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Abstract

We consider the problem of maximizing the spread of influence in a social network by choosing a

fixed number of initial seeds, formally referred to as the influence maximization problem. It admits a

(1−1/e)-factor approximation algorithm if the influence function is submodular. Otherwise, in the worst

case, the problem is NP-hard to approximate to within a factor of N1−ε. This paper studies whether

this worst-case hardness result can be circumvented by making assumptions about either the underlying

network topology or the cascade model. All our assumptions are motivated by many real life social

network cascades.

First, we present strong inapproximability results for a very restricted class of networks called the

(stochastic) hierarchical blockmodel, a special case of the well-studied (stochastic) blockmodel in which

relationships between blocks admit a tree structure. We also provide a dynamic-programming-based

polynomial time algorithm which optimally computes a directed variant of the influence maximization

problem on hierarchical blockmodel networks. Our algorithm indicates that the inapproximability result

is due to the bidirectionality of influence between agent-blocks.

Second, we present strong inapproximability results for a class of influence functions that are “al-

most” submodular, called 2-quasi-submodular. Our inapproximability results hold even for any 2-quasi-

submodular f fixed in advance. This result also indicates that the “threshold” between submodularity

and nonsubmodularity is sharp, regarding the approximability of influence maximization.

1 Introduction

A cascade is a fundamental social network process in which a number of nodes, or agents, start with some
property that they then may spread to neighbors. The importance of network structure on cascades has been
shown to be relevant in a wide array of environments, including the adoption of products [5, 8, 19, 32], farming
technology [16], medical practices [15], participation in microfinancing [4], and the spread of information over
social networks [27].

A natural question, known as the influence maximization problem (InfMax), is how to place a limited
number k of initial seeds to maximize the spread of the resulting cascade [18, 36, 25, 26, 34]. To study
influence maximization, we first need to understand how cascades spread. Many cascade models have been
proposed [2, 33, 40], and two simple examples are the Independent Cascade model [25, 26, 34] and the
Threshold model [21]. In the Independent Cascade model, each newly infected node infects each currently
uninfected neighbor in the subsequent round with some fixed probability p. In the Threshold model each
node has a threshold (0, 1, 2, etc.) and becomes infected when the number of infected neighbors meets or
surpasses that threshold.

In general, it is NP-hard even to approximate InfMax to within N1−ǫ of the optimal expected number
of infections [25]. However, assuming that we are using a particular class of cascades, called submodular
cascades, a straightforward greedy algorithm can efficiently find an answer that is at least a (1 − 1/e)
fraction of the optimal answer.

∗The authors gratefully acknowledge the support of the National Science Foundation under Career Award 1452915 and AifT
Award 1535912.
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In submodular cascade models, such as the Independent Cascade model, a vertex v’s marginal probability
of becoming infected after a new neighbor t is infected given S is the set of v’s already infected neighbors
is at least the marginal probability that v is infected after t is newly infected given T ⊇ S is the set of
v’s already infected neighbors [25]. Submodular cascade models are fairly well understood theoretically, and
properties of these cascades are usually closely related to a network’s degree distribution and conductance [24].
Unfortunately, empirical research shows that many cascades are not submodular [37, 3, 28].

Cascade models that violate the submodularity property are called nonsubmodular cascades (or sometimes
complex cascades). In nonsubmodular contagion models, like the Threshold model, the marginal probability
of being infected may increase as more neighbors are infected. For example, if a vertex has a threshold of
2, then the first infected neighbor has zero marginal impact, but the second infected neighbor causes this
vertex to become infected with probability 1. Unlike submodular contagions, nonsubmodular contagions can
require well-connected regions to spread [9].

Influence maximization becomes qualitatively different in nonsubmodular settings. In the submodular
case, seeds erode each other’s effectiveness, and so should generally not be put too close together. However,
in the nonsubmodular case, it may be advantageous to place the initial adopters close together to create
synergy and yield more adoptions. The intuition that it is better to saturate one market first, and then
expand implicitly assumes nonsubmodular influence in the cascades.

Key Question: Can this worst-case inapproximability result of N1−ǫ for nonsubmodular

influence maximization be circumvented by making realistic assumptions about either the

underlying network topology or the cascade model?

We know a lot about what social networks look like, and previous hardness reductions make no attempt
to capture realistic features of networks. It is very plausible that by restricting the space of networks we
might regain tractability.

In this paper, we consider two natural network topologies: the hierarchical blockmodel and the stochastic
hierarchical blockmodel. Each is a natural restriction on the classic (stochastic) blockmodel [17, 23, 41]
network structure. In (stochastic) blockmodels, agents are partitioned into ℓ blocks. The weight (or likelihood
in the stochastic setting) of an edge between two vertices is based solely on blocks to which the vertices belong.
The weights (or probabilities) of edges between two blocks can be represented by an ℓ × ℓ matrix. In the
(stochastic) hierarchical blockmodel, the structure of the ℓ× ℓ matrix is severely restricted to be “tree-like”.1

Our (stochastic) hierarchical blockmodel describes the hierarchical structure of the communities, in which
a community is divided into many sub-communities, and each sub-community is further divided, etc. Typical
examples include the structure of a country, which is divided into many provinces, and each province can
be divided into cities. Our model captures the natural observation that people in the same sub-community
in the lower hierarchy tend to have tighter (or more numerous) bonds among each other [14]. Such a highly
abstracted model necessarily fails to capture all features of social networks. However, when we use this model
as a lower bound, that is a strength as it shows that the problem is hard even in the case that communities
structure can be represented by a tree. Additionally, we feel that this is a very natural model which captures
salient features of real-world networks, so our upper bounds in this model are still interesting.

We also consider restrictions on the cascade model. The same research showing that cascades are often
not submodular empirically also shows that the local submodularity often fails in one particular way—the
second infected neighbor of an agent is, on average, more influential than the first. When Leskovec et al. [28]
studied the probability a person buys a book versus the number of incoming recommendations he receives,
they observed a peak in the marginal probability of buying at 2 incoming recommendations and then a
slow drop. While this work presents observational evidence, it suggests that if a person does not buy a
book after the first recommendation, but receives another, he is more likely to be persuaded by the second
recommendation. But thereafter, they are less likely to respond to additional recommendation

Backstrom et al. [3] made the same observation when they calculated the probability a person joins
a community (e.g., LiveJournal and DBLP) as a function of the number t of his friends already in the
community. Romero et al. [37] studied hashtag adoption in the Twitter network, and considered the fraction
of users who adopt a hashtag after having t neighbors’ adoptions. They coalesced their study’s observations
into a model where the marginal influence increases linearly from zero to two adopting neighbors and then
linearly decreases thereafter.

1Previous work on community detection in networks [31] defines a different, but related stochastic hierarchical blockmodel,
where the hierarchy is restricted to two levels.
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These empirical studies motivate our study of the 2-quasi-submodular cascade model where the marginal
effect of the second infected neighbor is greater than the first, but after that the marginal effect decreases.

1.1 Our Results

First, we present inapproximability results for InfMax in both the hierarchical blockmodel and the stochastic
hierarchical blockmodel. We show that InfMax is NP-hard to approximate within a factor of N1−ε for
arbitrary ε > 0. Moreover, this result holds in the hierarchical blockmodel even if we assume all agents have
unit threshold θv = 1. We also extend this hardness result to the stochastic hierarchical blockmodel.

Moreover, for the hierarchical blockmodel, we present a dynamic-programming-based polynomial time
algorithm for InfMax when we additionally assume the influence from one block to another is “one-way”.
This provides insights to the above intractability result: the difficulty comes from the bidirectionality of
influence between agent-blocks.

Secondly, we present an inapproximability result for the 2-quasi-submodular cascade model. In particular,
for any 2-quasi-submodular influence function f , we show that it is NP-hard to approximate InfMax within
a factor of N τ when each agent has f as its local influence function, where τ > 0 is a constant depending on
f . This can be seen as a threshold result for approximability of InfMax, because if f is submodular, then the
problem can be approximated to within a (1−1/e)-factor, but if f is just barely nonsubmodular the problem
can no longer be approximated to within any constant factor. We also show that, for any γ ∈ (0, 1), when
only Nγ agents have the fixed 2-quasi-submodular f as their local influence functions and the remaining
agents’ local influence functions are submodular (or even identical to a fixed submodular function), InfMax

is still NP-hard to approximate to within a factor of N τ , where τ > 0 is a constant depending on f and γ.
Finally, we pose the open question of whether enforcing the aforementioned restrictions simultaneously

on the network and the cascade renders the problem tractable.

1.2 Related Work

The influence maximization problem was posed by Domingos and Richardson [18, 36]. Kempe, Kleinberg,
and Tardos showed that a simple greedy algorithm obtains a (1− 1/e) factor approximation to the problem
in the independent cascade model and linear threshold model [25], and extended this result to a family of
submodular cascades which captures the prior results as a special case [26]. Mossel and Roch [34] further
extended this result to capture all submodular cascades.

Perhaps most related to the present work, are several inapproximability results for InfMax. If no
assumption is made for the influence function, InfMax is NP-hard to approximate to within a factor of
N1−ε for any ε > 0 [25].

Chen [10] found inapproximability results on a similar optimization problem: instead of maximizing the
total number of infected vertices given k initial targets, he considered the problem of finding a minimum-sized
set of initial seeds such that all vertices will eventually be infected. This work studied restrictions of this
problem to various threshold models.

An important difference between our hardness result in Section 6 and all the previous results is that our
result holds for any 2-quasi-submodular functions. In particular, in this work, f is fixed in advance before
the NP-hardness reduction, while in previous work, specific influence functions were constructed within the
reductions.

Several works looked at slightly different aspects of influence maximization. Borgs, Brautbar, Chayes,
and Lucier [7] provably showed fast running times when the influence function is the independent cascade
model. Lucier, Oren, and Singer [30] showed how to parallelize (in a model based on Map Reduce) the
subproblem of determining the influence of a particular seed. Seeman and Singer [38] studied the special
case where only a subset of the nodes in the network are available to be infected. They showed a constant
factor approximation to the problem in their setting. He and Kempe [22] and Chen et al. [13] looked at a
robust version of the problem where the exact parameters of the cascade are unknown. Several works [6, 20]
studied the problem as a game between two different infectors.

Following the work of Kempe, Kleinberg, and Tardos [25, 26], there were extensive works to solve InfMax

based on the heuristic implementations of the greedy algorithm designed to be efficient and scalable [11, 12,
30].
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The notion of “near submodularity” was also proposed and studied in [39]. Our definition differs from
the one in [39] in that a 2-quasi-submodular function can be, intuitively, very far from being submodular
(for example, the 2-threshold cascade model). However, our reduction in Section 6 works for all 2-quasi-
submodular functions, and 2-quasi-submodular functions can be arbitrarily close to submodular functions.

Our algorithm in Section 5 was further studied and generalized by Angell and Schoenebeck in [1]. They
showed that, empirically, this generalized algorithm works very well even for arbitrary graphs. Specifically,
they run dynamic programming on a hierarchical decomposition of general graphs, and, empirically, the
algorithm effectively leverages the resultant hierarchical structures to return seed sets substantially superior
to those of the greedy algorithm.

Similar to our inapproximability result for the 2-quasi-submodular cascade model in Sect. 6 but inde-
pendent to our work2, Li et al. [29] studies influence maximization with almost submodular local influence
functions, and shows that, for any γ, ε ∈ (0, 1), InfMax is hard to approximate to within factor 1/N

γ
c even

if the graph only contains Nγ vertices that admit nonsubmodular local influence functions that are ε-almost
submodular (and the remaining vertices admit submodular local influence functions), where c = 3+3/ log 2

2−ε .
When the number of vertices admitting ε-almost submodular local influence functions is a constant, Li et al.
[29] provides a constant-factor approximation algorithm for InfMax.

Our result in Sect. 6 can be seen as a generalization to the inapproximability result in Li et al.: their
results construct a 2-quasi-submodular influence function f (although ε can be arbitrarily small and fixed in
advance, making f arbitrarily close to a submodular function); in contrast, our result holds for any f that
is fixed in advance and universal for all vertices. In addition, our inapproximability result holds even for
undirected graphs, while the graph constructed in the reduction in Li et al. is directed.

At a high level, the techniques of the two approaches are similar. However, the gadgets used in our more
general result require additional ideas.

In Appendix A, we show that our results seamlessly extend to the setting of Li et al. where only a
sublinear fraction of vertices (e.g., Nγ) admit nonsubmodular local influence functions.

2 Preliminaries

In general a cascade on a graph is a stochastic mapping from a subset of vertices—the seed vertices, to
another set of vertices that always contain the seed vertices—the infected vertices. The cascades we study
in this paper all belong to the general threshold model [34], which captures the local decision-making of
vertices.

Definition 1. The general threshold model IGF,D, is defined by a graph G = (V,E) which may or may not
be edge-weighted, and for each vertex v:

i. a monotone local influence function fv : {0, 1}|Γ(v)| → R≥0 where Γ(v) denotes the neighbor vertices of
v and fv(∅) = 0, and

ii. a threshold distribution Dv whose support is R≥0. Let F and D denote the collection of fv and Dv

respectively.
On input S ⊆ V , IGF,D(S) outputs a set of vertices as follows:

1. Initially only vertices in S are infected, and for each vertex v the threshold θv ∼ Dv is sampled from
Dv independently.3

2. In each subsequent round, a vertex v becomes infected if the influence of its infected neighbors exceeds
its threshold.

3. The set of infected vertices is the output (after a round where no additional vertices are infected).

We use k to denote |S|, the number of seeds, and use N to denote |V |, the total number of vertices in G.
Let

σG
F,D(S) = E

[∣
∣IGF,D(S)

∣
∣
]

be the expected total number of infected vertices due to the influence of S, where the expectation is taken
over the samplings of the thresholds of all vertices. We refer to σG

F,D(·) as the global influence function.

2Both [29] and the WINE 2017 conference version of this paper were published in December, 2017.
3The rationale of sampling thresholds after the seeds’ selection is to capture the scenario that the seed-picker does not have

the full information on the agents in a social network, and this setting has been used in many other works [25, 34].
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Figure 1: An example of a hierarchy tree with its corresponding graph. The number on each node of
the hierarchy tree on the left-hand side indicates the weight of the node, which reflects the weight of the
corresponding edges on the hierarchical block graph on the right-hand side in the above-mentioned way.

Sometimes we write σ(·) with the parameters G,F,D omitted, when there is no confusion. Because each fv
is monotone, it is straightforward to see that σ is monotone.

Definition 2. The InfMax problem is an optimization problem which takes as inputs G = (V,E), F ,
D, and an integer k, and outputs argmaxS⊆V :|S|=k σ

G
F,D(S), a seed set of size k that maximizes the global

influence.

In this paper, we consider several special cases of the general threshold model IGF,D by making assumptions
on the network topology G, or the cascade model4 F,D.

2.1 Assumptions on Graph G

We consider two graph models—the hierarchical blockmodel and the stochastic hierarchical blockmodel, which
are the special case of the well studied blockmodel [41] and stochastic blockmodel [23] respectively.

The Hierarchical Blockmodel

Definition 3. A hierarchical blockmodel is an undirected edge-weighted graph G = (V, T ), where V is the
set of all vertices of the graph G, and T = (VT , ET , wT ) is a node-weighted binary tree T called a hierarchy
tree. In addition, wT satisfies wT (t1) ≤ wT (t2) for any t1, t2 ∈ VT such that t1 is an ancestor of t2.

5 Each
leaf node t ∈ VT corresponds to a subset of vertices V (t) ⊆ V , and the V (t) sets partition the vertices of V .
In general, if t is not a leaf, we denote V (t) = ∪t′: a leaf, and an offspring of tV (t′).

For u, v ∈ V , the weight of the edge (u, v) in G is just the weight of the least common ancestor of u and
v in T . That is w(u, v) = maxt:u,v∈V (t) w(t). If this weight is 0, then we say that the edge does not exist.

To avoid possible confusion, we use the words node and vertex to refer to the vertices in T and G
respectively.

Figure 1 provides an example of how a hierarchy tree defines the weights of edges in the corresponding
graph.

Additionally, we can assume without loss of generality that the hierarchy tree is a full binary tree, as a
node in T having only one child plays no role at deciding the weights of edges in G. For example, in Figure 1,
the node having weight 2 does not affect the weight configuration on the right-hand side. We can delete this
node and promote the node with weight 5 to be a child of the root node. We will keep the full binary tree
assumption from now on.

4The phrase “cascade model” here, as well as in the abstract and Section 1, refers to the description how each vertex is
influenced by its neighbors, which is completely characterized by F and D in the general threshold model.

5Since, as it will be seen later, each node in the hierarchy tree represents a community and its children represent its sub-
communities, naturally, the relation between two persons is stronger if they are in a same sub-community in a lower level.
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The Stochastic Hierarchical Blockmodel The stochastic hierarchical blockmodel is similar to the hier-
archical blockmodel defined in the last section, in the sense that the structure of the graph is determined by
a hierarchy tree. Instead of assigning weights to different edges measuring the strength of relationships, here
we assign a probability with which the edge between each pair of vertices appears. Technically speaking,
a stochastic hierarchical blockmodel is a distribution of unweighted undirected graphs, where each edge is
sampled with a certain probability.

Definition 4. A stochastic hierarchical blockmodel is a distribution G = (V, T ) of unweighted undirected
graphs where V, T are the same as they are in Definition 3 with the additional restriction that the node
weights in T belong to the interval [0, 1]. Let H be the weighted graph defined by the hierarchical blockmodel
H = (V, T ), and let w(e) denote the weight of edge e in H. Then G = (V,E) is sampled by independently
including each edge e with probability w(e).

When it comes to the choices of S, the InfMax problem can be defined in two different ways, regarding
whether we allow the seed-picker to see the sampling G ∼ G before choosing the seed set S.

Definition 5. Pre-sampling stochastic hierarchical blockmodel InfMax is an optimization problem which
takes as inputs G, F , D, an integer k and outputs

argmax
S⊆V :|S|=k

E
G∼G

[
σG
F,D(S)

]
,

a seed set of size k that maximizes the expected global influence.

Definition 6. Post-sampling stochastic hierarchical blockmodel InfMax is an average case version of
InfMax which takes as input G, F , D, and an integer k, and outputs the solution of the InfMax instance
(G,F,D, k) after sampling G from G.

2.2 Assumptions on Cascade Model F,D

We consider several generalizations of the well-studied linear threshold model [25]. The linear threshold
model is a special case of the general threshold model IGF,D, with each fv being linear (see Definition 7
below), and each Dv being the uniform distribution on [0, 1].

The cascade model in Definition 7 generalizes the linear threshold model by removing the assumption on
Dv. The universal local influence model defined in Definition 9, generalizes the linear threshold model by
allowing non-linear fv, while it restricts our attention to unweighted graphs. We also consider a special case
where fv is 2-quasi-submodular in the last subsection.

Linear and Counting Local Influence Functions A natural selection of local influence function fv is
the linear function, by which the influences from v’s neighbors are additive.

Definition 7. Given a general threshold model IGF,D with a weighted graph G, we say that F is linear if for
each v ∈ V we have fv(Sv) =

∑

u∈Sv
w(u, v) for any Sv ⊆ Γ(v).

For a general threshold model IGF,D with linear F , if we additionally assume each Dv is the uniform
distribution on [0, 1], then this becomes the linear threshold model.

Definition 7 defines a cascade model for weighted graphs. We have the following definition which is the
unweighted counterpart to Definition 7.

Definition 8. Given a general threshold model IGF,D with an unweighted graph G, we say that F is counting
if for each v ∈ V we have fv(Sv) = |Sv| for any Sv ⊆ Γ(v).

Universal Local Influence Functions We say fv is symmetric if fv(Sv) only depends on the number of
v’s infected neighbors |Sv| so that each of v’s infected neighbors is of equal importance. In this case, fv can
be viewed as a function fv : Z≥0 → R≥0 which takes an integer as input, rather than a set of vertices. Thus,
fv can be encoded by an increasing sequence of positive real numbers a0, a1, a2, . . . so that fv(i) = ai. Note
that fv(0) = a0 = 0, as we have assumed fv(∅) = 0.

