted
congestion game. Using the equilibrium condition and Corollary 7, we have

XProp
i (P ) ≤

d+ 3

4
·Xi(P ) ≤

d+ 3

4
· ρ ·Xi(P ) ≤

d+ 3

4
·
d+ 1

2
· ρ ·XProp

i (P )

Proof of Lemma 9. Let P be an ρ-approximate pure Nash equilibrium and P ∗

the optimal outcome:

SC(P ) =
∑

i∈N

∑

e∈Pi

χe(i, Se(P ))
Def. ρ-PNE

≤ ρ ·
∑

i∈N

∑

e∈P∗
i

χe(i, Se(P ) ∪ {i}).

Due to the convexity of the cost functions, note that the cost share of any
player on any resource is always upperbounded by the marginal cost increase she
causes to the resource cost when she is last in the ordering, χe(i, Se(P )∪{i}) ≤
Ce(fe(P ) + wi)− Ce(fe(P )). Thus,

SC(P ) ≤ ρ ·





∑

i∈N

∑

e∈P∗
i

Ce(fe(P ) + wi)− Ce(fe(P ))





≤ ρ ·





∑

e∈E

∑

i:e∈P∗
i

Ce(fe(P ) + wi)− Ce(fe(P ))





≤ ρ ·

(

∑

e∈E

Ce(fe(P ) + fe(P
∗))− Ce(fe(P ))

)

. (21)

The last inequality follows from assumption that Ce is a convex function in
players’ weights.

Claim 28. Let λ = 2
d

d+1 ·
(

2
1

d+1 − 1
)−d

and µ = 2
d

d+1 − 1, then for x, y > 0

and d ≥ 1, (x+ y)d+1 − xd+1 ≤ λ · yd+1 + µ · xd+1.
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Using this claim that was proven in [13], (21) becomes

SC(P ) ≤ ρ ·

(

∑

e∈E

λ · Ce(fe(P
∗)) + µ · Ce(fe(P ))

)

= ρ · λ · SC(P ∗) + ρ · µ · SC(P ).

Rearranging and substituting the values for λ and µ we get an upper bound on
the ρ-PoA,

ρ-PoA ≤
ρ · λ

1− ρ · µ
=

ρ · 2
d

d+1 ·
(

2
1

d+1 − 1
)−d

1− ρ ·
(

2
d

d+1 − 1
) = ρ ·

2

2
1

d+1

·

(

2
1

d+1 − 1
)−d

1− ρ · 2

2
1

d+1

+ ρ

=
2 · ρ

(

2
1

d+1 − 1
)−d

2
1

d+1 · (1 + ρ)− 2 · ρ
=

ρ · (2
1

d+1 − 1)−d

2−
d

d+1 · (1 + ρ)− ρ
.

Proof of Lemma 10. Let P be a ρ-approximate equilibrium, P ∗ the optimal
outcome and P̂ = minP ′∈P Φ(P ′) the minimizer of the potential which is by
definition a pure Nash equilibrium. Then the ρ-approximate price of anarchy
equals to

ρ-PoA = max
P∈ρ-PNE

SC(P )

SC(P ∗)
≥ max

P∈ρ-PNE

SC(P )

SC(P̂ )

Def. Φ
≥ max

P∈ρ-PNE

Φ(P )

SC(P̂ )
.

By Lemma 9 and Corollary 5 for A = N , the ρ-PoA is bounded as follows

max
P∈ρ-PNE

Φ(P )

(d+ 1) · Φ(P̂ )
≤ ρ-PoA ≤

ρ · (2
1

d+1 − 1)−d

2
−d
d+1 · (1 + ρ)− ρ

.

Rearranging the terms gives the desired upper bound of the ρ-stretch,

ρ-Ω = max
P∈ρ-PNE

Φ(P )

Φ(P̂ )
≤

ρ · (2
1

d+1 − 1)−d · (d+ 1)

2−
d

d+1 · (1 + ρ)− ρ
.

Proof of Lemma 12. To show the lemma we lower and upper bound the D-
partial potential. Let e be an arbitrary resource. By using Lemma 4 and
Lemma 6, we get

Φe,D(P ) ≤
∑

i∈D

χie(P ) ≤
d+ 1

2
·
∑

i∈D

χProp
ie (P ). (22)
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By definition of the proportional share χProp
ie , (22) becomes

Φe,D(P ) ≤
d+ 1

2
·
∑

i∈D

wi · ce(fe(P )) =
d+ 1

2
· fD

e (P ) · ce(fe(P ))

=
d+ 1

2
·
fD
e (P )

fe(P )
· fe(P ) · ce(fe(P )) =

d+ 1

2
·
fD
e (P )

fe(P )
·
∑

i∈N

χie(P ).