For instance, the local influence function fv defined in Definition 8 is symmetric, with ai = i. In contrast,
fv in Definition 7 is not symmetric, as the neighbors connected by heavier edges contribute more to fv(Sv).
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Definition 9. Given an increasing function f : Z≥0 → [0, 1], the universal local influence model IGf is a

special case of the general threshold model IGF,D, such that for each v ∈ V we have that

• fv is symmetric, and fv = f (such that all fv’s are identical), and

• Dv is the uniform distribution on [0, 1].

Notice that we can assume without loss of generality that G is unweighted in Definition 9, as each fv is
fixed to be some increasing function f which does not depend on the weights of edges.

As a final remark, for any general threshold model IGF,D with each Dv being the uniform distribution on
[0, 1], we can intuitively view fv(Sv) as the probability that v will be infected (where we take fv(Sv) > 1 as
probability 1). In the universal local influence model, ai can be viewed as the probability that a vertex will
be infected, given that it has i infected neighbors.

Submodular and 2-Quasi-Submodular Functions Let g : {0, 1}S → R be a function which takes as
input a subset of a set S. Formally, g is submodular if g(A ∪ {u}) − g(A) ≥ g(B ∪ {u}) − g(B) for any
u ∈ S \B and sets A ⊆ B ⊆ S. Intuitively, this means that the marginal effect of each element decreases as
the set increases.

The definition above can be applied to each local influence functions fv : {0, 1}|Γ(v)| → R≥0, as well as
the global influence function σG

F,D : {0, 1}|V | → R≥0. Given G,F,D we say that a general threshold model
IGF,D(·) is submodular if σG

F,D(·) is. In [34], it has been shown that the local monotonicity and submodularity
of all fv’s implies the global monotonicity and submodularity of IGF,D(·) for all G when Dv is the uniform
distribution on [0, 1].

We are particularly concerned with the universal local influence model in Definition 9. Here f is sub-
modular if the marginal gain of f by having one more infected neighbor is non-increasing as the number of
infected neighbors increases. Formally, for i1 < i2, we have

f(i1 + 1)− f(i1) ≥ f(i2 + 1)− f(i2).

Intuitively, f is submodular if its domain can be smoothly extended to R≥0 to make f concave.
We will consider 2-quasi-submodular local influence functions f , which is “almost” submodular such that

the submodularity is only violated for the first two inputs of f . In particular, we fail to have the submodular
constraint f(1)−f(0) ≥ f(2)−f(1), and instead we have f(1)−f(0) < f(2)−f(1), which is just f(2) > 2f(1)
as f(0) = 0.

Definition 10. f : Z≥0 → [0, 1] is 2-quasi-submodular if f(2) > 2f(1) and f(i)− f(i− 1) is non-increasing
in i for i ≥ 2.

In general, for any non-zero submodular function f , if we sufficiently decrease f(1), f becomes 2-quasi-
submodular. Thus, from any non-zero submodular function, we can obtain a 2-quasi-submodular function.

We note that the 2-threshold cascade model, where each vertex will be infected if it has at least 2
infected neighbors, can be viewed as the universal local influence model with a 2-quasi-submodular f (with
f(0) = f(1) = 0 and f(i) = 1 for i ≥ 2, keeping the assumption that θv is drawn uniformly at random from
[0, 1]).

3 Hierarchical Blockmodel Influence Maximization

In this section, we provide a strong inapproximability result for InfMax problem for the hierarchical block-
model cascade even when all vertices have a deterministic threshold 1. Specifically, we will show that it is
NP-hard to approximate optimal σ(S) within a factor of N1−ε for any ε > 0 (recall that N = |V | is the
total number of vertices in the graph). The same inapproximability result holds for the most general case
where D is given as input to InfMax.

Theorem 1. Consider the InfMax problem (G,F,D, k). For any constant ε > 0, even if G is a hierarchical
blockmodel, F is linear (see Definition 7), and Dv is the point-mass distribution with Prθv∼Dv (θv = 1) = 1
for each v ∈ V , it is NP-hard to distinguish between the following two cases:

7



Figure 2: The construction of the hierarchy tree T .

• YES: there exists a seed set S with |S| = k such that σG
F,D(S) = Θ(N);

• NO: for any seed set S with |S| = k, we have σG
F,D(S) = O(Nε).

We will prove this by a reduction from the VertexCover problem, a well-known NP-complete problem.

Definition 11. Given an undirected graph Ḡ = (V̄ , Ē) and a positive integer k̄, the VertexCover problem
(Ḡ, k̄) asks if we can choose a subset of vertices S̄ ⊆ V̄ such that |S̄| = k̄ and such that each edge is incident
to at least one vertex in S̄.

The Reduction Given a VertexCover instance (Ḡ, k̄), let n = |V̄ | and m = |Ē|. We use A1, . . . , An to
denote the n vertices and e1, . . . , em to denote the m edges.6 We make the assumptions n > k̄ is an integer
power of 2 and m > n + k̄.7 Let W = nm, M = (n(2W +m) − 1)

1
ε , and δ > 0 be a sufficiently small real

number.
We will construct the graph G = (V,E,w) by constructing a hierarchy tree T which uniquely determines

G (see Definition 3 in Section 2.1). The construction of T is shown in Figure 2. The first log2 n levels of T
is a full balanced binary subtree with n leaves, and the weight of the nodes in all these levels is δ. Each of
those n leaves is the root of a subtree corresponding to each vertex Ai in the VertexCover instance.

The structure of the subtrees corresponding to A2, . . . , An and A1 are shown on the right-hand side of
Figure 2. The numbers on the tree nodes indicate the weights, and in particular

wij =

{
[1−(n+k̄−1)Wδ−(n−1)(j−1)δ−2δ]+δ

W−1+j if edge ej is incident to Ai

1−(n+k̄−1)Wδ−(n−1)(j−1)δ−2δ
W−1+j otherwise

, (1)

for each i = 1, . . . , n and j = 1, . . . ,m.
The leaves of each subtree Ai are the leaves of T , which, as we recall from Definition 3 correspond to

subsets of vertices in G = (V,E,w). Among all the leaves shown on the right-hand side of Figure 2, each
solid dot corresponds to a subset of V containing only one vertex, and each hollow circle corresponds to a
subset of V containing many vertices with the corresponding number of vertices shown.

6We use the letter A to denote the vertices in a VertexCover instance instead of commonly used v, while v is used for the
vertices in an InfMax instance. Since VertexCover can be viewed as a special case of SetCover with vertices corresponding
to subsets and edges corresponding to elements, the letter A, commonly used for subsets, is used here.

7For the assumption that n is an integer power of 2, we can just add isolated vertices to Ḡ. For the assumption m > n+ k̄,
notice that allowing the graph Ḡ to be a multi-graph does not change the nature of VertexCover, we can ensure m to be
sufficiently large by just duplicating edges.
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For each subtree Ai with i = 2, . . . , n, we have constructed m+2 leaves corresponding to 2W +m vertices
in G. They are, in up-to-down order, a clique Di of W vertices, vertices vim, vi(m−1), . . . , vi1, and a clique Ci

of W vertices. As each vertex has threshold 1 and the leaf nodes corresponding to Ci, Di both have weight 1,
infecting any vertex in Ci or Di will cause the infection of all W vertices (which justifies the name “clique”).

The construction of A1 is similar. The only difference is that, instead of connecting to a node correspond-
ing to the vertex v1m, the node with weight w1m is now connected to another node with the same weight
and corresponding to a bundle B in G with M vertices. We shall not call this large bundle B a “clique”, as
the weight of the edge between each pair of these M vertices is w1m ≪ 1, which is much weaker.

It is easy to calculate the total number of vertices in the construction: N = M +M ε.
We present a toy example illustrating the construction of T in Fig. 3, where the explicit construction of

T corresponding to a small graph with 4 vertices and 4 edges is given.

The Reduction Correctness For a VertexCover instance (Ḡ, k̄), consider the InfMax instance
(G,F,D, k) with k = n+ k̄. We aim to show that,

1. If the VertexCover instance (Ḡ, k̄) is a YES instance, then there exists S ⊆ V with |S| = k such
that σ(S) ≥M ;

2. If the VertexCover instance (Ḡ, k̄) is a NO instance, then for any S ⊆ V with |S| = k we have
σ(S) ≤M ε = n(2W +m)− 1.

Proof of (1). Suppose we have a YES VertexCover instance (Ḡ, k̄) with S̄ ⊆ V̄ covering all edges in Ē. In
the InfMax instance, we aim to show that at least M vertices will be infected if we choose those k = n+ k̄
seeds in the following way:

• choose an arbitrary seed in each of the cliques C1, . . . , Cn (a total of n seeds are chosen);

• for each Ai ∈ S̄, choose an arbitrary seed in the clique Di (a total of k̄ seeds are chosen).

By such a choice, in the first round of the cascade, all the W vertices in each of C1, . . . , Cn and each of
those k̄ (Di)’s are infected. We aim to show that all vertices in B will be infected after at most 3m cascade
rounds. We call the set of n vertices {v1j , . . . , vnj} the j-th level, and we will show that the cascade carries
on level by level. In particular, we will first show that all vertices in the first level will be infected in at most
3 rounds. Next, given that all vertices in the first j levels are infected, by similar calculations, we can show
that all vertices in the (j + 1)-th level will be infected.

Consider the first level {v11, . . . , vn1}. Let e1 = (Ai1 , Ai′1
) ∈ Ē. Since the VertexCover instance is

a YES instance, either Ai1 ∈ S̄ or Ai′1
∈ S̄, or both. Assume Ai1 ∈ S̄ without loss of generality, then all

vertices in Di1 are already infected. In the coming round, the vertex vi11 ∈ V will be infected, as

fvi11





n⋃

i=1

Ci ∪
⋃

Ai∈S̄

Di



 = δ

∣
∣
∣
∣
∣
∣

⋃

i6=i1

Ci ∪
⋃

i6=i1,Ai∈S̄

Di

∣
∣
∣
∣
∣
∣

+ wi11|Ci1 |+ δ

(

1 +
1

W

)

|Di1 |

= δ((n− 1) + (k̄ − 1))W +
1− (n+ k̄ − 1)Wδ − δ

W
·W

+ δ

(

1 +
1

W

)

W

= 1.

If Ai′1
∈ S̄ as well, then vi′11 ∈ V will also be infected in the this round, due to the same calculation. On the

other hand, if Ai′1
/∈ S̄, vi′11 will be infected in the next round, as

fvi′11





n⋃

i=1

Ci ∪
⋃

Ai∈S̄

Di ∪ {vi11}



 = δ

∣
∣
∣
∣
∣
∣

⋃

i6=i′1

Ci ∪
⋃

Ai∈S̄

Di ∪ {vi11}

∣
∣
∣
∣
∣
∣

+ wi′11
|Ci′1
|

= δ((n− 1 + k̄)W + 1) +
1− (n+ k̄ − 1)Wδ − δ

W
·W

= 1.
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Figure 3: A toy example illustrating the construction: in this example, n = m = 4, W = mn = 16,
k̄ = 2, M = (n(2W + m) − 1)1/ε = 1431/ε, and the values of ε and δ are set sufficiently small and
unassigned for clarity. The wijs, defined according to (1), are as follows: corresponding to the edge e1 =
(A1, A2), we have w11 = w21 = 1−81δ

16 (shown by larger dots) and w31 = w41 = 1−82δ
16 (shown by smaller

dots); corresponding to the edge e2 = (A1, A3), we have w12 = w32 = 1−84δ
17 (shown by larger dots)

and w22 = w42 = 1−85δ
17 (shown by smaller dots); corresponding to the edge e3 = (A1, A4), we have

w13 = w43 = 1−87δ
18 (shown by larger dots) and w23 = w33 = 1−88δ

18 (shown by smaller dots); corresponding
to the edge e4 = (A3, A4), we have w34 = w44 = 1−90δ

18 (shown by larger dots) and w14 = w24 = 1−91δ
18 (shown

by smaller dots). In this example, Ḡ has a 2-vertex cover {A1, A3}. Corresponding to this, the k = m+ k̄ = 6
seeds should be put at C1, C2, C3, C4, D1, D3 respectively, so that the vertices in the large bundle B (the
one containing 1431/ε vertices) will be eventually infected: firstly, all the vertices in C1, C2, C3, C4, D1, D3

will be infected; in the next step, the influence of these infected vertices is just enough to infect v11, as
|C1|w11 + |D1| · (1 + 1

16 )δ + (|C2| + |C3| + |C4| + |D3|)δ = 1; we can also check by calculation that the
additional infection of v11 will further infect v21, and the additional infection of v21 will further infect
v31, v41, making all the four vertices corresponding to e1 infected; finally, it is easy to check that the cascade
will carry on level-by-level and eventually reach the bundle B. In general, each level i corresponding to the
edge ei = (Aj1 , Aj2) contains n vertices vi1, . . . , vin, and two of them, vij1 , vij2 , are connected to the tree by
a weight heavier than that of the remaining n − 2 vertices. If the vertices in at least one of Dj1 , Dj2 are
infected (corresponding to the case the vertex Aj1 or Aj2 is included in the vertex cover), after the infection
of the vertices in the first i−1 levels, the corresponding vertex in vij1 , vij2 will be infected, which will further
infect all the remaining n− 1 vertices in the i-th level. On the other hand, if none of the vertices in Dj1 , Dj2

is infected, even if the cascade reaches the (i− 1)-th level, no vertex in the i-th level will be infected and the
cascade will end here without reaching the bundle B which contains most vertices of G.
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Therefore, both vi11 and vi′11 will be infected in both cases.
In the next round, the remaining n− 2 vertices {vi01}i0 /∈{i1,i′1};1≤i0≤n will be infected, as we have

fvi01





n⋃

i=1

Ci ∪
⋃

Ai∈S̄

Di ∪ {vi11, vi′11}



 = δ

∣
∣
∣
∣
∣
∣

⋃

i6=i0

Ci ∪
⋃

Ai∈S̄

Di ∪ {vi11, vi′11}

∣
∣
∣
∣
∣
∣

+ wi01|Ci0 |

= δ((n− 1 + k̄)W + 2)+

1− (n+ k̄ − 1)Wδ − 2δ

W
·W

= 1,

in the case Ai0 /∈ S̄ (such that no vertex in Di0 is infected at this moment), and

fvi01





n⋃

i=1

Ci ∪
⋃

i6=i0,Ai∈S̄

Di ∪ {vi11, vi′11}





=δ

∣
∣
∣
∣
∣
∣

⋃

i6=i0

Ci ∪
⋃

i6=i0,Ai∈S̄

Di ∪ {vi11, vi′11}

∣
∣
∣
∣
∣
∣

+ wi01|Ci0 |+ δ

(

1 +
1

W

)

|Di0 |

=δ((n− 1 + k̄ − 1)W + 2) +
1− (n+ k̄ − 1)Wδ − 2δ

W
·W + δ

(

1 +
1

W

)

W

=1 + δ > 1,

in the case Ai0 ∈ S̄ (such that all vertices in Di0 are infected at the first round). In conclusion, all the n
vertices {vi1}1≤i≤n will be eventually infected in at most 3 rounds.

The analysis of the second level is similar. For e2 = (Ai2 , Ai′2
) ∈ Ē, we have either Ai2 ∈ S̄ or Ai′2

∈ S̄
(or both), making one of vi22, vi′22 infected (or both), which further makes both vi22, vi′22 infected (if one of
them is not infected previously), and which eventually makes all the n vertices {vi2}1≤i≤n infected.

For each j = 1, . . . ,m with ej = (Aij , Ai′j
), we have either Aij ∈ S̄ or Ai′j

∈ S̄ (or both). Similar as
above, after either two or three rounds, all the vertices in {vij}1≤i≤n will be infected, if all the vertices in
{vi1}1≤i≤n, . . . , {vi(j−1)}1≤i≤n are already infected.

Therefore, we can see that the cascade after the first round carries on in the following order:

vi11 → vi′11 → {vi1}i6=i1,i′1
→ vi22 → vi′22 → {vi2}i6=i2,i′2

→ · · ·

→ vimm → vi′mm → {vim}i6=im,i′m → B.

Therefore, we conclude 1 as we already have M infected vertices by just counting those in the bundle B.

For the proof of (2), we present a general proof idea before the formal proof.
To show (2) by contradiction, we assume that we can choose a seed set S ⊆ V such that |S| = k = n+ k̄

and σ(S) > M ε. By a careful analysis, we can conclude that the only possible way to choose S is as follows.

• an arbitrary vertex from each of C1, . . . , Cn (a total of n vertices are chosen);

• an arbitrary vertex from each of Dπ1 , . . . , Dπk̄
for certain {π1, . . . , πk} ⊆ {1, . . . , n} (a total of k̄ vertices

are chosen).

The intuitive reason for this is the following: firstly, choosing k seeds among the 2n cliques C1, . . . , Cn, D1, . . . , Dn

is considerably more beneficial, as a seed would cause the infection of W vertices; secondly, if we cannot
choose both Ci and Di, it is always better to choose Ci because the weights wi1, . . . , wim are considerably
larger than δ(1 + 1/W ), if δ is set sufficiently small.

Since the VertexCover instance is a NO instance, there exists an edge ej = (Aij , Ai′j
) such that no

vertex in Dij and Di′j
is chosen as seed. By following similar analysis as in the proof of 1, we can see that

the cascade would stop at the level {vij}i=1,...,n, which concludes (2).
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Proof of (2). Assume that we can choose seed set S ⊆ V such that |S| = k = n+ k̄ and σ(S) > M ε. First
notice that choosing any seeds from B is at most as good as choosing seeds from C1 ∪{v1j}1≤j≤m−1. By our
assumption m > n+ k̄ = k, we can assume without loss of generality that no seed is chosen in B. With this
assumption, we will prove that none of these M vertices will be infected in the cascade. Since the graph G
has a total of N = M +M ε vertices, this contradicts that σ(S) > M ε.

Suppose, for the sake of contradiction, a vertex u ∈ B is infected in round t of the cascade, and there is
no infected vertex in B in the first t− 1 rounds. Let Iu be the set of infected vertices before round t. Since
u is infected in round t, we have fu(Iu) ≥ 1, which, by Definition 3, implies

∑

v∈Iu

w(u, v) ≥ 1.

We analyze the constituents of Iu.
We set δ to be sufficiently (but still polynomially) small such that

(n− 1)(2W +m)δ + δ

(

1 +
1

W

)

≪ w1m.8

Then the infection of each vertex in C1 ∪ {v1j}1≤j≤m−1 has contribution w1m to fu(Iu), while the net
contribution from the infections of all vertices in V \ {C1 ∪ {v1j}1≤j≤m−1 ∪ B} is much less than w1m. On
the other hand, even if all the W +m− 1 vertices in C1 ∪ {v1j}1≤j≤m−1 are included in Iu, the contribution
to fu(Iu) is

(W +m− 1)w1m ≤ 1− (n+ k̄ − 1)Wδ − (n− 1)(m− 1)δ − δ < 1,

which is still not enough. Thus, we conclude that C1 ∪ {v1j}1≤j≤m−1 ⊆ Iu, and the vertices from V \ {C1 ∪
{v1j}1≤j≤m−1 ∪B} should contribute at least (n+ k̄− 1)Wδ+(n− 1)(m− 1)δ+ δ to fu(Iu). From the term
(n + k̄ − 1)Wδ, we can see that at least n + k̄ − 1 cliques from the 2n − 1 cliques C2, . . . , Cn, D1, . . . , Dn

must be included in Iu. Coupled with the observation C1 ⊆ Iu, we need at least n+ k̄ infected cliques from
C1, . . . , Cn, D1, . . . , Dn.

On the other hand, the only way to infect a clique Ci or Di is to seed one of its vertices. To see this for
each Di, it is enough to notice that the weight δ(1+1/W ) is extremely small. To see this for each Ci, notice
that only vi1, . . . , vim have non-negligible influence to Ci, and

m∑

j=1

wij <
m∑

j=1

1

W − 1 + j
< m×

1

W
=

1

n
≪ 1.

Therefore, to have u ∈ B infected in round t, the only possible way is to choose k = n + k̄ seeds from
n+ k̄ cliques, among all the 2n cliques C1, . . . , Cn, D1, . . . , Dn. Lastly, it is straightforward to check that the
infection of an vertex in Di is less influential than the infection of an vertex in the corresponding Ci (both
Ci and Di contain the same number of vertices, so their influences to the outside subtrees are the same;
however, Ci is connected to vi1, . . . , vim with higher weights than Di). Thus, we can assume without loss of
generality that S consists of

• an arbitrary vertex from each of C1, . . . , Cn (a total of n vertices are chosen);

• an arbitrary vertex from each of Dπ1 , . . . , Dπk̄
for certain {π1, . . . , πk} ⊆ {1, . . . , n} (a total of k̄ vertices

are chosen).

Since the VertexCover instance is a NO instance, for the choice S̄ = {Aπ1 , . . . , Aπk̄
}, there exists edge

ej that is not covered by S̄. Let j∗ be the smallest j such that ej is not covered by S̄.
We first deal with the case j∗ = 1. The case where j∗ > 1 is dealt with subsequently.

8This is always possible: when δ → 0, the left-hand side approaches to 0, while we have limδ→0 w1m = 1

W+m−1
for the

right-hand side.
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If j∗ = 1, for e1 = (Ai1 , Ai′1
), we have Ai1 , Ai′1

/∈ S̄. In this case, vi11 will not be infected, as

fvi11





n⋃

i=1

Ci ∪
⋃

Ai∈S̄

Di



 = δ

∣
∣
∣
∣
∣
∣

⋃

i6=i1

Ci ∪
⋃

Ai∈S̄

Di

∣
∣
∣
∣
∣
∣

+ wi11|Ci1 |

= δ(n− 1 + k̄)W +
1− (n+ k̄ − 1)Wδ − δ

W
·W

= 1− δ < 1,

and vi′11 will not be infected for the same reason. For i0 6= i1, i
′
1, vi01 will not be infected either, as we have

fvi01





n⋃

i=1

Ci ∪
⋃

Ai∈S̄

Di



 = δ

∣
∣
∣
∣
∣
∣

⋃

i6=i0

Ci ∪
⋃

Ai∈S̄

Di

∣
∣
∣
∣
∣
∣

+ wi01|Ci0 |

= δ(n− 1 + k̄)W +
1− (n+ k̄ − 1)Wδ − 2δ

W
·W

= 1− 2δ < 1,

in the case Ai0 /∈ S̄, and

fvi01





n⋃

i=1

Ci ∪
⋃

Ai∈S̄

Di



 = δ

∣
∣
∣
∣
∣
∣

⋃

i6=i0

Ci ∪
⋃

i6=i0,Ai∈S̄

Di

∣
∣
∣
∣
∣
∣

+ wi01|Ci0 |+ δ

(

1 +
1

W

)

|Di0 |

= δ(n− 1 + k̄ − 1)W +
1− (n+ k̄ − 1)Wδ − 2δ

W
·W

+ δ

(

1 +
1

W

)

W

= 1− δ < 1,

in the case Ai0 ∈ S̄. Thus, none of {vi1}1≤i≤n will be infected. Since wij1 > wij2 whenever j1 < j2 for any i
(easy to see by observing wij ≈

1
W−1+j ), none of {vij}1≤i≤n;2≤j≤m will be infected. In particular, no vertex

in B can be infected, which leads to the desired contradiction.
If j∗ > 1, by the similar analysis in the proof of 1 for the YES instance case, after many cascade rounds,

all vertices in {vij}1≤i≤n;1≤j≤j∗−1 will be infected. For ej∗ = (Aij∗ , Ai′
j∗
), we have Aij∗ , Ai′

j∗
/∈ S̄. In this

case, vij∗ j∗ will not be infected, as

fvij∗ j∗





n⋃

i=1

Ci ∪
⋃

Ai∈S̄

Di ∪ {vij}1≤i≤n;1≤j≤j∗−1





=δ

∣
∣
∣
∣
∣
∣

⋃

i6=ij∗

Ci ∪
⋃

Ai∈S̄

Di

∣
∣
∣
∣
∣
∣

+ wij∗ j∗
∣
∣Cij∗ ∪ {vij∗ j}1≤j≤j∗−1

∣
∣+ δ

∣
∣{vij}i6=ij∗ ,1≤j≤j∗−1

∣
∣

=δ(n− 1 + k̄)W

+
1− (n+ k̄ − 1)Wδ − (n− 1)(j∗ − 1)δ − δ

W − 1 + j∗
· (W + j∗ − 1) + δ(n− 1)(j∗ − 1)

=1− δ < 1,

and vi′
j∗

j∗ will not be infected for the same reason. Following similar analysis, vi0j∗ will not be infected

for i0 6= ij∗ , i
′
j∗ , and none of {vij∗}1≤i≤n will be infected. By the same observation wij1 > wij2 whenever

j1 < j2, none of {vij}1≤i≤n;j∗≤j≤m will be infected. In particular, no vertex in B can be infected, which
again leads to the desired contradiction. We conclude (2) here.

Since M = Θ(N), (1) and (2) imply Theorem 1.
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4 Stochastic Hierarchical Blockmodel Influence Maximization

In this section, we will present strong inapproximability results for both pre-sampling and post-sampling
versions of stochastic hierarchical blockmodel InfMax. A major difference between the results in Section 3
and this section is that the strong inapproximability result no longer holds if we assume θv = 1 for all v ∈ V
in the stochastic hierarchical blockmodel. In fact, if all the thresholds are fixed to be 1 and F is counting (see
Definition 8), σ(·) in both Definition 5 and Definition 6 become submodular, in which case we can have a
simple greedy (1−1/e)-approximation algorithm [25, 35]. In particular, assuming θv = 1 for all v ∈ V makes
post-sampling InfMax trivial: as an infected seed will eventually infect a whole connected component of
G, the optimal way of choosing S is to choose k seeds from the first k largest connected components, after
seeing the sampling G ∼ G. For pre-sampling InfMax, the model becomes the independent cascade model
[25], which is known to be submodular.

The following two theorems are the same, except that Theorem 2 corresponds to the hardness for pre-
sampling model (see Definition 5), while Theorem 3 show the same hardness result for the post-sampling
model (see Definition 6) via a randomized Karp’s reduction.

Theorem 2. Consider the pre-sampling stochastic hierarchical blockmodel InfMax problem (G, F,D, k).
For any ε > 0, even if F is counting and Dv is a point-mass distribution on certain integer θv for each
v ∈ V , it is NP-hard to distinguish between the following two cases:

• YES: there exists a seed set S with |S| = k such that E
G∼G

[
σG
F,D(S)

]
= Θ(N);

• NO: for any seed set S with |S| = k, we have E
G∼G

[
σG
F,D(S)

]
= O(Nε).

Theorem 3. Consider the post-sampling stochastic hierarchical blockmodel InfMax problem (G, F,D, k).
For any ε > 0 and c > 0, even if F is counting and Dv is a point-mass distribution on certain integer θv for
each v ∈ V , it is NP-hard to distinguish between the following two cases with probability at least N−c (where
the probability is taken over G ∼ G):

• YES: there exists a seed set S with |S| = k such that σG
F,D(S) = Θ(N);

• NO: for any seed set S with |S| = k, we have σG
F,D(S) = O(Nε).

As a remark to Theorem 3, the theorem says that if we have an oracle that outputs a solution which
approximates maxS⊆V,|S|≤k σ(S) within a factor of N1−ε for certain samples G ∼ G, and with probability
at least N−c we receive a sample G in the set of graphs for which the oracle outputs valid solutions, then
we can use this oracle to solve any NP-complete problem as long as we have randomness to sample G ∼ G.

We will prove both Theorem 2 and Theorem 3 by a reduction from VertexCover. Given a Ver-

texCover instance (Ḡ = (V̄ , Ē), k̄), we will construct a hierarchy tree T which determines G for both
proofs.

The Reduction Let n = |V̄ | and m = Ē as usual. Assume m > n > k̄2 + 2, and log2 n is an integer.9 In
addition, we assume that A1 ∈ S̄ whenever the VertexCover instance is a YES instance.10

We define the following variables used in this section.

δ =
1

10mn2k̄
, and ∆ = mn2δ =

1

10k̄
, W = m10n10.

Let M be an extremely large number whose value will be decided later.
The construction of T is shown in Figure 4. T is a full balanced binary tree with log2 n levels and n

leaves. The weight of all non-leaf nodes is 1/W , and the weight of all leaves is 1. The i-th leaf corresponds
to Ai ∈ V̄ in the VertexCover instance. Recall from Definition 4 that G = (V, T ) is determined by T , and
in particular each leaf of T corresponds to a subset of V . As the weight of each leaf is 1, meaning each edge

9Notice that we can assume n ≫ k̄ is an integer power of 2 by adding isolated vertices to Ḡ which are never picked, and we
can assume m > n by duplicate each edge (which makes Ḡ a multi-graph).

10This assumption can be made without loss of generality because we can add two extra vertices named A1, A2 and one extra
edge (A1, A2) such that one of A1, A2 much be chosen to cover this edge, and we can assume A1 is chosen.

14



appear with probability 1, its corresponding subset of vertices forms a clique in all G ∼ G. We will call the
clique corresponding to the i-th leaf the i-th clique in the remaining part of this section. For each clique i,
we will first describe the vertices we have constructed in Figure 4, and then define their thresholds.

For positive integers x, y, denote by B(x, y) a bundle of x vertices with threshold y. For each i = 1, . . . , n,
we construct the following vertices for the i-th clique:

• a bundle of k̄W 2 vertices: Bi := B
(
k̄W 2,∞

)
, and

• m(n− 2) bundles of W 3 vertices: Bijı := B
(
W 3, θijı

)
for j = 1, . . . ,m and ı = 1, . . . , n− 2.

For i = 1, we add an extra bundle C :=
(
M, θ1(m+1)

)
. The thresholds {θijı} and θ1(m+1) of those constructed

vertices will be defined later.
By our construction, the 1-st clique has M + k̄W 2 +m(n− 2)W 3 vertices, which is much more than the

number of vertices k̄W 2 +m(n− 2)W 3 in each of the remaining cliques. As a remark, we have constructed
N = M + nm(n− 2)W 3 + nk̄W 2 vertices for G. Moreover, for M whose value we have not decided yet, we
can make it arbitrarily close to N .

Denote by B·jı := {Bijı}i=1,...,n the n bundles in a horizontal level in Figure 4 (for example, in Figure 4,
after the top-level {B1, . . . , Bn}, there come levels B·11, B·12, . . .). We will call B·jı a level and abuse the
word “level” to refer to the vertices in B·jı.

The correspondence between the VertexCover instance and the graph we constructed is as follows.
Recall that each vertex Ai ∈ V̄ corresponds to the i-th clique. Now, for each edge ej ∈ Ē, we have constructed
n− 2 levels B·j1, . . . , B·j(n−2), which are n(n− 2) bundles of W 3 vertices. For example, in Figure 4, we have
illustrated the n − 2 levels corresponding to e1 and the n − 2 levels corresponding to em, while the levels
corresponding to the remaining edges in Ē are omitted.

For each j = 1, . . . ,m and ı = 1, . . . , n− 2, we denote by B≺jı the union of the first (j − 1)(n− 2)+ ı− 1
levels (where the levels are ordered from up to down in Figure 4):

B≺jı :=
⋃

(n−2)j′+ı′<(n−2)j+ı

B·j′ı′

=B·11 ∪B·12 ∪ . . . ∪B·1(ı−1) ∪B·1ı ∪ . . . ∪B·1(n−3) ∪B·1(n−2)∪

B·21 ∪B·22 ∪ . . . ∪B·2(ı−1) ∪B·2ı ∪ . . . ∪B·2(n−3) ∪B·2(n−2)∪

· · ·

B·j1 ∪B·j2 ∪ . . . ∪B·j(ı−1).

Next, we define the thresholds {θijı} and θ1(m+1). Denote

ωjı := ((j − 1)(n− 2) + (ı− 1))W 3 + (n− 1) ((j − 1)(n− 2) + (ı− 1))W 2,

which is the expected number of neighbors of each bijı ∈ Bijı in B≺jı. For each fixed j, denote by ij , i
′
j the

two indices such that ej = (Aij , Ai′j
) with ij < i′j , and all θijı’s are defined as follows.








θ1j1 θ2j1 · · · θnj1
θ1j2 θ2j2 · · · θnj2

...
...

. . .
...

θ1jn θ2jn · · · θnjn







:=








ωj1 + (1−∆)W 2 ωj1 + (1−∆)W 2 · · · ωj1 + (1−∆)W 2

ωj2 + (1−∆)W 2 ωj2 + (1−∆)W 2 · · · ωj2 + (1−∆)W 2

...
...

. . .
...

ωjn + (1−∆)W 2 ωjn + (1−∆)W 2 · · · ωjn + (1−∆)W 2







+

Column ij Column i′j
















1W 2 2W 2 3W 2 · · · 0 · · · 0 · · · (n− 3)W 2 (n− 2)W 2

(n− 2)W 2 1W 2 2W 2 · · · 0 · · · 0 · · · (n− 4)W 2 (n− 3)W 2

(n− 3)W 2 (n− 2)W 2 1W 2 · · · 0 · · · 0 · · · (n− 5)W 2 (n− 4)W 2

...
...

...
...

...
...

...
...

...
...

2W 2 3W 2 4W 2 · · · 0 · · · 0 · · · (n− 2)W 2 1W 2
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Figure 4: The construction of the hierarchy tree T .

Notice that for different ı1, ı2 ∈ {1, . . . , n − 2}, (θ1jı1 − ωjı1 , θ2jı1 − ωjı1 , . . . , wnjı1 − ωjı1) is a permutation
of (w1jı2 − ωjı2 , w2jı2 − ωjı2 , . . . , wnjı2 − ωjı2). Specifically, for the second matrix above, excluding the ij-th
and the i′j-th columns, the first row is an arithmetic progression 1W 2, 2W 2, (n − 2)W 2, and the (ı + 1)-th
row is obtained by cyclically shifting the ı-th row to the right by 1 unit.

Finally, for the threshold θ1(m+1) of each vertex in the bundle C. We define

θ1(m+1) := m(n− 2)W 3 + (n− 1)m(n− 2)W 2 + (1−∆)W 2.

As we will see later, θ1(m+1) is slightly less than the expected number of neighbors of each c ∈ C in V \ C,
by an amount of Θ(∆W 2).

The High-level Ideas Before presenting rigorous arguments, we provide high level ideas of the reduction
in this subsection.

We have constructed the hierarchy tree T , which corresponds to a graph distribution G (refer to Def-
inition 4). In the next subsection, we will show that a sample G ∼ G can simulate the corresponding
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VertexCover instance with high probability. In particular, we will say such samples are “good” samples,
which we will define rigorously, and we will prove that a sample is good with probability 1− o(1).

Given a VertexCover instance (Ḡ, k̄), we consider the InfMax instance (G,F,D, k), where G is a
good sample, F,D are as defined in Theorem 2 (or Theorem 3), and k = k̄W 2.

Suppose we have a good sample G. If the VertexCover instance is a YES instance, we can find S̄ ⊆ V̄
with |S̄| = k̄ such that S̄ covers all edges in Ē. For each Ai ∈ S̄, we choose W 2 seeds from the bundle Bi,
so a total of k̄W 2 = k seeds are chosen.

Similar to what happens in Section 3, the cascade will flow level-by-level. In particular, for the first edge
e1 ∈ Ē and i1, i

′
1 such that e1 = (Ai1 , Ai′1

), the vertices in the bundles Bi111 and Bi′111
have the lowest

threshold in the level B·11. On the other hand, by our choice of k seeds, we have chosen W 2 seeds from one
(or both) of Bi and Bi′ . Calculations show that these seeds are just enough to infect all vertices in Bi111 and
Bi′111

. The infection of these vertices will eventually infected the entire level B·11, and similar analysis shows
that the levels B·12, B·13, ... will be infected one-by-one. Finally, the cascade can reach the huge bundle C,
and most vertices in G will be infected.

If the VertexCover instance is a NO instance, we can assume all seeds are chosen from {B1, . . . , Bn},
as it is always a better idea to choose seeds from vertices having higher thresholds in a clique.11 We say that
the i-th clique is activated if we have chosen almost W 2 seeds from Bi, or more than this number. We can
draw an analogy between activating the i-th clique in InfMax and picking the set Ai in VertexCover.

Since the VertexCover instance is a NO instance, certain element ej∗ is not covered, and we will show
that the cascade will stop at one of the n−2 levels B·j∗1, . . . , B·j∗(n−2). Intuitively, the thresholds of vertices
in these levels shift cyclically by our construction, and there exists a level whose vertices’ thresholds are
shifted to the position such that the cascade fails on all leaves. In particular, even if we put all k = k̄W 2

seeds in a single bundle Bi, there exists a level ı such that θij∗ı is large enough, making the cascade still fail
on leaf i. On the other hand, there are only two leaves ij∗ , i′j∗ having lowest θij∗ı in all levels ı = 1, . . . , n−2,
which are exactly those ij∗ , i

′
j∗ with ej∗ = (Aij∗ , Ai′

j∗
). However, we have very few seeds (considerably fewer

than W 2) on the ij∗ -th and the i′j∗ -th cliques, by our assumption that ej∗ is not covered.
Since the cascade will fail on a certain intermediate level, it cannot reach the huge bundle C. By making

C contain most vertices in G (i.e., making M large enough), we can see that the number of infected vertices
corresponding to a YES VertexCover instance is significantly higher, which implies both Theorem 2 and
Theorem 3.

In the next two subsections, we will rigorously prove the correctness of our reduction.

Good Samplings In this subsection, we define “good” samplings G ∼ G which are useful in the reduction
from VertexCover, in the sense that G successfully simulates the VertexCover instance, and we show
that a sample G ∼ G is good with a high probability.

Firstly, consider a W 3 sized bundle Bijı, and an arbitrary vertex v not in the i-th clique. Over all the
samplings G ∼ G, v’s expected number of neighbors in Bijı is

E
G∼G

[|Γ(v) ∩Bijı|] =
1

W
·W 3 = W 2.

Secondly, consider a set Di of δW 2 vertices in the i-th clique, and a set D−i of (k̄ + 1)W 2 vertices that
are not in the i-th clique, the expected total number of edges between Di and D−i is

E
G∼G

[|{(u, v) : u ∈ Di, v ∈ D−i}|] =
1

W
· δW 2 · (k̄ + 1)W 2 = δ(k̄ + 1)W 3.

We define a sampling G ∼ G to be “good” if the above two numbers roughly concentrate on their
expectations.

Definition 12. A sampling G ∼ G is good if the following holds.

11Rigorously, this may not be true in the post-sampling case, where the seed-picker can see the sample G. The vertices not
in {B1, . . . , Bn} may happen to have more neighbors across cliques, and the seed-picker can take advantage of this. We will
reason about this later. However, for now, we assume all seeds are chosen from {B1, . . . , Bn}.
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1. For all i = 1, . . . , n, j = 1, . . . ,m and ı = 1, . . . , n− 2, and any vertex v not in the i-th clique,

(1 − δ)W 2 < |Γ(v) ∩Bijı| < (1 + δ)W 2.

2. For any set Di of δW 2 vertices in the i-th clique, and any set D−i of (k̄ + 1)W 2 vertices that are not
in the i-th clique, the number of edges between Di and D−i is less than W 3.6:

|{(u, v) : u ∈ Di, v ∈ D−i}| < W 3.6.