(23)

Rearranging (23) gives a relation of the per unit contribution to ΦD and Φ,

Φe,D(P )

fD
e (P )

≤
d+ 1

2
·

∑

i∈N χie(P )

fe(P )
,

and by summing up over all resources e, we get

ΦD(P )

WD

≤
d+ 1

2
·
SC(P )

W
, (24)

where W =
∑

i∈N wi =
∑

e∈E fe(P ) and WD =
∑

i∈D wi =
∑

e∈E fD
e (P ).

Similar to (23), we lower bound the D-partial potential with

Φe,D(P ) ≥
1

d+ 1
·
∑

i∈D

χie(P ) ≥
4

(d+ 1) · (d+ 3)
·
∑

i∈D

wi · ce(fe(P ))

=
4

(d+ 1) · (d+ 3)
·
fD
e (P )

fe(P )
·
∑

i∈N

χie(P ).

The first inequality uses Lemma 4 and the second uses Lemma 6. Again we get
a per unit contribution to ΦD and Φ on one resource and in the whole game,

Φe,D(P )

fD
e (P )

≥
4

(d+ 1) · (d+ 3)
·

∑

i∈N χie(P )

fe(P )

⇔
ΦD(P )

WD

≥
4

(d+ 1) · (d+ 3)
·
SC(P )

W
. (25)

Combining (24) with (25) and rearranging the terms completes Lemma’s 12
proof,

ΦD(P )

ΦD(P̂ )
≤

d+ 1

2
·
SC(P )

W
·
WD

1
·
(d+ 1) · (d+ 3)

4
·

W

SC(P̂ )
·

1

WD

=
(d+ 1)2 · (d+ 3)

8
·
SC(P )

SC(P̂ )
.

C Proofs for the Computation in Section 7

Proof of Lemma 15. Let Di
r ⊆ Dr the set of players who still have to perform

their last move after player i in phase r. Then by definition of the partial



C PROOFS FOR THE COMPUTATION IN SECTION ?? 28

potential 1, ΦDr
(P r) equals to

ΦN (P r)− ΦN\Dr (P r) =

|Dr |
∑

i=1

(

ΦN\Di
r (P r)− ΦN\Di−1

r (P r)
)

=

|Dr |
∑

i=1

Φ
N\Di

r

i (P r).

(26)

For each player i, her strategy in state P r is identical to her strategy in P r,i.
By Proposition 2 (a), 2 (b) and 2 (c), we upperbound (26) by

|Dr |
∑

i=1

Φ
N\Di

r

i (P r) =

|Dr |
∑

i=1

Φ
N\Di

r

i (P r,i) ≤

|Dr|
∑

i=1

Φi(P
r,i) =

|Dr |
∑

i=1

Xi

(

P r,i
)

.

Proof of Lemma 16. We show the lemma by contradiction. Thus, assume that
ΦDr

(

P r−1
)

> n
γ
· br. Let Sr, Tr ⊆ Dr, be the set of players whose last move is

an s-move and a t-move, accordingly, such that Sr ∪ Tr = Dr. First, we focus
on the players in Sr. Let i ∈ Sr be an arbitrary player. By definition of an
s-move, player i decreases her costs in her last move during phase r by at least
(s− 1) ·Xi

(

P r,i
)

. By Proposition 3, any such improvement step also decreases
the i-partial potential by the same amount. Summing up over all players i ∈
Sr, we get a lower bound on the total decrease of the Dr-partial potential
between states P r−1 and P r: ΦDr

(P r−1)−ΦDr
(P r) ≥ (s− 1) ·

∑

i∈Sr
Xi(P

r,i).
Rearranging, we upper bound the partial potential as follows,

ΦDr
(P r) ≤ ΦDr

(P r−1)− (s− 1) ·
∑

i∈Sr

Xi(P
r,i)

≤ ΦDr
(P r−1)− (s− 1) ·

(

∑

i∈Dr

Xi(P
r,i)−

∑

i∈Tr

Xi(P
r,i)

)

≤ ΦDr
(P r−1)− (s− 1) ·

(

∑

i∈Dr

Xi(P
r,i)− n · br

)

≤ ΦDr
(P r−1)− (s− 1) · (ΦDr

(P r)− n · br)