The following lemma shows that a sampling G ∼ G is good with high probability.

Lemma 1. A sampling G ∼ G is good with probability more than 1− e−
√
W .

Proof. We apply Chernoff-Hoeffding inequality and union bounds to show this lemma. In a random sample
G ∼ G, for each i = 1, . . . , n; j = 1, . . . ,m; ı = 1, . . . , n − 2 and v, requirement 1 in Definition 12 fails with
probability

Pr
[∣
∣W 2 − |Γ(v) ∩Bijı|

∣
∣ ≥ δW 2

]
≤ 2 exp

(

−
1

2

(
δW 2

)2 1

W 3

)

< e−W 0.6

,

where the last inequality is due to (δW 2)2 = 1
k̄2m

38n36 > W 3.6.
For each Di and D−i, requirement 2 in Definition 12 fails with probability

Pr
[
|{(u, v) : u ∈ Di, v ∈ D−i}| ≥W 3.6

]
≤ exp

(

−
1

2

(
W 3.6 − δ(k̄ + 1)W 3

)2

δW 2 · (k̄ + 1)W 2

)

< e−W 3

.

By a union bound, the probability that a sample G ∼ G is not good is

Pr[not good] < nm(n− 2)Ne−W 0.6

+

(
N

δW 2

)(
N

k̄W 2

)

e−W 3

< N2e−W 0.6

+N δW 2+k̄W 2

e−W 3

= e2 logNe−W 0.6

+ e(δW
2+k̄W 2) logNe−W 3

< e−
√
W , (as N = poly(W ), which implies logN = o(W c) for arbitrary c > 0)

which immediately implies the lemma.

The Reduction Correctness In this section, we show that InfMax on a good sample G ∼ G simulates
the VertexCover problem.

Lemma 2. Consider InfMax with k = k̄W 2 seeds. For any good sample G ∼ G,

1. if the VertexCover instance is a YES instance, a total of k̄W 2 + nm(n− 2)W 3 +M vertices can be
infected by properly choosing the k seeds;

2. if the VertexCover instance is a NO instance, at most N−M vertices can be infected for any choices
of the k seeds.

Proof of (1). Suppose the VertexCover instance is a YES instance. Let S̄ be the choice of k̄ vertices in
VertexCover instance that covers all edges in Ē. As mentioned earlier, we can assume A1 ∈ S̄. For each
Ai ∈ S̄, we choose W 2 seeds from the bundle Bi, so a total of k̄W 2 = k seeds are chosen.

We show that all vertices in the level B·11 will be infected. Consider e1 = (Ai1 , Ai′1
) with i1 < i′1. By the

fact the VertexCover instance is a YES instance and the way we choose the seeds, W 2 vertices in either
Bi1 or Bi′1

, or both, are seeded. Assume without loss of generality that W 2 vertices from Bi1 are seeded,
then all the vertices in the bundle Bi111, having threshold θi111 = ω11 + (1−∆)W 2 + 0 = (1−∆)W 2 < W 2

will be infected. As for the vertices in Bi′111
, they will be infected in the same way if W 2 vertices from Bi′1

are also seeded. On the other hand, if no vertex in Bi′1
is seeded, all vertices in Bi′111

will be infected due to
the influence of Bi111. This is because 1) each vertex in Bi′111

has more than (1− δ)W 2 infected neighbors in
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Bi111 by requirement 1 of Definition 12, and 2) each vertex in Bi′111
has threshold (1−∆)W 2 < (1− δ)W 2.

In the next n− 2 iterations, by a careful calculation and based on requirement 1 of Definition 12, all vertices
in the remaining n− 2 bundles {Bi11}i6=i1,i′1

will be infected in the following order:

B111 → B211 → · · ·B(i1−1)11 → B(i1+1)11 → · · ·B(i′1−1)11 → B(i′1+1)11 → · · · → Bn11. (2)

Therefore, the entire level B·11 will be infected.
By similar analysis, we will show that the next level B·12 will be infected after the previous level B·11.

Again, assume without loss of generality that W 2 seeds in Bi1 are chosen. (Remember that the first n− 2
levels are for edge e1 ∈ Ē, so we are still working on e1.) Each vertex in Bi112 has (W 2 + W 3) infected
neighbor in the i1-th clique, and has more than (n − 1)(1 − δ)W 2 infected neighbors in {Bi11}i6=i1 , which
is a total of more than W 3 + nW 2 − (n − 1)δW 2 neighbors. Moreover, each vertex in Bi112 has threshold
θi112 = ω12 + (1 −∆)W 2 + 0 = W 3 + (n− 1)W 2 + (1 −∆)W 2 = W 3 + nW 2 −∆W 2 which is less than the
number of infected neighbors, as −∆ < −(n − 1)δ. Therefore, all vertices in Bi112 will be infected. As for
the vertices in Bi′112

, following the analysis in the last paragraph, they will be infected at the same iteration
if W 2 vertices in Bi′1

are seeded, and they will be infected at the next iteration due to the extra influence
from Bi112 if not. Finally, the remaining n− 2 bundles {Bi12}i6=i1,i′1

will be infected in the following order:

B212 → B312 → · · ·B(i1−1)12 → B(i1+1)12 → · · ·B(i′1−1)12 → B(i′1+1)12 → · · ·Bn12 → B112, (3)

which is similar to (2), but is cyclically shifted to the left by 1 unit, due to our cyclic construction of the
thresholds. Thus, we have shown that the level B·12 will be infected after the previous level B·11.

Following the same analysis, we can conclude that all levels will be infected in the following order:

B·11 → B·12 → · · · → B·1(n−2) →

B·21 → B·22 → · · · → B·2(n−2) →

· · ·

B·m1 → B·m2 → · · · → B·m(n−2).

Lastly, each vertex c ∈ C has W 2 + m(n − 2)W 3 infected neighbors in the 1-st clique (notice that we
assume A1 ∈ S̄, which implies W 2 vertices in B1 are seeded, which contributes W 2 infected neighbors), and
more than (n − 1) ·m(n − 2)(1 − δ)W 2 infected neighbors from the other n − 1 cliques, which is a total of
m(n − 2)W 3 + (n − 1)m(n − 2)W 2 + W 2 − (n − 1)m(n − 2)δW 2 neighbors. In addition, c has threshold
θ1(m+1) = m(n−2)W 3+(n−1)m(n−2)W 2+(1−∆)W 2, which is less than the number of infected neighbors,
as we have −∆ = −mn2δ < −(n−1)m(n−2)δ. Consequently, all vertices in C will be infected. By summing
up the total number of infected vertices, we conclude the first part of this lemma.

Proof of (2). Suppose the VertexCover instance is a NO instance. For those nk̄W 2 vertices in {Bi}i=1,...,n

having threshold ∞, they will not be infected unless being seeded, which means at least (n− 1)k̄W 2 of them
will not be infected. To show that the total number of infected vertices cannot exceed N −M , it is enough
to show that at most (n− 1)k̄W 2 vertices can be infected in the bundle C of M vertices. We will show the
following stronger claim.

Proposition 1. If the VertexCover instance is a NO instance, all vertices in C will not be infected unless
being seeded.

To show Proposition 1, we show that the cascade will stop at an intermediate level. We will first identify
this level, and then show this claim in Proportion 2.

Consider an arbitrary seed set S (with |S| = k). Let Si be the seeds chosen from the i-th clique,
and ki = |Si| so that

∑n
i=1 ki = k. We say that the i-th clique is activated if ki ≥ (1 − 9∆)W 2. Since

(k̄ + 1)(1− 9∆)W 2 = k̄W 2 +
(
1− 9

10 −
9

10k̄

)
W 2 > k, at most k̄ cliques can be activated.

If we draw an analogy between activating a clique and picking a vertex in VertexCover, by the fact
that the VertexCover instance is a NO instance, there exists j∗ where ej∗ = (Aij∗ , Ai′

j∗
) such that both

ij∗ -th and i′j∗ -th cliques are not activated. For the ease of illustration, assume without loss of generality that
ij∗ = n− 1 and i′j∗ = n. Since we have assumed n > k̄2 + 2, there exists ı∗ ≤ n− 1− k̄ such that the ı∗-th,
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the (ı∗ + 1)-th, ..., and the (ı∗ + k̄ − 1)-th cliques are not activated. (If we have an activated clique within
any k̄ consecutive cliques in the first n− 2 cliques, the total number of activated cliques is at least n−2

k̄
> k̄,

which is a contradiction.) We will show that the cascade stops at the level B·j∗ı∗ . That is, there are only
o(W 3) infected vertices in




⋃

(n−2)j+ı≥(n−2)j∗+ı∗

B·jı



 ∪ C = V \ (B1 ∪ · · · ∪Bn ∪B≺j∗ı∗) .

We will show that this is true even in the case that all vertices in the previous (n− 2)(j∗ − 1)+ ı∗− 1 levels
(i.e., those in B≺j∗ı∗) are infected.

Proposition 2. There are only o(W 3) infected vertices in the level B·j∗ı∗ , given that all vertices in B≺j∗ı∗

and at most k̄W 2 vertices elsewhere (i.e., in V \B≺j∗ı∗) are infected.

The “ k̄W 2 vertices elsewhere” mentioned in Proposition 2 refer to the k = k̄W 2 seeds. Notice that the
seed-picker may choose the seeds outside B≺j∗ı∗ , and Proposition 2 holds even if all vertices in B≺j∗ı∗ are
infected and the k seeds are all outside B≺j∗ı∗ .

Before proving Proposition 2, we remark that Proposition 2 immediately implies Proposition 1: the
vertices in the later levels B·j∗(ı∗+1), B·j∗(ı∗+2), . . . , B·m(n−2) have thresholds even higher than the thresholds
of vertices in B·j∗ı∗ , and the thresholds increase by Θ(W 3) for each next level.

Proposition 2 can be proved by just a sequence of calculations.

Proof of Proposition 2. Suppose all vertices in B≺j∗ı∗ and at most k̄W 2 vertices elsewhere are infected after
a certain cascade iteration t. We will first show that less than δW 2 not-seeded vertices can be infected in each
bundle Bij∗ı∗ for i = 1, . . . , n in the next cascade iteration t + 1. Specifically, we will show this separately
for (i) the 2 bundles Bnj∗ı∗ and B(n−1)j∗ı∗ , (ii) the k̄ bundles Bı∗j∗ı∗ , B(ı∗+1)j∗ı∗ , . . . , B(ı∗+k̄−1)j∗ı∗ , and (iii)
the remaining n− 2− k̄ bundles. Then, we will show the same claim for later iterations.

(i) For each vertex in the bundle Bnj∗ı∗ , by requirement 1 of Definition 12, the number of infected
neighbors among the vertices in B≺j∗ı∗ is less than

((n− 2)(j∗ − 1) + ı∗ − 1)W 3

︸ ︷︷ ︸

from the n-th clique

+(n− 1) · ((n− 2)(j∗ − 1) + ı∗ − 1) · (1 + δ)W 2

︸ ︷︷ ︸

from the other n−1 cliques

< ωj∗ı∗ +∆W 2. (4)

For each vertex in the bundle Bnj∗ı∗ , we have already counted the number of infected neighbors in B≺j∗ı∗ .
Next, we consider the infected neighbors in V \B≺j∗ı∗ . There are at most k̄W 2 of them by our assumption,
and they are the seeds S =

⋃n
i=1 Sn.

The number of infected neighbors among seed set Sn contributes at most kn < (1− 9∆)W 2, as we have
assumed the n-th clique is not activated. Summing up this and (4), the total number of infected neighbors
in B≺j∗ı∗ ∪Sn is at most ωj∗ı∗ + (1− 8∆)W 2. Since by our construction θnj∗ı∗ = ωj∗ı∗ + (1−∆)W 2 +0, to
have δW 2 not-seeded vertices infected, the number of edges between each of these δW 2 vertices and

⋃n−1
i=1 Si

should be more than
7∆W 2, 7∆W 2 − 1, 7∆W 2 − 2, . . . , 7∆W 2 − δW 2 + 1

respectively. This requires a total of

δW 2−1∑

t=0

(7∆W 2 − t) > δW 2(7∆W 2 − δW 2 + 1) > W 3.6

edges, where the last inequality is based on the fact δW 2 = 1
10k̄

m19n18 ≫W 1.6. Since
∑n−1

i=1 ki < (k̄+1)W 2,
this is a contradiction to requirement 2 of Definition 12.

For exactly the same reason, we can only have less than δW 2 not-seeded vertices infected in the bundle
B(n−1)j∗ı∗ , as θ(n−1)j∗ı∗ = θnj∗ı∗ .

(ii) Next, we consider these k̄ bundles: Bı∗j∗ı∗ , B(ı∗+1)j∗ı∗ , . . . , B(ı∗+k̄−1)j∗ı∗ , whose corresponding cliques
ı∗, ı∗+1, . . . , ı∗+ k̄− 1 are not activated by our assumption. Based on our construction, the vertices in these
bundles have thresholds

ωj∗ı∗ + (1−∆)W 2 + 1W 2, ωj∗ı∗ + (1 −∆)W 2 + 2W 2, . . . , ωj∗ı∗ + (1−∆)W 2 + k̄W 2
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respectively, which are all more than θnj∗ı∗ . By the same arguments, we can show that having δW 2 not-
seeded vertices infected in any of these bundles requires even more edges, which contradicts requirement 2
of Definition 12.

(iii) For each of the remaining n−2− k̄ bundles Bij∗ı∗ with i 6= ı, ı+1, . . . , ı+ k̄−1, n−1, n, although the
corresponding i-th clique may be activated, the threshold θij∗ı∗ is at least ωj∗ı∗ + (1 −∆)W 2 + (k̄ + 1)W 2.
The number of seeds chosen in the i-th clique ki cannot offset the term (k̄ + 1)W 2. Therefore, applying the
same arguments shows us that less than δW 2 not-seeded vertices can be infected in each of these bundles.

We have shown that less than δW 2 not-seeded vertices can be infected in each bundle Bij∗ı∗ in iteration
t + 1. To show this claim for future iterations, assume for the sake of contradiction that 1) at iteration
t∗ > t+1, less than δW 2 not-seeded vertices are infected in each bundle Bij∗ı∗ , and 2) at iteration t∗+1, for
certain i∗ we have at least δW 2 not-seeded vertices infected in the bundle Bi∗j∗ı∗ . Denote by D−i∗ the set of
those vertices outside the i-th clique which are infected during the iterations t+ 1, t+ 2, . . . , t∗, and Di∗ be
the set of those vertices in the i-th clique which are infected during the iterations t+ 1, t+ 2, . . . , t∗, t∗ + 1.
Following the same arguments, for some δW 2 vertices from Di∗ , the number of edges between each of these
δW 2 vertices and D−i∗ ∪ S should be more than

7∆W 2, 7∆W 2 − 1, 7∆W 2 − 2, . . . , 7∆W 2 − δW 2 + 1

respectively, whose summation is more than W 3.6. On the other hand, since |D−i∗ | < (n− 1) · δW 2 < W 2,
we have |D−i∗ ∪ S| < (1 + k̄)W 2, which again contradicts to requirement 2 of Definition 12. Therefore, we
conclude Proposition 2.

As we have remarked that Proposition 2 implies Proposition 1, we conclude the second part of Lemma 2.

Finally, by making M sufficiently large, both Theorem 2 and Theorem 3 follow from Lemma 1 and
Lemma 2.

5 Hierarchical Blockmodel with One-Way Influence

In this section, we consider a variant to the hierarchical blockmodel in which the influence between any two
vertex-blocks can only be “one-way”. To each node in the hierarchy tree, a sign is assigned deciding the
directions of the edges between the two vertex-blocks associated to its two children. For example, let t be a
node in the hierarchy tree, and tL, tR be its left child and right child respectively. If t has a positive sign,
then all edges between V (tL) and V (tR) are from V (tL) to V (tR); otherwise, these edges are from V (tR) to
V (tL). In this manner, the influence between V (tL) and V (tR) is one-way.

In InfMax, the seed-picker needs to decide not only the choice of those k seeds, but also the sign at each
tree node. That is, the algorithm to InfMax problem should also output the optimal directions of influence
between each pair of vertex-blocks.

Our algorithm also works in the more restrictive, but, perhaps, more practical setting where the signs for
all tree nodes are fixed as input and the seed-picker only needs to decide the choice of k seeds. The directed
influence between two communities may be observed in our real life for multiple reasons. In some scenarios
(e.g., Twitter), the network itself is directed. Status differences between members of different communities
could create a uniform direction of influence. Another reason of directed influence may be government
regulations. For example, in the cellphone market, many Chinese users adopt iPhone products due to the
influence of American users, while Huawei cellphones, adopted by many Chinese users, are banned in the
United States of America.

5.1 A Dynamic Programming Algorithm

We present a dynamic-programming-based algorithm for InfMax for this variant of the hierarchical block-
model, when the thresholds of the vertices are deterministic. Our algorithm makes use of the following
observation: for a tree node t, the influence from the infected vertices in the vertex-block V (t) to each ver-
tex in V \ V (t) only depends on the number of infected vertices in V (t). This is formally described in
Definition 13 and Lemma 3 below.
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Definition 13. Given a set I ⊆ V of infected vertices and a vertex v ∈ V \ I, the influence from I to v
is defined by

∑

u∈I w(u, v), where w(u, v) is the weight of the edge (u, v) which is the weight of the deepest
node t ∈ VT such that V (t) contains both u and v.

By our definition, if the influence from the set of all infected vertices to an uninfected vertex v exceeds
θv, v will be infected.

Lemma 3. Consider an arbitrary node t ∈ VT . The influence from a set of infected vertices I1 ⊆ V (t) in
V (t) to a vertex u ∈ V \ V (t) only depends on |I1|. Moreover, for any v1, v2 ∈ V (t) and an arbitrary set of
infected vertices outside V (t), I2 ⊆ V \ V (t), the influences from I2 to v1 and v2 are the same.

Proof. For any v1, v2 ∈ V (t) and u ∈ V \V (t), let tv1 , tv2 , tu be the leaves such that v1 ∈ V (tv1), v2 ∈ V (tv2)
and u ∈ V (tu). The least common ancestor of tv1 and tu is the same as the least common ancestor of tv2
and tu, which is the least common ancestor of t and tu. This implies that the edges (v1, u) and (v2, u) have
the same weight, and the lemma follows easily from this observation.

For each tree node t ∈ VT , each i = 1, . . . , k, and each ν = 0, 1, . . . , |V |, define H [t, i, ν] be the smallest
positive real number γ satisfying the following:

• given that the threshold of each vertex is updated to θv ← θv − γ, where we assume the vertex with
θv − γ ≤ 0 is infected immediately, we can choose i seeds in V (t) such that at least ν vertices in V (t)
will be infected (due to the influence of these i seeds).

Intuitively, this means we can infect ν vertices by i seeds, given that the influence from infected vertices
outside V (t) is H [t, i, ν]. Correspondingly, let Σ[t, i, ν] ⊆ V (t) store the seeding strategy that allocate i seeds
in V (t) such that, given that the influence from certain set of infected vertices in V \ V (t) to each vertex in
V (t) is H [t, i, ν], those i seeds infect at least ν vertices in V (t).

If t is a leaf, the subgraph induced by V (t) is a clique in which all the |V (t)|(|V (t)| − 1) edges have
the equal weight. Obviously, the optimal strategy is to place the i seeds on those vertices with the highest
thresholds. We propose Algorithm 1 to calculate Σ[t, i, ν] and H [t, i, ν] for each leaf t.

Algorithm 1: Initialization for a Leaf t

Input: vertex set V (t), weight of each edge w(t), threshold set {θv}v∈V (t), integers i, ν
Output: Σ[t, i, ν] and H [t, i, ν] for leaf t
set Σ[t, i, v] be the i vertices in V (t) having the highest thresholds (set Σ[t, i, v] = V (t) if i ≥ |V (t)|);
for each vertex v ∈ V (t) do

update θv ← θv − i · w(t)
end

if ν ≤ |{θv : θv ≤ 0}|+ i then
set H [t, i, ν] = 0

else
set H [t, i, ν] be the (ν − i)-th smallest threshold in {θv}v∈V (t)

end

return Σ[t, i, ν] and H [t, i, ν]

If t is not a leaf, we aim to find a recurrence between H [t, i, ν] and H [tL, iL, νL], H [tR, iR, νR]. Suppose
the sign of t is positive, and there are νL infected vertices in V (tL). Their influence to V (tR) is νL · w(t)
where w(t) is the weight of t reflecting the weight of all edges from V (tL) to V (tR). We have a similar
observation in the case that the sign of t is negative.

By considering all decompositions i = iL + iR and ν = νL + νR, if the sign of t is positive, we have

H+[t, i, ν] = min
iL=0,...,i; νL=0,...,ν

{

max
(
H [tL, iL, νL], H [tR, i− iL, ν − νL]− νL · w(t)

)}

; (5)

if the sign of t is negative, we have

H−[t, i, ν] = min
iR=0,...,i; νR=0,...,ν

{

max
(
H [tL, i− iR, ν − νR]− νR · w(t), H [tR, iR, νR]

)}

, (6)
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where we set H [t, i, ν] =∞ if ν > |V (t)|. Finally, we decide the sign of t:

H [t, i, ν] = min
(
H+[t, i, ν], H−[t, i, ν]

)
. (7)

The recurrence between Σ[t, i, v] and Σ[tL, iL, νL],Σ[tR, iR, νR] can be obtained in a natural way. The
sign of t, sign(t) ∈ {+,−}, is defined naturally by (7). If sign(t) = +, we have Σ[t, i, ν] = Σ[tL, i

∗
L, ν

∗
L] ∪

Σ[tR, i − i∗L, ν − ν∗L], where (i∗L, ν
∗
L) is the minimizer for (5); if sign(t) = −, we have Σ[t, i, ν] = Σ[tL, i −

i∗R, ν − ν∗R] ∪ Σ[tR, i
∗
R, ν

∗
R], where (i∗R, ν

∗
R) is the minimizer for (6).

Define the height of t ∈ VT be the length of the path to t’s deepest descendant. The following Algorithm 2
solves InfMax for the hierarchical blockmodel with one-way influence. It is straightforward to check that

Algorithm 2: Dynamic Programming Algorithm for Hierarchical Blockmodel InfMax with One-Way
Influence
Input: hierarchical blockmodel G = (V, T ), threshold set {θv}v∈V , integer k
Output: 1) S ⊆ V such that |S| = k and S maximizes σ(S), and 2) the sign of each internal node t:

sign(t)
for each height i = 0, 1, . . . , h do

for each node t ∈ VT with height i do

if t is a leaf then
initialize Σ[t, i, ν] and H [t, i, ν] by Algorithm 1 for all i = 0, 1, . . . , k and ν = 0, 1 . . . , N

else

for for each i = 0, 1, . . . , k and ν = 0, 1 . . . , N do

H+[t, i, ν] = min
iL=0,...,i;νL=0,...,ν

{

max
(
H [tL, iL, νL], H [tR, i− iL, ν − νL]− νL · w(t)

)}

;

H−[t, i, ν] = min
iR=0,...,i;νR=0,...,ν

{

max
(
H [tL, i− iR, ν − νR]− νR · w(t), H [tR, iR, νR]

)}

;

H [t, i, ν] = min
(
H+[t, i, ν], H−[t, i, ν]

)
;

set sign(t) = argmin
s∈{+,−}

Hs[t, i, ν];

if sign(t) = + then

set Σ[t, i, ν] = Σ[tL, i
∗
L, ν

∗
L]∪Σ[tR, i− i∗L, ν − ν∗L], where (i∗L, ν

∗
L) minimizes H+[t, i, ν]

else
set Σ[t, i, ν] = Σ[tL, i− i∗R, ν − ν∗R] ∪ Σ[tR, i

∗
R, ν

∗
R], where (i∗R, ν

∗
R) minimizes

H−[t, i, ν]
end

end

end

end

end

set ν∗ be the maximum ν such that H [r, k, ν] = 0, where r is the root of T ;
return Σ[r, k, ν∗] and sign(t) for each internal node t

Algorithm 2 runs in time O
(
N3k2

)
.

Remark 1. Algorithm 2 can be easily adapted to the variant of the InfMax problem where each sign(t) is
fixed as input (instead of being a part of the output). Instead of computing both H+[t, i, ν] and H−[t, i, ν], and
setting H [t, i, ν] = min

(
H+[t, i, ν], H−[t, i, ν]

)
, we only need to have H [t, i, ν] = Hsign(t)[t, i, ν]. Correspond-

ing, we have either Σ[t, i, ν] = Σ[tL, i
∗
L, ν

∗
L]∪Σ[tR, i−i

∗
L, ν−ν

∗
L] or Σ[t, i, ν] = Σ[tL, i−i∗R, ν−ν

∗
R]∪Σ[tR, i

∗
R, ν

∗
R]

depending on sign(t) which is now given by the input.

5.2 Further Discussions

We have seen inapproximability results in Section 3 and Section 4 for InfMax on the (stochastic) hierarchical
blockmodel. Our algorithm in this section reveals the intrinsic reason why these problems are difficult.
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In the hard InfMax instances in Figure 2 and Figure 4, we constructed the hierarchy tree by creating
n branches corresponding to the n vertices in VertexCover. In the case the VertexCover instance is a
YES instance, the influence of the properly chosen seeds passes through these n branches “back-and-forth”
frequently: the infected vertices in branch Ai make vertices in branch Aj infected, while these newly infected
vertices in Aj may have backward influence to Ai, and cause more infected vertices in Ai. This bidirectional
effect is not considered in Algorithm 2, and is exactly why InfMax is hard. On the other hand, when there
is no such bidirectional effect, even if the algorithm needs to decide the optimal directions at all internal
nodes (with exponentially many choices 2Θ(|VT |)), InfMax becomes easy on the hierarchial blockmodel, as
our algorithm in this section suggests.

As mentioned in the related work section, Angell and Schoenebeck [1] show that a generalization of this
algorithm works well empirically. This perhaps indicates that the bidirectional influence is, in the average
case, not often so important in realistic settings.

6 2-Quasi-Submodular Influence Maximization

We prove the following theorem in this section which says that, for any fixed 2-quasi-submodular f , there
exists a constant τ depending on f such that InfMax with the universal local influence model IGf is NP-hard
to approximate to within factor N τ , where N is the number of vertices of the graph.

Theorem 4. Consider the InfMax problem with the universal local influence model IGf for any fixed 2-
quasi-submodular f . There exists a constant τ depending on f such that it is NP-hard to distinguish between
the following two cases:

• YES: there exists a seed set S with |S| = k such that σG
f (S) = Θ(N);

• NO: for any seed set S with |S| = k, we have σG
f (S) = O(N1−τ ).

The sequence notation (ai)i=0,1,2... is used to represent f in this section. Because f is 2-quasi-submodular,
we have a0 = 0 and a2 > 2a1. We denote p∗ = limi→∞ ai, which exists because (ai) is increasing and bounded
by 1 (see Definition 9 and Definition 10). We consider two cases: a1 > 0 and a1 = 0. We note that we have
a2 > 0 by the 2-quasi-submodular assumption. In the case a1 > 0, we will first assume the graph is directed,
and later we will show that this assumption is not essential.

The remaining part of this section is organized as follows: Sect. 6.1 provides a sketch of the proof of
Theorem 4 for the case a1 > 0, with arguments presented in an intuitive level, Sect. 6.2 to Sect. 6.7 prove
the theorem rigorously for the case a1 > 0, and Sect. 6.8 prove the theorem rigorously for the case a1 = 0.
Finally, in a similar style to the result in [29], we prove a variant of Theorem 4 in Appendix saying that the
inapproximability also holds if only Nγ (for some fixed γ ∈ (0, 1)) vertices admit the fixed 2-quasi-submodular
function f while the remaining vertices admit certain fixed non-zero submodular function g.

6.1 Proof Sketch of Theorem 4 for a1 > 0

We prove the theorem by a reduction from the SetCover problem.

Definition 14. Given a universe U of n elements, a set of K subsets A = {Ai | Ai ⊆ U}, and a positive
integer k, the SetCover problem asks if we can choose k subsets {Ai1 , . . . , Aik} ⊆ A such that Ai1 ∪ · · · ∪
Aik = U .

We construct a graph G which consists of two parts: the set cover part and the verification part, where
the set cover part simulates SetCover and the verification part verifies if all the elements in the SetCover

instance are covered. The construction is shown in Fig. 5. We first assume that the graph G is directed,
and then we show that this assumption is not essential by constructing a directed edge gadget to simulate
directed edges.

Given a SetCover instance, in the set cover part, we use a single vertex to represent a subset Ai and a
clique of size m to represent each element in U . If an element is in a subset, we create m directed edges from
the vertex representing the subset to each the m vertices in the clique representing the element. If a vertex
representing a subset is picked, then all vertices in the cliques corresponding to the elements contained in
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Figure 5: The high-level structure of the reduction for the proof of Theorem 4

this subset will be infected with probability close to p∗, by choosing m large enough. We call such cliques as
being activated. In a YES instance of SetCover, we can choose k seeds such that all cliques are activated.

In the verification part, we construct a AND gadget, simulating the logical AND operation, to verify if
all the cliques are activated. The AND gadget takes n inputs, each of which is a set of vertices from each of
the n cliques. The output of the AND gadget is a vertex v, such that it will only be infected with a positive
constant probability if all the n cliques are activated.

We connect the output vertex v of this AND gadget to a huge bundle of M1 vertices, such that a constant
fraction of those M1 vertices will be infected only if all the cliques are activated (which corresponds to the case
the SetCover is a YES instance). By making M1 large enough, we can achieve a hardness of approximation
ratio N τ . To avoid the seed-picker bypassing the set cover game by directed seeding the output vertex v, we
duplicate the verification part by M2 times for some sufficiently large M2.

Finally, we replace all directed edges in Fig. 5 by directed edge gadgets, including those connecting the
vertices representing subsets and the cliques representing elements, and those connecting the set cover part
and the verification part. To complete the proof of Theorem 4, we present the construction of the AND
gadget and the directed edge gadget in the next few subsections.

6.1.1 The Probability Filter Gadget

In this section, we present the construction of a gadget called probability filter gadget, which is the key
component in the constructions of both AND gadget and directed edge gadgets mentioned above.

Given a set of vertices that will be infected with a same probability x, the probability filter gadget tests
if x is larger than certain threshold p1. It outputs a vertex infected with probability almost 0 if x < p1, and
with certain non-negligible probability p2 if x > p1.

The probability scaling down gadget Firstly, we need to construct the probability scaling down gadget
which takes a vertex u with infection probability pu as input, and output a vertex v such that v is infected
with probability pv = αpu, where α ≤ p∗ is an adjustable parameter. The construction of this gadget is
shown in Fig. 6: we add many paths of different lengths from u to v, and we can achieve pv = αpu by
adjusting the number of paths and the length of each path.
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Figure 6: The probability scaling down gadget

Figure 7: The probability separation block
Figure 8: The output probability y versus the input
probability x

The probability separation block Next, we construct a probability separation block, which is the building
block to the probability filter gadget. The probability separation block takes h vertices as input and outputs
one vertex such that

1. if each input is infected independently with a same probability that is greater than certain threshold
p1, then the output vertex will be infected with a slightly higher probability;

2. if each input is infected independently with a same probability that is less than p1, then the output
vertex will be infected with a slightly lower probability.

The construction of the probability separation block is shown in Fig. 7, in which the h inputs’ infection
probabilities are scaled down by a certain factor α by the probability scaling down gadgets, and then they
are connected to the output vertex. It is exactly the 2-quasi-submodularity of f which enables us to adjust
the two parameters h and α such that (1) and (2) above hold.

Suppose each of the h vertices in the input are infected with probability x, and let y = y(x) be the
probability that the output vertex is infected. We claim that we can tune the values of α and h such that
the graph of y(x) looks like Fig. 8.

By considering the number of infected neighbors of the output vertex, we have

y =
h∑

i=1

(
h

i

)

ai(αx)
i(1 − αx)h−i,

which is y = hαa1x + h(h−1)
2 α2(a2 − 2a1)x

2 + o(x2) for sufficiently small x. Choosing a sufficiently small
constant δ > 0 and choosing α, h to satisfy hαa1 = 1− δ, we have

y − x = −δx+
h(h− 1)

2
α2(a2 − 2a1)x

2 + o(x2).

Since y − x = −δx+ o(x), we can see that y < x for small enough x.
On the other hand, for sufficiently large h and sufficiently small δ (and adjusting α such that hαa1 = 1−δ

still holds), the second order derivative of y − x, which is

d2(y − x)

dx2
= h(h− 1)α2(a2 − 2a1) + o(1) ≈

1

a21
(a2 − 2a1) > 0,

can be considerably more significant than its first order derivative −δ. Therefore, y − x, starting from 0
at x = 0 and being negative for very small x, will soon become positive after x increases. This proves our
claim. Notice that the 2-quasi-submodularity of f makes sure a2 − 2a1 > 0.
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Figure 9: The directed edge gadget 〈u, v〉 Figure 10: The AND gadget with two inputs

The probability filter gadget The probability filter gadget consists of ℓ layers such that the i-th layer
consists of hℓ−i probability separation blocks, where the output vertices of every h probability separation
blocks in the i-th layer are the inputs of a single probability separation block in the (i+1)-th layer. Because
there are hℓ−1 probability separation blocks in the first layer, the probability filter gadget takes Λ = hℓ

vertices as input. The probability filter gadget outputs a single vertex after ℓ layers.
From Fig. 8, if we make ℓ large enough, we conclude that the probability filter gadget does the following

job, which tests if the input vertices are infected with a probability larger than the threshold value p1.

1. if each vertex in the Λ inputs is infected independently with a same probability less than p1, then the
vertex on the output end will be infected with a probability close to 0;

2. if each vertex in the Λ inputs is infected independently with a same probability in (p1, p2], then the
vertex on the output end will be infected with a probability close to p2.

6.1.2 The AND Gadget and the Directed Edge Gadget

Both the AND gadget and the directed edge gadget can be constructed by using a single probability filter
gadget as the core.

The directed edge gadget The construction of the directed edge gadget 〈u, v〉 is shown in Fig. 9. It
uses a single probability filter gadget, whose input vertices are connected to u, and whose output vertex is
connected to v. By adjusting h and α making p1 small enough12, we can make the output v infected with
noticeable probability (almost p2) if u is infected. On the other hand, if v is infected, then the expected
number of infected vertices among those h vertices on the input end of the top layer probability separation
block is hαa1 = 1− δ < 1, which suggests that the cascade process will die out after a few layers from right
to left. In particular, the influence of v cannot be passed to u.

The AND gadget The AND gadget in Fig. 5 takes n sets of vertices as input. It tests if all cliques are
activated, that is, if each vertex in each input set is infected with probability almost p∗.

Here, we first construct a smaller AND gadget which only takes two input sets. Let I1 = {u1, u2, . . . , uΛ}
and I2 = {v1, v2, . . . , vΛ} be the two input sets. The AND gadget should do the following:

1. if each vertex in I1 and I2 is infected with probability p∗, the AND gadget outputs a vertex which is
infected with a notable probability;

2. if all vertices in at least one of I1, I2 are infected with probability 0, the AND gadget outputs a vertex
which is infected with a negligible probability.

12if we further check the calculations in the subsection where we construct the probability separation block, we can see that
p1 can be made arbitrarily small, by choosing small enough δ = 1 − hαa1. Detailed calculations and justifications are in the
later sections.
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We create Λ vertices w1, w2, . . . , wΛ and create two edges (ui, wi), (vi, wi) for each i = 1, 2, . . . ,Λ. In
case (1), each wi will be infected with probability q1 = a2(p

∗)2 + 2a1p
∗(1− p∗); in case (2), each wi will be

infected with probability at most q2 = a1p
∗. Obviously, q1 > q2, and the AND gadget needs to “amplify”

the gap between q1 and q2.
This naturally reminds us the probability filter gadget. In particular, if the threshold p1 of the probability

filter gadget is in between: q1 > p1 > q2, we can just make {w1, . . . , wΛ} the inputs of the probability filter
gadget, and we are done. However, by our discussion about probability separation block in the last subsection,
p1 is only guaranteed to exist, which may not be in (q2, q1). To settle this, we use probability scaling down
gadgets to rescale the infection probability of wi such that p1 will be in between after rescaling q1, q2.13

Fig. 10 shows the construction of this AND gadget.
To construct the AND gadget allowing n input sets, we can use this AND gadget as a building block and

construct an AND circuit with log2 n levels of AND gadgets. The last level contains a single AND gadget,
whose output is connected to the M1 vertices on the right-hand side of Fig. 5. For each AND gadget in Level
i, its output become one input of a certain AND gadget in Level i + 1. The inputs of the AND gadgets in
Level 1 are exactly those associated to the n cliques representing elements of the VertexCover instance.

We conclude the proof sketch here. In the remaining sections, we present the full proof of Theorem 4
which realizes the intuitions and ideas in this section.

6.2 Proof of Theorem 4 for a1 > 0 with Directed Graphs

We first define the following AND gadget which simulates the logical AND operation. The construction of
this AND gadget is deferred to Section 6.4—6.6. We note that the nonsubmodularity property a2 > 2a1
plays an important role in the construction of the AND gadget. In particular, the construction of the AND
gadget uses a smaller gadget called the “probability filter gadget” as a building block (see Figure 12), and
2-quasi-submodularity is essential for constructing the probability filter gadget (refer to Section 6.4.2 for
details).

Definition 15. An (I,Λ, p0, p2, ε1, ε2, f)-AND gadget takes I sets which each contains Λ vertices as input,
and outputs one vertex such that

1. if all the vertices in all I sets are infected independently with probabilities less than 11
10p0, and moreover

the infection probabilities of the vertices in at least one input set are less than 1
2p0, then the output

vertex will be infected with probability less than ε1;

2. if all the vertices in all I sets are infected independently with probabilities in the interval (p0,
11
10p0),

the output vertex will be infected with probability in (p2 − ε2, p2],

We remark that the choices for both factors of p0 in 1 of the above definition, 11
10 and 1

2 , are only required
to be close enough to 1 and 0 respectively. We aim to simulate the case where at least one of the inputs
is not “active” (being far from the threshold p0) and the other ones are not “too active” (being at most
somewhere around the threshold p0), in which case the AND gadget outputs “false” (such that the output
vertex is infected with negligible probability ε1).

With the choice of the seven parameters satisfying the relation in the below lemma, we can construct the
AND gadget.

Lemma 4. Given any 2-quasi-submodular function f with a1 > 0, any constant threshold p0 > 0 and
any I = 2ℓ that is an integer power of 2, there exists a constant p2 > 0 depending on p0 and f such
that for any ε1 > 0 and any constant ε2 > 0, we can construct an (I,Λ, p0, p2, ε1, ε2, f)-AND gadget with
Λ = O ((1/ε1)

c1Ic2), and the numbers of vertices and edges in this AND gadget are both O
(
(1/ε1)

c1Ic2+1
)
,

where c1 and c2 are two constants.

The following lemma is needed in the next section for the proof of Theorem 4 for undirected graphs.

13It seems worrying that q1 and q2 may be both less than p1, in which case the construction fails as we can only scale
probabilities “down”. However, as we have remarked, we can make p1 arbitrarily small such that p1 ≪ q2 < q1
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Lemma 5. Given any 2-quasi-submodular function f with a1 > 0 and any I = 2ℓ that is an integer
power of 2, there exists p2 > 0 such that for any ε1 > 0 and any constant ε2 > 0, we can construct an
(I,Λ, p∗(p2 − ε2), p2, ε1, ε2, f)-AND gadget. We have Λ = O ((1/ε1)

c1Ic2) and the AND gadget contains
O
(
(1/ε1)

c1Ic2+1
)

vertices and O
(
(1/ε1)

c1Ic2+1
)

edges, where c1 and c2 are two constants.