≤ ΦDr
(P r−1)− (s− 1) ·

(

ΦDr
(P r)− γ · ΦDr

(

P r−1
))

≤ (1 + (s− 1) · γ) · ΦDr
(P r−1)− (s− 1) · ΦDr

(P r) ,

where the third inequality follows from the fact that the cost of a player i ∈ Tr

is upper bounded by the block border br, the fourth inequality by Lemma 15
and the fifth one by the assumption. Rearranging the terms gives

ΦDr
(P r) ≤

1 + (s− 1) · γ

s
· ΦDr

(P r−1). (27)
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Let P̄ be an intermediate state between P r−1 and P r such that all players
in Sr have already finished their s-move and play their strategies in P r, while
the moving players in Tr play their strategies in P r−1. Consider a player i ∈ Tr.
The difference in her cost after her t-move is at most br. This is due to the fact
that her initial cost is at most br (by the block construction) and the minimum
cost she can improve to is zero. Then, by Proposition 3, the difference in
the cost of player i equals to the difference in the i-partial potential, that is,
Φi(P̄ ) − Φi(P

r) = Xi(P ) − Xi(P
′) ≤ br. Summing up over all players in Tr,

we get that the difference in the Dr-partial potential among states P̄ and P r

can be at most n · br. Then, we get the following upper bound on the partial
potential in state P̄ ,

ΦDr
(P̄ ) ≤ ΦDr

(P r) + n · br ≤
1 + (s− 1) · γ

s
· ΦDr

(P r−1) + γ · ΦDr

(

P r−1
)

=

(

1− γ

s
+ 2 · γ

)

· ΦDr
(P r−1) <

(

1

s
+ 2 · γ

)

· ΦDr
(P r−1),

where the second inequality holds by (27) and our assumption. Substituting s,
we get

ΦDr
(P̄ ) <

1

t-ΩD

· ΦDr
(P r−1),

which contradicts Corollary 13.

Proof of Lemma 17. At the beginning of the algorithm’s execution, the sum of
all players’ costs is at most n ·Xmax. By Corollary 5, the potential is also upper
bounded by the same amount. In the initial phase, each deviating player makes
a t-move, therefore her cost improves by at least (t− 1) · b1 (since her cost is at
most b1). The potential function also decreases by at least (t − 1) · b1 in each
step. Using the definition of b1, we get that (t− 1) · b1 = γ · g−1 ·Xmax. Using
both observations, we can compute the maximum number of improvement steps
in the first phase,

n ·Xmax

γ · g−1 ·Xmax
= n · γ−1 · g = n · γ−1 ·

2 · n · (d+ 1)

γ3
= 2 · n2 · (d+ 1) · γ−4.

Consider an arbitrary phase r ≥ 1. By Lemma 16, ΦDr
(P r−1) ≤ n

γ
· br. Again,

we look at the possible cost improvement in a deviation which equals to the
potential decrease in this step. In this case, the cost improvement is at least
(t − 1) · br+1. By definition of br+1, we have that (t − 1) · br+1 = br · g

−1 · γ.
Similar, the maximum number of improvement moves in this phase is

n
γ
· br

br · g−1 · γ
=

n · g

γ2
=

2 · n2 · (d+ 1) · γ−3

γ2
= 2 · n2 · (d+ 1) · γ−5.

In total, we have at most 2 ·n2 · (d+1) ·γ−4+log
(

Xmax

Xmin

)

·2 ·n2 · (d+1) ·γ−5 =
(

1 + log
(

Xmax

Xmin

))

· 2 · n2 · (d+ 1) · γ−9 improvement steps.
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Proof of Lemma 18. We first show by contradiction the following. For j ≥ r,
the increase in the cost of player i from an arbitrary state P j to state P j+1 is

upper bounded by n·(d+1)
γ

· bj+1. Thus, assume that Xi

(

P j+1
)

− Xi

(

P j
)

>
n·(d+1)

γ
· bj+1. Since player i does not deviate during phase j + 1, the increase

in her cost is caused by other players deviating to the resources she uses. Thus,
there exists a set of resources E′ ⊆ E such that each resource in E′ is used by
player i and by at least one player in Dj+1 at state P j+1. This yields to

∑

e∈E′

χie

(

P j+1
)

>
n · (d+ 1)

γ
· bj+1

⇒

∑

e∈E′ fe(P
j+1) · ce(fe(P

j+1))

d+ 1
>

n

γ
· bj+1

⇔
SCDj+1

(P j+1)

d+ 1
>

n

γ
· bj+1

⇒ ΦDj+1
(P j+1) >

n

γ
· bj+1.