Notice that Lemma 4 does not imply Lemma 5: in Lemma 4, we first fix the third parameter p0, and the
existence of the fourth parameter p2 relies on the third; in Lemma 5, we simultaneously fix the third and
the fourth parameters.

The construction of the AND gadget and the proof of Lemma 4 and Lemma 5 are deferred to Section 6.6.
In this section, we aim to prove Theorem 4 for a1 > 0 with directed graphs and assuming Lemma 4, while
we do not need Lemma 5 at this moment. We remark that the construction of AND gadget requires no
directed edges, although we consider directed graph in this section.

6.2.1 A Reduction from SetCover

We prove the theorem by a reduction from SetCover.
Without loss of generality, we will assume K = O(n).14 We will also assume that each element in U is

covered by at least one subset Ai in SetCover (otherwise we know for sure the instance is a NO instance).
In addition, we assume the number of elements n = |U | is an integer power of 2, as we can add elements into
U and let these elements be included in all sets Ai in the case n is not an integer power of 2.

We construct a graph G with N vertices which consists of two parts: the set cover part and the verification
part, where the set cover part simulates the SetCover instance and the verification part verifies if all the
elements in the SetCover instance are covered. The construction is shown in Figure 11.

Define ε = 2
(
p∗ − a⌊a1n⌋

)
which approaches to 0 as n → ∞ if a1 > 0. According to Lemma 4, for

p0 = a1(p
∗ − ε) and I = n, there exists a constant p2 > 0, such that if we set ε1 = 1

n and ε2 = 1
100p2, we

can construct an (n,Λ, p∗ − ε, p2, ε1, ε2, f)-AND gadget, where Λ = O ((1/ε1)
c1nc2) = O (nc1+c2). We will

use this AND gadget later. Define M1 = nc1+c2+10, M2 = n2, and m = M2Λ.

The Set Cover Part Given a SetCover instance, we use a single vertex to represent a subset Ai and
a clique of size m to represent each element in U . If an element is in a subset, we create m directed edges
from the vertex representing the subset to each the m vertices in the clique representing the element.

The Verification Part We construct the (n,Λ, a1(p
∗ − ε), p2, ε1, ε2, f)-AND gadget mentioned. We as-

sociate each of the n cliques to one of the n inputs of this AND gadget, such that a matching is formed
between the n cliques and the n inputs. For each of the n cliques and its associated input, we choose Λ
vertices from the clique, and connect them to the Λ vertices of the associated input by Λ directed edges. We
create M1 vertices and let the output vertex v of the AND gadget be connected to these M1 vertices with
undirected edges. Then, we duplicate the AND gadget and the attached M1 vertices to a total of M2 copies
such that the vertices at the input ends of the AND gadgets in all these M2 copies are connected from the
different vertices in the n cliques as inputs. This, in particular, justifies our choice of clique size m = M2Λ.

The Size of the Construction To show that the reduction is in polynomial time, it is enough to show
that the number of vertices N in the graph G we constructed is a polynomial of n. According to Lemma 4,
the AND gadget has O

(
(1/ε1)

c1nc2+1
)
= O

(
nc1+c2+1

)
vertices. We have

N = K +mn+M2

(
O
(
nc1+c2+1

)
+M1

)
= K +mn+Θ

(
nc1+c2+12

)
= Θ

(
nc1+c2+12

)
,

where K +mn is the size for the set cover part and M2

(
O
(
nc1+c2+1

)
+M1

)
is the size for the verification

part.
Finally, noticing that N = Θ

(
nc1+c2+12

)
and letting τ = 1

c1+c2+12 (which depends on c1, c2, and c1, c2
depends only on f), the lemma below immediately concludes Theorem 4 for the case a1 > 0 with directed
edges.

14One way to justify this assumption is to consider VertexCover, which can be viewed as a special case of SetCover by
viewing vertices as subsets and edges as elements. In a connected graph, the number of vertices K never exceeds O(n), if n is
the number of edges.
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Figure 11: The high-level structure of the reduction
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Lemma 6. If the SetCover instance is a YES instance, by choosing k seeds appropriately, we can infect
at least Θ

(
nc1+c2+12

)
vertices in expectation in the graph G we have constructed; if it is a NO instance, we

can infect at most O
(
nc1+c2+11

)
vertices in expectation for any choice of k seeds.

Proof. If the SetCover instance is a YES instance, we are able to choose k subsets {Ai1 , . . . , Aik} ⊆ A such
that Ai1 ∪ · · · ∪Aik = U . We choose the k vertices corresponding to these k subsets as seeds.

We say that a clique representing an element is activated if all its m vertices are infected with probabilities
more than p∗−ε. If a vertex representing a subset is seeded, for each clique representing the element it covers,
each of the m vertices in this clique will be infected with probability a1. Thus, ma1 vertices will be infected
in expectation. According to Chernoff-Hoeffding inequality, with probability at least 1−exp

(
− 1

8a
2
1m
)
, there

are more than 1
2a1m infected vertices in the clique. If this happens, in the next cascade iteration, each

vertex in the clique has more than 1
2a1m infected neighbors, so it will be infected with probability at least

a⌊ 1
2a1m⌋ ≥ a⌊a1n⌋ > p∗− ε (notice that 1

2m = Θ(nc1+c2+2)≫ n). Therefore, if a vertex representing a subset
is seeded and a clique representing an element is in this subset, then this clique is activated with probability
at least 1− exp

(
− 1

8a
2
1n
)
.

By our choice of k seeds, each of the clique is activated with probability at least 1− exp
(
− 1

8a
2
1n
)
. By a

union bound, all the n cliques will be activated with probability at least

pactivated = 1−Kn exp

(

−
1

8
a21n

)

= Θ(1).

In the highly likely case where all the n cliques are activated, all the vertices at the input ends of all the
AND gadgets will be infected with probability more than a1(p

∗ − ε). Since the parameter p0 = a1(p
∗ − ε)

is set for the AND gadget, the output vertex v falls into case (2) in Definition 15, which means it will be
infected with probability more than p2− ε2. Therefore, all the M1 vertices connected to v in each of the M2

copies will be infected with probability at least a1(p2− ε2), so the expected total number of infected vertices
is at least pactivated · a1(p2 − ε2)M1M2 = Θ

(
nc1+c2+12

)
.

On the other hand, if the SetCover instance is a NO instance, consider any choice of k seeds with k1 of
them in the K vertices representing subsets, k2 of them in the n cliques, and the remaining k3 = k− k1− k2
of them in the verification part. We first show that at least one clique will not be activated.

The k3 vertices in the verification part play no role in activating the cliques, as the n cliques are connected
to the verification part by directed edges. As for the k2 vertices in the cliques, since we assume each element
in U is in at least one subset, infecting any vertex in any clique is at most as good as infecting the vertex
representing the subset covering the element that the clique represents. Therefore, when analyzing the
activation of cliques, we can reason as if these k2 seeds are among the K subsets. Since the SetCover

instance is a NO instance, and we have picked k1 + k2 ≤ k subsets, at least one clique will not be activated.
Among the M2 AND gadgets, at most k2 of them take the input vertices which are connected from the

k2 seeds in the cliques. Since these k2 seeds are infected with probability 1 making these input vertices
infect with probability a1 which may be larger than 11

10a1(p
∗ − ε), the outputs of these k2 AND gadgets are

unknown as it falls into neither case (1) nor case (2). We have also assumed k3 seeds are selected in the
verification parts, so we also do not know the outputs of another (at most) k3 AND gadgets.

For the remaining M2 − k2 − k3 AND gadgets, they fall into case (1) by the fact that at least one clique
is not activated and our setting p0 = a1(p

∗ − ε) for the AND gadget. Since we have set the AND gadget
parameter ε1 = 1

n , the output vertex v will be infected with probability less than 1
n , which will infect at

most a1
M1

n vertices in expectation among the M1 vertices on the right-hand side of Figure 11. Notice that
each AND gadget has O(nc1+c2+1) vertices by Lemma 4, and the set cover part has K + nm vertices. In
this case, even if all the K + nm + (M2 − k2 − k3) · O

(
nc1+c2+1

)
= O

(
nc1+c2+3

)
vertices in the set cover

part and the (M2 − k2 − k3) AND gadgets are infected, the total number of infected vertices cannot exceed
O
(
nc1+c2+3

)
+M2 · a1

M1

n = O
(
nc1+c2+11

)
.

Finally, for those remaining k2 + k3 AND gadgets whose outputs are unknown, even if all vertices in
these k2 + k3 copies of AND gadgets and their attached M1 vertices are infected, this total number is still
(k2 + k3) ·

(
O
(
nc1+c2+1

)
+M1

)
= (k2 + k3) · O

(
nc1+c2+10

)
= O

(
nc1+c2+11

)
. Therefore, if the SetCover

instance is a NO instance, we can infect at most O
(
nc1+c2+11

)
vertices in G.
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6.3 Proof of Theorem 4 for a1 > 0 with Undirected Graphs

To prove Theorem 4 for undirected graphs, we will need the following directed edge gadget which simulates
directed edges, and the construction of this gadget also requires the property a2 > 2a1. This is because the
directed edge gadget also uses probability filter gadgets as building blocks.

Definition 16. A (Υ, ǫ, b, f)-directed edge gadget 〈u, v〉 takes one vertex u as input and output one vertex
v such that the following properties hold.

1. directed property: If u is connected to each of the Υ vertices v1, . . . , vΥ by a directed edge gadget 〈u, vi〉,
and v1, . . . , vΥ are already infected, then u will be infected with probability less than ǫ.

2. If the input u is infected, then the output v will be infected with probability b. Moreover, b > 0.

The size of a directed edge gadget is given by the following lemma.

Lemma 7. For any 2-quasi-submodular function f with a1 > 0, any positive integer Υ and any ǫ > 0, there
exists b ∈ (0, 1) such that we can construct a (Υ, ǫ, b, f)-directed edge gadget with Θ

(
Υd(1/ǫ)d

)
vertices and

Θ
(
Υd(1/ǫ)d

)
edges, where d > 1 is a constant depending only on f .

We also need the following lemma.

Lemma 8. Given an (I,Λ, p0, p2, ε1, ε2, f)-AND gadget, for any Υ and ǫ, we can construct a (Υ, ǫ, b, f)-
directed edge gadget with b ∈

(
p2 −

1
2ε2, p2

]
using Θ

(
Υd(1/ǫ)d

)
vertices and Θ

(
Υd(1/ǫ)d

)
edges, where d > 1

is a constant depending only on f .

The construction of the directed edge gadget and the proofs of Lemma 7 and Lemma 8 are deferred to
Section 6.7.

6.3.1 A Reduction from SetCover

According to Lemma 5, for I = n, there exists a constant p2 > 0, such that if we set ε1 = 1
n and ε2 = 1

100p2,
we can construct an (n,Λ, p∗(p2 − ε2), p2, ε1, ε2, f)-AND gadget, where Λ = O ((1/ε1)

c1nc2) = O (nc1+c2).
Define M2 = n2 and m = M2Λ as before, and we will define M1 later.

Applying Lemma 8, we can construct a (mn,m−2, b, f)-directed edge gadget such that b ∈
(
p2 −

1
2ε2, p2

]
.

The numbers of vertices and edges in this directed edge gadget are both

Θ
(

(mn)d
(
1/m−2

)d
)

= Θ
(
m3dnd

)
= Θ

(

n(3c1+3c2+7)d
)

.

We will use this directed edge gadget exclusively in the construction.
Finally, define M1 = n(30c1+30c2+70)d.
We will construct an undirected graph G similar to the one in the last section, with some modifications.

We make the following two modifications:

1. We replace all directed edges in Figure 11 by (mn,m−2, b, f)-directed edge gadgets. These consist of 1)
the directed edges connecting between the K vertices representing subsets and the n cliques representing
elements and 2) the directed edges connecting between the set cover part and the verification part.

2. We use the (n,Λ, p∗(p2−ε2), p2, ε1, ε2, f)-AND gadgets in the verification part instead of the (n,Λ, a1(p∗−
ε), p2, ε1, ε2, f)-AND gadgets.

For the remaining parts of the construction, all the edges, including the ones in the clique, the ones in the
AND gadget, and the ones connected to the M1 vertices on the right-hand side of Figure 11, are undirected
edges. In particular, we recall that the edges in the AND gadget are undirected.
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The Size of the Construction We show that the total number of vertices in G is still of polynomial size.
In the set cover part, we have created at most Kmn directed edge gadgets between the K vertices and the mn
vertices in the n cliques. The total size of the set cover part is at most K +mn+Kmn ·Θ

(
n(3c1+3c2+7)d

)
=

O
(
n(3c1+3c2+7)d+c1+c2+4

)
.

In the verification part, the AND gadget contains O
(
nc1+c2+1

)
vertices by Lemma 5, the total number

of vertices is M2(O(nc1+c2+1) +M1) = Θ
(
n(30c1+30c2+70)d+2

)
.

Since d > 1 by Lemma 5, N is dominated by the number of vertices in the verification part: N =
Θ
(
n(30c1+30c2+70)d+2

)
.

Finally, with τ = 1
(30c1+30c2+70)d+2 , Theorem 4 for undirected graphs follows immediately from the

following lemma.

Lemma 9. If the SetCover instance is a YES instance, by choosing k seeds appropriately, we can infect
Θ
(
n(30c1+30c2+70)d+2

)
vertices in expectation in the graph G; if it is a NO instance, we can infect at most

O
(
n(30c1+30c2+70)d+1

)
vertices in expectation for any choice of k seeds.

Proof. If the SetCover instance is a YES instance, we are able to choose k subsets {Ai1 , . . . , Aik} ⊆ A
such that Ai1 ∪ · · · ∪ Aik = U . We choose the k vertices corresponding to these k subsets as the seeds.
Since the SetCover instance is a YES instance, for each clique, each vertex is connected from a seed by a
directed edge gadget, which will be infected with probability b. In each clique, bm vertices will be infected in
expectation, and the remaining vertices in the clique will be infected with probability at least a⌊bm⌋, which
has limit p∗ as n→∞.

By the same analysis in the proof of Lemma 6, with a high probability pactivated = Θ(1), all the n cliques
will be activated such that all vertices in the clique will be infected with probability p∗−ε for certain ε = o(1).
By our construction and Lemma 8, each of the mn vertices that are passed into the input of the AND gadget
will be infected with probability

(p∗ − ε)b ∈

(

(p∗ − ε)

(

p2 −
1

2
ε2

)

, (p∗ − ε)p2

]

⊆

(

p∗(p2 − ε2),
11

10
p∗(p2 − ε2)

)

,

by noticing that ε = o(1) and ε2 = 1
100p2 < 1

10p2 is a constant. Thus, the AND gadget falls into case (2) of
Definition 15, so the output vertex v of the AND gadget will be infected with probability more than p2− ε2.
Therefore, each of the M1 vertices will be infected with probability pactivateda1(p2 − ε2), and the expected
total number of infected vertices in those M2 copies of M1 vertices is already pactivateda1(p2 − ε2)M1M2 =
Θ
(
n(30c1+30c2+70)d+2

)
.

If the SetCover instance is a NO instance, consider any choice of the k seeds with k1 seeds in the
K vertices representing subsets, k2 seeds in the directed edge gadgets connecting the K vertices and nm
vertices in the n cliques, k3 seeds in the n cliques, k4 seeds in the directed edge gadgets between the n
cliques in the set cover part and the inputs of the AND gadget in the verification part, and the remaining
k5 = k − k1 − k2 − k3 − k4 seeds in the verification parts. We first aim to show that at least one clique will
not be activated with high probability.

When analyzing cliques’ activation, it is easy to see that putting k2 seeds on the directed edge gadgets is
at most as good as putting them on the corresponding vertices representing the subsets. Similarly, putting
k4 seeds on the directed edge gadgets connecting the set cover part and the verification part is at most as
good as putting them on the corresponding vertices in the cliques, and having k3 + k4 seeds in the cliques is
at most as good as having them in the K vertices representing the subsets covering the elements that those
cliques represent. Thus, we can reason as if we have selected k1 + k2 + k3 + k4 subsets in the SetCover

problem. Since the SetCover instance is a NO instance, those k1 + k2 + k3 + k4 ≤ k seeds cannot cover all
the cliques. As for the k5 seeds in the verification part, their influences on each vertex in the n cliques is at
most m−2 based on Definition 16, which has remote effect to the cliques, and we will discuss it later.

To show that at least one clique is not activated, it remains to show that the clique not covered by
those k1 + k2 + k3 + k4 vertices cannot be activated. For each of those vertices representing subsets that
are not picked, since it is connected to at most mn vertices (m vertices in each of the n cliques) by the
(mn,m−2, b, f)-directed edge gadgets, it will be infected with probability at most m−2 by Definition 16. For
each vertex in each uncovered clique, it may only be infected due to 1) the influence from one of the K
vertices which is not seeded and which is infected with probability at most m−2, or 2) the influence from
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Figure 12: The relation of all the gadgets defined

the k5 seeds from the verification parts. In particular, it will be infected due to (1) with probability bm−2,
and it will be infected due to (2) with probability m−2. By a union bound, the probability that there exist
infected vertices in an uncovered clique is at most m · (bm−2 + m−2) = O(m−1). Since there can be at
most n uncovered cliques, the probability that all uncovered cliques contain no infected vertex is at least
pno = 1 − n · O

(
m−1

)
> 1 − O

(
1
n

)
. Therefore, with the probability above, there exists at least one clique

which is not activated.
In the case that not all cliques are activated, since all the vertices in a not activated clique are infected

with probability 0, the corresponding input vertices to the AND gadget are also infected with probability
0b = 0. The output vertices v in the AND gadgets therefore fall into case (1) in at least M2 − k3 − k4 − k5
copies. Thus, in each of the corresponding M2 − k3 − k4 − k5 copies of the M1 vertices bundle (on the
rightmost of Figure 11), the expected number of infected vertices is at most ε1 ·M1 = O

(
n(30c1+30c2+70)d−1

)
.

In this case, even if all the vertices in the entire set cover part, the mn directed edge gadgets connecting the
two parts, all the M2 AND-gadgets, and the remaining k3 + k4 + k5 copies of the M1 vertices bundles, the
total number of infected vertices is at most

Kmn ·Θ
(

n(3c1+3c2+7)d
)

+mn ·Θ
(

n(3c1+3c2+7)d
)

+M2 ·O
(
nc1+c2+1

)

+ (k3 + k4 + k5)
(
O
(
nc1+c2+1

)
+M1

)
+ (M2 − k3 − k4 − k5)O

(

n(30c1+30c2+70)d−1
)

=O
(

n(3c1+3c2+7)d+c1+c2+4
)

+Θ
(

n(3c1+3c2+7)d+3
)

+O
(
nc1+c2+3

)

+O
(

n(30c1+30c2+70)d+1
)

+O
(

n(30c1+30c2+70)d+1
)

=O
(

n(30c1+30c2+70)d+1
)

. (8)

Finally, even assuming all vertices in G are infected in the case that all cliques are activated (which happens
with probability 1− pno < O

(
1
n

)
), the expected number of infected vertices is at most

pno ·O
(

n(30c1+30c2+70)d+1
)

+ (1 − pno)N = O
(

n(30c1+30c2+70)d+1
)

,

which concludes the lemma.

6.4 Constructions of Some Other Required Gadgets

Before constructing the AND gadget and the directed edge gadget, we need some other gadgets. In this
section and the next two sections, graph with undirected edges are considered.

We will construct the probability scaling down gadget and the probability filter gadget, which are used
to construct the AND gadget and the directed edge gadget. The relation of these gadgets are shown in
Figure 12.

6.4.1 Probability Scaling Down Gadget

We first define and construct the following probability scaling down gadget which is an essential component
of both the AND gadget and the directed edge gadget.