The last step uses Corollary 5. Since the potential decreases during the execution
of the algorithm, we get ΦDj+1

(P j) ≥ ΦDj+1
(P j+1) > n

γ
·bj+1, which contradicts

Lemma 16. Therefore Xi

(

P j+1
)

≤ Xi

(

P j
)

+ n(d+1)
γ
· bj+1 and we use this to

show the lemma as follows,

Xi

(

Pm−1
)

≤ Xi

(

Pm−2
)

+
n · (d+ 1)

γ
· bm−1

≤ Xi (P
r) +

n · (d+ 1)

γ

m−1
∑

j=r+1

bj

= Xi (P
r) +

n · (d+ 1)

γ

m−1
∑

j=r+1

Xmax · g
−j

= Xi (P
r) +

n · (d+ 1)

γ

m−1
∑

j=r+1

br · g
r−j

≤ Xi (P
r) +

n · (d+ 1)

γ
· 2 · br · g

−1

≤ Xi (P
r) +

2 · n · (d+ 1)

γ · g
·Xi (P

r)

=

(

1 +
2 · n · (d+ 1)

γ · g

)

·Xi (P
r) =

(

1 + γ2
)

·Xi (P
r) .

Proof of Lemma 19. Similarly to previous lemma, we first show by contradiction
the following. For two arbitrary successive phases j and j + 1 and an arbitrary
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alternative strategy P ′
i of player i, Xi

(

P j+1
−i , P ′

i

)

≥ Xi

(

P j
−i, P

′
i

)

− n·(d+1)
γ
·bj+1.

Thus, assume that Xi

(

P j
−i, P

′
i

)

−Xi

(

P j+1
−i , P ′

i

)

> n·(d+1)
γ
· bj+1. Since player i

does not deviate during phase j+1, the increase in her costs is caused by other
players deviating to the resources she uses. Thus, there exists a set of resources
E′ ⊆ E such that each resource in E′ is used by player i and by at least one
player in Dj+1 at state P j+1. Therefore

∑

e∈E′

χie

(

P j
−i, P

′
i

)

>
n · (d+ 1)

γ
· bj+1 ⇒

∑

e∈E′

χie

(

P j
−i, Pi

)

>
n · (d+ 1)

γ
· bj+1.

Following exactly the same steps as in proof of Lemma 18, the previous yields to

a contradiction of Lemma 16. Thus, Xi

(

P j+1
−i , P ′

i

)

≥ Xi

(

P j
−i, P

′
i

)

− n·(d+1)
γ
·

bj+1, which we use to show the lemma’s statement as follows,

Xi

(

Pm−1
−i , P ′

i

)

≥ Xi

(

Pm−2
−i , P ′

i

)

−
n · (d+ 1)

γ
· bm−1

≥ Xi

(

P r
−i, P

′
i

)

−
n · (d+ 1)

γ
·

m−1
∑

j=r+1

bj

= Xi

(

P r
−i, P

′
i

)

−
n · (d+ 1)

γ
·

m−1
∑

j=r+1

Xmax · g
−j

= Xi

(

P r
−i, P

′
i

)

−
n · (d+ 1)

γ
·

m−1
∑

j=r+1

br · g
r−j

≥ Xi

(

P r
−i, P

′
i

)

−
n · (d+ 1)

γ
· 2 · br · g

−1

br= Xi

(

P r
−i, P

′
i

)

−
2 · n · (d+ 1)

γ · g
·Xi (P

r)

g
= Xi

(

P r
−i, P

′
i

)

− γ2 ·Xi (P
r)

γ≤ 1
s

≥ Xi

(

P r
−i, P

′
i

)

−
γ

s
·Xi (P

r)

≥ Xi

(

P r
−i, P

′
i

)

− γ ·Xi

(

P r
−i, P

′) = (1− γ) ·Xi

(

P r
−i, P

′
i

)

.

The second last inequality holds due to the s-approximate equilibrium for player
i in P r.

Proof of Lemma 20. Let i be an arbitrary player who took her last move in
phase r and let P ′

i be an arbitrary other strategy of player i. We use Lemma 18
and Lemma 19 and the fact that player i has no incentive to make a s-move in
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phase r (by definition of the algorithm):

Xi

(

Pm−1
)

Xi

(

Pm−1
−i , P ′

i

) ≤
(1 + γ2) ·Xi (P

r)

(1 − γ) ·Xi

(

P r
−i, P

′
i

)

≤

(

1 + γ2

1− γ

)

·

(

1

t-ΩD

− 2γ

)−1

≤

(

1 + γ2

1− γ

)

·

(

1

t-ΩD

− 2γ

)−1

By minimizing the first part, we can get arbitrary close to 1. For the second
part, we need to fix a γ with γ < 1

2t-ΩD
. Therefore, the expression can be

simplified to α = (1 +O(γ)) · t-ΩD.

Proof of Lemma 21. By Lemma 20 and Corolarry 13, we get that our main
factor α (from Lemma 20) equals to

(1 +O(γ)) ·
(d+ 1)2 · (d+ 3)

8
·

t · (2
1

d+1 − 1)−d

2−
d

d+1 · (1 + t)− t
,

where γ is a small positive constant and t = 1 + γ. Observe that factor α is
essentially in the order of

Θ(d3) ·

(

1

2
1

d+1 − 1

)d

.

We now claim that the order of the above is
(

d
ln 2

)d
· poly(d). To prove this,

it is enough to show that 1

2
1

d+1 −1
is assymptotically similar to d

ln(2) . Applying

L’Hospital’s rule, this follows from the fact that

lim
d→∞

1
d

2
1

d+1 − 1
= lim

d→∞

− 1
d2

− 2
1

d+1 ·ln(2)
(d+1)2

=
1

ln(2)
,

which completes the proof.

D Proofs for the Sampling in Section 7.1

Proof of Lemma 24. The beginning of the proofs follows from the analysis in [21].
Let X be the marginal contribution of player i in a random permutation. Since
Ce is a polynomial of degree d and monotone, we have X ≥ 0. By the definition
of the Shapley value, χie(P ) = E[X ]. By the definition of the cost functions,
the maximum possible value of X is achieved when i is the last player in the
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ordering, this happens in 1/|Se(P )| fraction of the permutations. X achieves
the maximum value with probability at least 1/|Se(P )| and the maximum value
is at most |Se(P )| · χie(P ) because of the expectation and the bounds of the
values.

To upper bound the variance of X we define a second random variable Y
which is |Se(P )| · χie(P ) with probability 1/n and 0 otherwise. Then,

V ar(X) ≤ V ar(Y ) = E[Y 2]− E[Y ]2 = (|Se(P )| − 1) · χie(P )2

Since MCie(P ) = 1
k

∑k
j=1 MCj

ie(P ), E[MCie(P )] = E[X ] = χie(P ) and the

single permutations are independent of each other, we get V ar(MCie(P )) =
V ar(X)

k
≤ 1

k
(|Se(P )| − 1) · χie(P )2. Using Chebyshev’s inequality, we get

Pr[|MCie(P )− χie(P )| ≥ µχie(P )] ≤
V ar(MCie(P ))

χie(P )2µ2

≤
(|Se(P )| − 1) · χie(P )2

kχie(P )2µ2
=
|Se(P )| − 1

k · µ2

Let k = 4(|Se(P )|−1)
µ2 , then MCie(P ) is a µ-approximation for χie(P ) with

probability at least 3/4. If we repeat this

log

(

2nc+3 ·max
i∈N
Pi · |E| ·

(

1 + log

(

Xmax

Xmin

))

· (d+ 1) · γ−9

)

times, using the median value of all runs and applying Chernoff bounds, we
directly get a result with failure probability at most

1

nc · n ·maxi∈N Pi · |E| ·
(

1 + log
(

Xmax

Xmin

))

· 2 · n2 · (d+ 1) · γ−9
.

Proof of Lemma 25. The result follows directly by applying the union bound:

Pr[∃i ∈ N : ∃P ′
i ∈ Pi : ∃e ∈ P ′

i : |MCie(P−i, P
′
i )− χie(P−i, P

′
i )| ≥ µ · χie(P−i, P

′
i )]

≤ n ·max
i∈N
Pi · |E| ·

1

nc · n ·maxi∈N Pi · |E| ·
(

1 + log
(

Xmax

Xmin

))

· 2 · n2 · (d+ 1) · γ−9

≤
1

nc ·
(

1 + log
(

Xmax

Xmin

))

· 2 · n2 · (d+ 1) · γ−9
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Proof of Lemma 26. The result follows directly by applying the union bound:

Pr[∃ an improvement step in which the sampling fails] ≤

≤

(

1 + log
(

Xmax

Xmin

))

· 2 · n2 · (d+ 1) · γ−9

nc ·
(

1 + log
(

Xmax

Xmin

))

· 2 · n2 · (d+ 1) · γ−9

≤
1

nc
.
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