Definition 17. The (α, ε, f)-probability scaling down gadget takes one vertex u as input and output a vertex
v such that
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Figure 13: The probability scaling down gadget

• if u is infected with probability pu, v will be infected with probability pv ∈ (αpu − ε, αpu].

Lemma 10. For any 2-quasi-submodular function f with a1 > 0, any constant ε > 0 and any α with
0 < α ≤ p∗, there exists an (α, ε, f)-probability scaling down gadget with constant numbers of vertices and
edges.

Proof. To construct this gadget, we iteratively add paths from u to v, where a path of length ℓ consists of
ℓ− 1 vertices w1, . . . , wℓ−1 and ℓ edges (u,w1), (w1, w2), . . . , (wℓ−1, v). Given pu, by repeatedly adding paths
from u to v, we are increasing pv. In each iteration i, we add a path of length ℓi from u to v, where ℓi is
the minimum length to maintain pv ≤ αpu. That is, either it is true that pv > αpu if a path of length ℓi − 1
was added, or ℓi = 2 which is already the minimum length a path can ever be. The iterative process ends
if pv ∈ (αpu − ε, αpu], and it is straightforward to check that such process will end as long as α ∈ (0, p∗].
Figure 13 illustrates the probability scaling down gadget.

The size of the probability scaling down gadget depends on the influence function f and the small constant
ε. Since f is fixed in advance, the size of this gadget is constant.

Remark 2. The probability scaling down gadget is symmetric. Given pv = αpu, then pu = αpv if v becomes
the input and u becomes the output.

6.4.2 Probability Filter Gadget

Based on the probability scaling down gadget, we can construct the following probability filter gadget.

Definition 18. A (Λ, p1, p2, ε1, ε2, f)-probability filter gadget takes Λ vertices as input, and outputs a vertex
such that

1. if each vertex in the Λ inputs is infected independently with a same probability less than p1, then the
vertex on the output end will be infected with a probability less than ε1;

2. if each vertex in the Λ inputs is infected independently with a same probability in (p1, p2], then the
vertex on the output end will be infected with a probability in (p2 − ε2, p2].

We aim to show the following lemma in this subsection.

Lemma 11. Given any 2-quasi-submodular influence function f with a1 > 0, any constant ε2 > 0, any
ε1 > 0, and any ratio r > 0, we can construct a (Λ, p1, p2, ε1, ε2, f)-probability filter gadget with p2/p1 > r
and Λ = O((1/ε1)

c), and this probability filter gadget contains O((1/ε1)
c) vertices and O((1/ε1)

c) edges,
where c is a constant.

To construct the probability filter gadget, we first construct the gadget shown in Figure 14, which is
the building block of this gadget. We will call this building block probability separation block. As shown in
the figure, this building block takes h vertices as input and outputs one vertex. Particularly, we apply h
probability scaling down gadgets to “scale down” the probabilities of all input vertices’ infection by a factor
of α, and then connect those vertices to the output vertex.

The probability filter gadget consists of ℓ layers such that the i-th layer consists of hℓ−i such probability
separation blocks, where the output vertices of every h probability separation blocks in the i-th layer are the
input of a probability separation block in the (i+1)-th layer. Because there are hℓ−1 probability separation
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Figure 14: The probability separation block

blocks in the first layer, the probability filter gadget takes Λ = hℓ vertices as input. The probability filter
gadget outputs a single vertex after ℓ layers. We will tune the value of α, h and ℓ such that the two properties
in Definition 18 hold for certain thresholds p1 and p2.

For each probability separation block, suppose each of the h vertices in the input are infected with
probability x independently, and let y = y(x) be the probability that the output vertex is infected. We aim
to tune the value of α and h such that the graph of y(x) looks like Figure 15.

By considering the number of infected neighbors of the output vertex, it is straightforward to see that

y =

h∑

i=1

(
h

i

)

ai(αx)
i(1 − αx)h−i. (9)

For sufficiently small x, we have

y = hαa1x+
h(h− 1)

2
α2(a2 − 2a1)x

2 + o(x2).

Choosing a sufficiently small constant δ > 0 and choosing α (h will be set in the future) to satisfy hαa1 = 1−δ,
we have

y − x = −δx+
h(h− 1)

2
α2(a2 − 2a1)x

2 + o(x2).

Since y − x = −δx + o(x), we can see that y < x for small enough x. On the other hand, for sufficiently
large h and sufficiently small δ (and adjusting α such that hαa1 = 1− δ still holds15), we have

h(h− 1)

2
α2 =

1

2
h2α2 −

h

2
α2 =

(1 − δ)2

2a21
−

(1− δ)2

2ha21
>

1

3a21
.

We can see from the following that y > x after a while as x increases.

x1 =
6a21

a2 − 2a1
δ =⇒ y(x1)− x1 > −δx1 +

a2 − 2a1
3a21

x2
1 + o(x2

1)

=
6a21

a2 − 2a1
δ2 + o(δ2)

> 0.

Notice that the 2-quasi-submodularity of f makes sure a2 > 2a1 such that x1 is positive.
We have seen that y < x for small enough x, and y > x after x increases. There must be a threshold p1

such that y = x at x = p1 by the Intermediate Value Theorem. On the other hand, y is upper bounded by
p∗ while x can be as large as 1, so y ≤ x for sufficiently large x. The Intermediate Value Theorem suggests
there exists another threshold x = p2 > p1 such that y = x. Consequently, Figure 15 indeed represents the
graph of y(x) for the proper choices of α and h.

15According to Definition 17 and Lemma 10, given the scale α∗ for which we want to adjust to, we can construct a probability
scaling down gadget such that the actual scale α is arbitrarily close to α∗. Although we cannot make the adjustment exact, a
close enough approximation would still satisfy our purpose here, as all we want is δ to be small enough, or hαa1 to be close
enough to 1.
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Figure 15: The output probability y versus the input probability x

Finally, from the graph in Figure 15, we can see that the infection probability of the output vertices
in the i-th layer increases as i increases, if all the Λ = hℓ input vertices are infected with an independent
probability larger than p1. In contrast, the infection probability of the output vertices in the i-th layer
decreases as i increase, if all the Λ = hℓ input vertices are infected with an independent probability less than
p1. By setting ℓ large enough, we can make both (1) and (2) in Definition 18 hold.

Before we move on, we show some properties of the thresholds p1 and p2, and our objective is to show
the following proposition which is a part of Lemma 11.

Proposition 3. For any large ratio r > 0, we can find h and α such that p2/p1 > r.

By the calculation above, the proposition below follows immediately.

Proposition 4. p1 <
6a2

1

a2−2a1
δ.

We also have the following lower bound for p2.

Proposition 5. By choosing h sufficiently large and δ sufficiently small, we have p2 > a1γ for any γ such
that

a2(1− e−γ − γe−γ)− a1(γ − γe−γ) > 0.

Proof. By replacing all a3, a4, . . . , ah to a2 in Equation (9), we have

y ≥
h∑

i=1

(
h

i

)

a2(αx)
i(1− αx)h−i −

(
h

1

)

(a2 − a1)αx(1 − αx)h−1

= a2

(
h∑

i=0

(
h

i

)

(αx)i(1− αx)h−i − (1− αx)h

)

− h(a2 − a1)αx(1 − αx)h−1

= a2 − a2(1− αx)h − h(a2 − a1)αx(1 − αx)h−1

= a2 − a2 exp(h ln(1− αx)) − h(a2 − a1)αx exp((h− 1) ln(1− αx))

≥ a2 − a2 exp(−hαx)− h(a2 − a1)αx exp(−αx(h− 1)). (concavity of ln function)

Letting x = a1γ, we have

y − x ≥ a2 − a2 exp(−γ(1− δ)) − (a2 − a1)(1− δ)γ exp

(

γ(1− δ)

(
1

h
− 1

))

− a1γ

(since x = a1γ and hαa1 = 1− δ)

> a2(1 − e−γ − γe−γ)− a1(γ − γe−γ)− ǫ,

where in the last step, for any ǫ > 0, we can find small enough δ and large enough h to make the inequality
holds. Rigorously, we have 1 − δ → 1 and 1

h → 0 for δ → 0 and h → ∞. The expression in the second
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last step is a continuous function, which has limit a2(1 − e−γ − γe−γ) − a1(γ − γe−γ), and the last step is
obtained by the definition of limit.

Therefore, y − x > 0 for any x > p1 with x = a1γ, where γ satisfies

a2(1− e−γ − γe−γ)− a1(γ − γe−γ) > 0,

which implies the proposition.

We remark that there always exists γ satisfying the inequality in Proposition 5. To see this, we show that
Φ(γ) := a2(1− e−γ −γe−γ)−a1(γ−γe−γ) > 0 when γ is sufficiently small. By straightforward calculations,
we have Φ(0) = Φ′(0) = 0 and Φ′′(0) = a2 − 2a1 > 0, which means Φ(0) = 0 and Φ is increasing on [0, γ0)
for some small γ0, which further implies that Φ is positive on [0, γ0).

Proposition 4 implies that we can construct the probability filter gadget with arbitrarily small p1 by setting
δ small. On the other hand, Proposition 5 implies that p2 can be made larger than some number depending
only on a1 and a2, which in particular can be considerably larger than p1, which yields Proposition 3.

Finally, we are ready to show Lemma 11.

Proof of Lemma 11. The possibility of this construction is straightforward, as the construction is already
made explicit in this section. It remains to show that the gadget contains O((1/ε1)

c) vertices and O((1/ε1)
c)

edges, and Λ = O((1/ε1)
c).

Since ε2 is a constant, we only need constantly many layers such that the input probability x increases
to more than p2 − ε2, if x is initially larger than p1.

To investigate how many layers are needed to make x decreases to less than ε1 in the case x is initially
smaller than p1, recall that in each layer of the probability filter gadget, the input probability x is updated
to y such that y− x = −δx+ o(x) for sufficiently small x, so each time x is decreased by a factor of (1− δ).
After a constant number of layers, x will be sufficiently small such that the term o(x) is negligible, and after

another log(1/ε1)
log(1/(1−δ)) layers, x will decrease by a factor of (1 − δ)

log(1/ε1)

log(1/(1−δ)) = ε1, which makes the value of
x much smaller than ε1. Therefore, we need at most ℓ = O(log(1/ε1)) layers. Let χv, χe be the number
of vertices and edges respectively in a probability separation block shown in Figure 14, and they are both
constants according to Lemma 10. The total number of vertices in a probability filter gadget is

ℓ∑

i=1

χv · h
ℓ−i = χv

hℓ − 1

h− 1
= Θ

(
hℓ
)
= O((1/ε1)

c),

and the total number of edges has the same asymptotic bound by the same calculation above, with χv

changed to χe. Thus, we conclude that the gadget contains O((1/ε1)
c) vertices and O((1/ε1)

c) edges.
For Λ, we have Λ = hℓ = O((1/ε1)

c) by our construction, which concludes the last part of the lemma.

6.5 Construction of the AND Gadget with I = 2

In this section, we construct the AND gadget with parameter I = 2. The AND gadget makes use of a
single probability filter gadget with the same choices of parameters Λ, p2, ε1, ε2 and f . The AND gadget
takes two sets I1, I2 of vertices as inputs, and each set has Λ = hℓ vertices. Let I1 = {u1, u2, . . . , uΛ} and
I2 = {v1, v2, . . . , vΛ}. We create Λ vertices w1, w2, . . . , wΛ and create two edges (ui, wi), (vi, wi) for each
i = 1, 2, . . . ,Λ. We apply the probability scaling down gadgets to create another Λ vertices w′

1, w
′
2, . . . , w

′
Λ

such that p(w′
i) = βp(wi) for each i = 1, 2, . . . ,Λ, where β is set to the value such that

βϕ+
T (p0) < p2, βϕ−

T (p0) > p1, and βϕ+
F (p0) < p1,

where

ϕ+
T (p0) = (a2 − 2a1)

(
11

10
p0

)2

+ 2a1

(
11

10
p0

)

,

ϕ−
T (p0) = (a2 − 2a1)p

2
0 + 2a1p0,

ϕ+
F (p0) =

11

20
(a2 − 2a1)p

2
0 +

16

10
a1p0.
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Figure 16: AND gadget with I = 2

The construction is shown in Figure 16.
Notice that if all ui and vi are infected with an independent probability in the interval (p0, 11

10p0), that
is, the inputs I1, I2 fall into case (2) in Definition 15, wi will be infected with probability

p(wi) = a2p(ui)p(vi) + a1p(ui)(1 − p(vi)) + a1p(vi)(1 − p(ui))

= (a2 − 2a1)p(ui)p(vi) + a1p(ui) + a1p(vi),

which is in the interval
(
ϕ−
T (p0), ϕ

+
T (p0)

)
.

On the other hand, if one of ui and vi is infected with probability less than 1
2p0 and the other one is

infected with probability less than 11
10p0, that is, the inputs I1, I2 fall into case (1) in Definition 15, wi will

be infected with probability

p(wi) = (a2 − 2a1)p(ui)p(vi) + a1p(ui) + a1p(vi)

<
11

20
(a2 − 2a1)p

2
0 +

16

10
a1p0

= ϕ+
F (p0).

Given that
(
βϕ−

T (p0), βϕ
+
T (p0)

)
⊆ (p1, p2) and βϕ+

F (p0) < p1, it is now straightforward to check that the two
properties (1) and (2) in Definition 15 hold for I = 2, since the probability filter gadget will “filter” the two
probabilities such that one goes to a value less than ε1 and the other goes into (p2 − ε2, p2].

By our construction of probability scaling down gadget, the factor must satisfy β ≤ p∗. It seems worrying
that

(
ϕ−
T (p0), ϕ

+
T (p0)

)
and ϕ+

F (p0) will be both scaled down to smaller than p1 even if we take maximum
β = p∗. Indeed, Proposition 3 and Proposition 4 ensure that this cannot happen, as we can always make
p1 small enough by making δ small enough. We remark here that the choice of δ depends on p0 and p∗ (it
needs to be considerably smaller than some polynomial of p0 such that

(
ϕ−
T (p0), ϕ

+
T (p0)

)
and ϕ+

F (p0) can be
scaled down to different sides of p1), where p∗ depends only on f .

Now we prove the following lemma, which is a special case of Lemma 4 with I = 2.

Lemma 12. Given any 2-quasi-submodular function f with a1 > 0 and any constant threshold p0 > 0, there
exists a constant p2 > 0 depending on p0 and f such that for any constant ε2 > 0 and any ε1 > 0, we can
construct a (2,Λ, p0, p2, ε1, ε2, f)-AND gadget with Λ = O ((1/ε1)

c1), and the number of vertices and edges
in this AND gadget are both O ((1/ε1)

c1), where c1 is a constant.

Proof. The existence of this AND gadget is shown by the explicit construction in this section.
To show that p2 only depends on p0 and f , notice that it depends on h, δ and f (in particular, a1 and

a2 only) according to Proposition 5. Additionally, h, α are selected such that δ = 1− hαa1 is small enough,
and we have remarked just now that δ depends on p0 and f . Therefore, p2 only depends on p0 and f , as the
graph y = y(x) determines the value of p2.
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For the size of this AND gadget and the input size Λ, the size of this AND gadget is the size of a
probability filter gadget plus 3Λ for those ui, vi, wi, and the size of each of both input sets is Λ. Therefore,
Lemma 11 implies the second part of this lemma.

Remark 3 (Remark of Lemma 12). Lemma 12 shows that when constructing a (2,Λ, p0, p2, ε1, ε2, f)-AND
gadget, we are free to set up the parameter p0, and the parameter p2 will be determined. After p2 is deter-
mined, we are still free to choose ε1, ε2, and Λ will be then determined. In fact, the two parameters ε1, ε2
decides the number of layers needed in the probability filter gadget, and we can achieve (1) and (2) in Def-
inition 15 for any valid function y(x) with two intersections to the line y = x as it is in Figure 15. That
is the reason why we can choose ε1, ε2 after p2 is determined. In particular, for the same function y(x) but
different ε1, ε2, we just need the AND gadgets with different numbers of layers in their inner probability filter
gadgets. We will make use of this observation to construct AND gadgets with the same parameters p0, p2, f
but different ε1, ε2 in the next section.

To conclude this section, we show that we can also construct a (2,Λ, p2−ε2, p2, ε1, ε2, f)-AND gadget and
a (2,Λ, p∗(p2 − ε2), p2, ε1, ε2, f)-AND gadget which will be used in the next section. Notice that Lemma 12
does not imply the possibility of constructing this AND gadget, as p2’s existence is supposed to depend on
the third parameter, which now become p2 − ε2 and p∗(p2 − ε2), two constants related to p2.

Lemma 13. Given any 2-quasi-submodular influence function f and any constant threshold p0 > 0, we can
construct a (2,Λ, p0, p2, ε1, ε2, f)-AND gadget, a (2,Λ, p2 − ε2, p2, ε1, ε2, f)-AND gadget and a (2,Λ, p∗(p2 −
ε2), p2, ε1, ε2, f)-AND gadget with the same parameters Λ, p2, ε1, ε2.

Proof. The three AND gadgets are only different at the third parameter, which is the input threshold
determining which of the two cases (1) and (2) in Definition 15 the inputs fall into. By our construction,
we can use the same structure for the three AND gadgets, except that we use three different scaling down
factors β1, β2, β3 for the different thresholds p0, p2 − ε2 and p∗(p2 − ε2). In particular, the three probability
filter gadgets inside the three AND gadgets can be exactly the same, provided that the “gap” p2/p1 is large
enough such that

•
(
β1ϕ

−
T (p0), β1ϕ

+
T (p0)

)
and β1ϕ

+
F (p0) are on the different sides of p1,

•
(
β2ϕ

−
T (p2 − ε2), β2ϕ

+
T (p2 − ε2)

)
and β2ϕ

+
F (p2 − ε2) are on the different sides of p1, and

•
(
β3ϕ

−
T (p

∗(p2 − ε2)), β3ϕ
+
T (p

∗(p2 − ε2))
)

and β3ϕ
+
F (p

∗(p2 − ε2)) are on the different sides of p1.

We know that this is always possible by Proposition 3.
As the same probability filter gadget is used in the two AND gadgets, the four parameters Λ, p2, ε1, ε2,

which are inherited from the probability filter gadget by our construction, are identical for the three AND
gadgets.

6.6 Construction of the AND Gadget with General I of an Integer Power of 2

In this section, we construct the AND gadget in Definition 15 with general I that is an integer power of 2.
A (I,Λ, p0, p2, ε1, ε2, f)-AND gadget is a (log2 I)-level AND circuit using 2-set-input AND gadgets con-

structed in the previous section as building block. We will use three different types of 2-set-input AND
gadgets.

• Type A: (2,Λ0, p0, p2,
1
3 (p2 − ε2), ε2, f)-AND gadget.

• Type B: (2,Λ0, p2 − ε2, p2,
1
3 (p2 − ε2), ε2, f)-AND gadget.

• Type C: (2,ΛC , p2 − ε2, p2, ε1, ε2, f)-AND gadget.

Lemma 13 indicates that we can construct A and B, and by Lemma 12 Λ0 is a constant since 1
3 (p2− ε2) is a

constant. By Lemma 12 and its remark, we can construct C based on B by adjusting the number of layers
in the inner probability filter gadget, and ΛC = O ((1/ε1)

c1) for some constant c1.
Figure 17 shows the construction of this AND gadget. The type and the number of AND gadgets in each

of the log2 I levels are set as follows:
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• Level (log2 I): A single AND gadget of Type C is constructed.

• Level (log2 I − 1): 2 groups of ΛC Type B AND gadgets are constructed, and the output vertices in
each group are connected to each of the input ends I1, I2 of the AND gadget in Level (log2 I).

• Level (log2 I − 2): 22 groups of Λ0ΛC Type B AND gadgets are constructed, and the output vertices
in each group are connected to each of the input ends I1, I2 of the AND gadgets in each of the 2 groups
in Level (log2 I − 1).

• Level (log2 I−3): 23 groups of Λ2
0ΛC Type B AND gadgets are constructed, and the output vertices in

each group are connected to each of the input ends I1, I2 of the AND gadgets in each of the 22 groups
in Level (log2 I − 2).

• · · ·

• Level 2: 2log2 I−2 groups of Λlog2 I−3
0 ΛC Type B AND gadgets are constructed, and the output vertices

in each group are connected to each of the input ends I1, I2 of the AND gadgets in each of the 2log2 I−3

groups in Level 3.

• Level 1: 2log2 I−1 groups of Λlog2 I−2
0 ΛC Type A AND gadgets are constructed, and the output vertices

in each group are connected to each of the input ends I1, I2 of the AND gadgets in each of the 2log2 I−2

groups in Level 2.

Finally, the two input sets I1, I2 in each of the 2log2 I−1 = I
2 AND gadget groups in Level 1 form two of

the I input sets for the (I,Λ, p0, p2, ε1, ε2, f)-AND gadget we are constructing, and the output vertex of the
Type C AND gadget in Level (log2 I) is the output of the (I,Λ, p0, p2, ε1, ε2, f)-AND gadget.

We now show that (1) and (2) in Definition 15 hold.

1. If all the vertices in all I input sets are infected with independent probabilities less than 11
10p0, and

the infection probabilities of the vertices in at least one set are less than 1
2p0, then the Type A AND

gadgets in at least one group in Level 1 will output vertices with infection probabilities less than
1
3 (p2 − ε2). Since the threshold (the third parameter) of Type B AND gadgets is set to (p2 − ε2) and
1
3 (p2−ε2) <

1
2 (p2−ε2), the Type B AND gadgets in at least one group in each of Level 2, 3, . . . , log2 I−1

will output vertices with infection probabilities less than 1
3 (p2 − ε2). Finally, at least one of the two

input sets for the Type C AND gadget in Level (log2 I) will be infected with probabilities less than
1
3 (p2 − ε2), which is less than 1

2 (p2 − ε2). Thus, the output of the entire (I,Λ, p0, p2, ε1, ε2, f)-AND
gadget is a vertex with infection probabilities less than ε1, which implies (1) in Definition 15.

2. If all the vertices in all I input sets are infected with independent probabilities in (p0,
11
10p0), all the

Type A AND gadgets in Level 1 will output vertices with infection probabilities in (p2 − ε2, p2]. Since
(p2 − ε2, p2] ⊆

(
p2 − ε2,

11
10 (p2 − ε2)

)
for small enough ε2,16 all the Type B AND gadgets in each of

Level 2, 3, . . . , log2 I − 1 will output vertices with infection probabilities in (p2 − ε2, p2]. Finally, the
Type C AND gadget in Level (log2 I) will output a vertex with infection probability in (p2 − ε2, p2].

Finally, we prove Lemma 4 and Lemma 5 in Section 6.2.

Proof of Lemma 4. The existence of the (I,Λ, p0, p2, ε1, ε2, f)-AND gadget is proved by the explicit construc-
tion above. It remains to show that the number of vertices and edges in this AND gadget is O

(
(1/ε1)

c1Ic2+1
)
,

and the input size is Λ = O ((1/ε1)
c1Ic2).

By Lemma 12, the number of vertices and edges in the Type A and B AND gadgets are constants, since
the parameter 1

3 (p2 − ε2) is a constant. Let χ be a constant upper bound for these. As for Type C AND

gadget, it has O ((1/ε)c1) vertices and edges by Lemma 12. Since there are 2log2 I−iΛ
log2 I−i−1
0 ΛC AND

16If the parameter ε2 in the (I,Λ, p0, p2, ε1, ε2, f)-AND gadget we are constructing is not small enough to satisfy this, we can
replace ε2 with another smaller ε′2 and instead construct a (I,Λ, p0, p2, ε1, ε′2, f)-AND gadget. Notice that the description 2 of
Definition 15 implies that a (I,Λ, p0, p2, ε1, ε′2, f)-AND gadget is also a valid (I,Λ, p0, p2, ε1, ε2, f)-AND gadget for ε′2 < ε2.
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Figure 17: The (I,Λ, p0, p2, ε1, ε2, f)-AND gadget
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Figure 18: The directed edge gadget 〈u, v〉

gadgets in Level i and ΛC = O ((1/ε)c1) as mentioned, the total number of vertices and edges have the
following bound.

O ((1/ε)c1) +

log2 I−1
∑

i=1

χ · 2log2 I−iΛ
log2 I−i−1
0 ΛC < χΛC · (2Λ0)

log2 I = O
(
(1/ε1)

c1Ic2+1
)
,

where c2 = log2 Λ0 is a constant.
As for Λ, there are Λ

log2 I−2
0 ΛC AND gadgets in each of the I

2 groups in Level 1, and each of these AND
gadgets takes Λ0 vertices as one of the two inputs. Therefore, we have

Λ = Λ0 · Λ
log2 I−2
0 ΛC = O ((1/ε1)

c1Ic2) ,

which concludes the last part of the lemma.

Proof of Lemma 5. Based on Lemma 13, by changing all the Type A (2,Λ0, p0, p2,
1
3 (p2 − ε2), ε2, f)-AND

gadgets in Level 1 to the Type A′ (2,Λ0, p
∗(p2 − ε2), p2,

1
3 (p2 − ε2), ε2, f)-AND gadgets, we obtain an

(I,Λ, p∗(p2 − ε2), p2, ε1, ε2, f)-AND gadget.
The size of the AND gadget only changes by a constant, as the only difference between the two AND

gadgets are the different probability scaling down gadgets used for different β for A and A′. Since the
probability scaling down gadget has a constant size, we conclude the second half of the lemma.

6.7 Construction of Directed Edge Gadget

The (Υ, ǫ, b, f)-directed edge gadget in Definition 16 can be constructed by modifying the number of layers
in the (Λ, p1, p2, ε1, ε2, f)-probability filter gadget in Definition 18. While still keeping the parameter h and
α such that a1hα = 1− δ in the probability separation block of the probability filter gadget, we modify the
number of layers in the circuit to L = log(Υ/ǫ)

log(1/(1−δ)) + 1.

To construct a directed edge gadget 〈u, v〉, we connect u to all the hL inputs to the circuit, and let v be
the output. The construction of directed edge gadget is shown in Figure 18.

To show property (1) in Definition 16, suppose u is connected to Υ infected vertices v1, v2, . . . , vΥ by the
directed edge gadgets. If the vertices in the i-th layer are infected with probability xi, then the vertices in the
(i− 1)-th layer will be infected with probability xi−1 = a1αxi, which can be easily seen from Figure 14 and
by noticing the symmetric property of probability scaling down gadgets mentioned in Remark 2. Therefore,
each vertices in the first level that are adjacent to u will be infected with probability (a1α)

L. Since there are
hL vertices in the first level and u is assumed to be connected to Υ vertices by the directed edge gadgets,
the expected number of u’s infected neighbors is

E[num of infected neighbors] = ΥhL(a1α)
L = Υ(1− δ)L = ǫ(1− δ) < ǫ,

where recall that we have set

L =
log(Υǫ )

log 1
1−δ

+ 1.
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Therefore, by Markov’s inequality, the probability that u has infected neighbor(s) is less than ǫ, which means
u will be infected with probability less than ǫ.

For (2), suppose u is connected to v by a directed edge gadget 〈u, v〉 and u is already infected. Then all
the hL inputs of the inner probability filter gadget will be infected with probability a1 independently, and v
will be infected with probability in (p2− ε2, p2] if δ is set small enough such that a1 passes the threshold p1.
In particular, b > 0.

Lastly, we prove Lemma 7 and Lemma 8.

Proof of Lemma 7. The possibility of the construction is already made explicit.
Let λ be the upper bound of the number of vertices and edges in a probability separation block in the

probability filter gadget (which is a constant), the total number of vertices in a directed edge gadget is

L−1∑

i=0

λhi = λ
hL − 1

h− 1
= Θ

(
hL
)
= Θ

(

h
log Υ

log 1
1−δ

+
log( 1

ǫ
)

log 1
1−δ

+1
)

= Θ
(
Υd(1/ǫ)d

)
,

and the total number of edges is

hL
︸︷︷︸

number of edges from u to the probability scaling down gadget

+
L−1∑

i=0

λhi = Θ
(
hL
)
= Θ

(
Υd(1/ǫ)d

)
.

where d = log h
log 1

1−δ

.

To show that d depends only on f , it is enough to notice that we only need to set up the values of h and
δ such that p1 < a1 as mentioned.

Proof of Lemma 8. Given an (I,Λ, p0, p2, ε1, ε2, f)-AND gadget which consists of many 2-set-input AND
gadgets (see Figure 17), we can obtain a (Λ, p1, p2, ε1, ε2, f)-probability filter gadget which is the core of
an arbitrary 2-set-input AND gadget. We construct the (Υ, ǫ, b, f)-directed edge gadget by increasing the
number of layers in this probability filter gadget, just as what we did earlier. By our analysis above, we
already have b ∈ (p2 − ε2, p2]. Moreover, by Figure 15, increasing the number of layers makes b closer to
p2. Therefore, we can have b ∈

(
p2 −

1
2ε2, p2

]
by just increasing the number of layers, which proves the

possibility of the construction.
By our discussion in Section 6.4.2, we only need a constant number of layers to have b ∈

(
p2 −

1
2ε2, p2

]
,

as 1
2ε2 is a constant. Thus, requiring b ∈

(
p2 −

1
2ε2, p2

]
does not change the number of layers asymptotically.

Following the proof of Lemma 7, we conclude the second half of the lemma.

6.8 Proof of Theorem 4 for a1 = 0

In the case a1 = 0, the constructions of both the AND gadget and the directed edge gadget fail. Modifications
of the structure in Figure 11 as well as the structure of the AND gadget are required. We will discuss these
modifications in this section, and the remaining details are left to the readers.

Modification to the AND Gadget The AND gadget for the case a1 = 0 is much simpler. The input
ε1, ε2 is no longer needed, and both p0, p2 in the original AND gadget are set to 1

2a2. The definition of the
modified AND gadget is shown below.

Definition 19. A (I,Λ, f)-AND gadget takes I sets of Λ vertices each as inputs, and output a vertex such
that

1. if the vertices in at least one input set are infected with probability 0, then the output vertex will be
infected with probability 0;

2. if the vertices in all input sets are infected with independent probability at least 1
2a2, then the output

vertex will be infected with probability at least 1
2a2,
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Figure 19: The modified AND gadget with parameter (2,Λ, f)

The construction of a (2,Λ, f)-AND gadget is shown in Figure 19. It is easy to see that the infection of
the output vertex will not affect any other vertices in this circuit due to a1 = 0. Due to the same reason,
property (1) above is trivial for the case I = 2 here. Let x be the probability that each vertex in the two
input sets is infected, and let y be the probability the output is infected. Then,

y =

Λ∑

i=2

(
Λ

i

)

ai(a2x)
i(1− a2x)

Λ−i.

To satisfy (2), we only need to choose Λ large enough such that y(12a2) ≥
1
2a2. This is always possible, as

we have y(12a2) → p∗ > 1
2a2 as Λ → ∞ (the expected number of infected neighbors of the output vertex is

1
2a2Λ which goes to infinity).

Lemma 14. For any f with a2 > a1 = 0, we can construct a (2,Λ0, f)-AND gadget with constant size, and
Λ0 is a constant depending on f .

Proof. The construction above shows the existence of the gadget, and Λ0 is a constant that is large enough
to make y(12a2) ≥

1
2a2 true, which depends only on f .

From Figure 19, it is clear that the gadget has 3Λ0+1 vertices and 3Λ0 edges, which are both constants.

To construct a (I,Λ, f)-AND gadget with I being an integer power of 2, we use the same “tower structure”
in Figure 17. Specifically, all the AND gadgets in all log2 I levels are identically the (2,Λ0, f)-AND gadget
in Figure 19, and the output vertices of 2log2 I−i groups of Λlog2 I−i

0 (2,Λ0, f)-AND gadgets in Level i are
connected to the input ends of 2log2 I−i−1 groups of Λlog2 I−i−1

0 (2,Λ0, f)-AND gadgets in Level (i+1). It is
straightforward to check that (1) and (2) in Definition 19 hold for this construction.

Lemma 15. For any f with a2 > a1 = 0 and any I that is an integer power of 2, we can construct a (I,Λ, f)-
AND gadget with O

(
Ic+1

)
vertices and O

(
Ic+1

)
edges, and Λ = Ic, where c is a constant depending on

f .

Proof. The existence of this AND gadget is shown by the explicit construction.
The numbers of vertices and edges are both

log2 I
∑

i=1

3Λ0 · 2
log2 I−iΛ

log2 I−i
0 < 3Λ0 · (2Λ0)

log2 I = O
(
Ic+1

)
,

where c = log2 Λ0 is a constant, and it depends only on f as Λ0 depends only on f according to Lemma 14.
Notice that the number of vertices in a (2,Λ0, f)-AND gadget is counted as 3Λ0 other than 3Λ0 + 1 in
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Lemma 14, because the output vertex of each (2,Λ0, f)-AND gadget is counted as one of the input vertices
in one of the (2,Λ0, f)-AND gadgets in the next level.

Finally, since there are Λ
log2 I−1
0 (2,Λ0, f)-AND gadgets in each group in Level 1, we have

Λ = Λ0 · Λ
log2 I−1
0 = Ic,

which concludes the lemma.

Modification to the Set Cover Part We will use a pair of vertices to represent a subset in the SetCover

problem and use a pair of cliques to represent an element in U . The pair of vertices are connected to each
vertex of the two cliques by a specially designed gadget shown in the bottom of Figure 20.

If the two vertices representing a subset are both infected, it is straightforward to check that each vertex at
the output end of the gadget at the bottom of Figure 20 will be infected with probability a72. Given there are
m vertices in a clique, the expected number of infected vertices in a clique is a72m. By choosing m large enough
(but still a constant) such that a⌊a7

2m⌋ > p∗ − ε, each vertex in the clique will be infected with probability
at least p∗− ε. Therefore, if a subset is picked such that the two vertices representing it are chosen as seeds,
all pairs of cliques representing its elements will be activated. Naturally, given the SetCover instance in
which we are choosing k subsets, we are asked to choose 2k seeds in the InfluenceMaximization instance.

On the other hand, since a1 = 0, an activated clique will not be able to infect the pair of vertices
representing a subset, so the connection between the pair of vertices to each vertex in the clique is like a
directed edge. Moreover, it is easy to see that we still need two seeds to pick a subset even if some cliques
representing elements in this subset are activated. Although we have the option to choose the two seeds “on
the gadget”, we still need to pick at least two seeds to “choose a subset”. Thus, it does not matter if any of
these seeds is not exactly in the pair of vertices representing the subset.

The M2 (n,Λ, p∗ − ε, p2, 1/n, ε2, f)-AND gadgets in Figure 11 is changed to M2 (2n, (2n)c, f)-AND
gadgets here. Moreover, each of the n groups of the (2,Λ0, f)-AND gadgets in Level 1 of the (2n, (2n)c, f)-
AND gadget corresponds to the vertices in the two cliques representing the same element in U . A single
(2,Λ0, f)-AND gadget is illustrated on the right-hand side of Figure 20.

Modification to the Connection to the M1 Vertices In Figure 11, the output vertex v is connected
to the M1 vertices by M1 edges. Since a1 = 0, such construction will fail to satisfy our purpose here. To
fix this, we can use 2M2 (2n, (2n)c, f)-AND gadgets such that the outputs of every two AND gadgets are
connected to each of the M1 vertices.17

In addition, we also update the value of M1 to M1 = nc+10.

Modification to the Clique Size m Since there are (2n)c vertices in each of the n inputs for each of the
2M2 (2n, (2n)c, f)-AND gadgets, to furnish enough inputs, we update the clique size to m = 2M2 · (2n)c =
21+cn2+c = O

(
nc+2

)
.

Modification to Lemma 6 To conclude this section, we have the following lemma corresponding to
Lemma 6 in Section 6.2.

Lemma 16. If the SetCover instance is a YES instance, by choosing 2k seeds appropriately, we can infect
at least 1

4a
3
2 ·n

c+12 vertices in expectation in the graph G we have constructed; if it is a NO instance, we can
infect at most O

(
knc+10

)
vertices in expectation for any choice of 2k seeds.

Proof. If the SetCover instance is a YES instance, we choose the 2k seeds representing the k subsets, and
all the 2n cliques will be activated such that each vertex in all these clique will be infected with probability
p∗ − ε. Since p∗ ≥ a2, we have p∗ − ε > 1

2a2 as ε is sufficiently small due to large size of m. All the 2M2

(2n, (2n)c, f)-AND gadgets fall into case (2), so that the output vertices are infected with probabilities at

17Another way to fix this is to reduce the number of levels by 1 in the (2n, (2n)c, f)-AND gadget, such that we have two
output vertices of the AND gadget instead of only one output in Definition 19.
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Figure 20: Connection between a pair of vertices representing a subset and vertices in the two cliques
representing an element, and a (2,Λ0, f)-AND gadget in the first level of the (2n, (2n)c, f)-AND gadget.
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least 1
2a2. The M1 vertices in each of the 2M2 copies of the verification part are connected to two vertices

with infection probabilities at least 1
2a2, so the total expected number of infected vertices in G is at least

M2 ×

(
1

2
a2

)2

︸ ︷︷ ︸

probability both output vertices are infected

× (a2M1)
︸ ︷︷ ︸

expected num of infections in M1 vertices

=
1

4
a32 · n

c+12.

If the SetCover instance is a NO instance, consider any choice of 2k seeds with k1 seeds in the vertices
representing subsets, k2 seeds in the connection gadgets between vertices representing subsets and vertices in
the cliques, k3 seeds in the 2n cliques, k4 seeds in those (2,Λ0, f)-AND gadgets at Level 1 of the (2n, (2n)c, f)-
AND gadgets, and k5 = 2k − k1 − k2 − k3 − k4 seeds in the remaining part of the verification parts (the
(2,Λ0, f)-AND gadgets at the remaining levels and the M1 vertices connecting to the (2n, (2n)c, f)-AND
gadgets). Again, we first prove that at least one clique will not be activated such that all its vertices are
infected with probability 0.

First of all, those k5 seeds cannot have effect in activating cliques. This is because their influence cannot
pass through the (2,Λ0, f)-AND gadgets in the first level, as the infection of the output vertex in each
(2,Λ0, f)-AND gadget cannot further infect the input vertices due to a1 = 0.

Secondly, for those k1 and k2 seeds, they are at the vertex-pairs representing the subsets and the gadgets
connected to those pairs respectively. We call the vertices in those gadgets connecting to a pair the vertices
around the pair. It is easy to see that we need to choose at least 2 seeds in or around a pair to pick a
subset. To see this, even if vertex C in the gadget (at the bottom of Figure 20) is already infected (which is
possible as C belongs to a clique which may have been activated already) such that D and E already have
one infected neighbor, we still cannot make both A and B infected by picking only 1 seed in or around the
pair (A,B). Thus, we assume without loss of generality that all k2 seeds are on the pairs representing the
subsets, as we need at least 2 seeds in or around a pair (A,B) in which case we can assume the seeds are
just at A and B.

For those k3 seeds on the cliques and k4 seeds on the (2,Λ0, f)-AND gadgets in the first level, since each
AND gadget in the first level takes two sets of vertices from two cliques representing the same element in
U , we need at least 3 seeds to activate two cliques representing the same element in U : one in the middle
of the AND gadget, and one in each of the two cliques (such that the two vertices connecting to the seed in
the middle of the AND gadget have two infected neighbors, and stand a chance to activate the two cliques).
In contrast, we only need 2 seeds to activate these two cliques, by choosing the pair of vertices representing
the subset covering the element that these two cliques represent. Therefore, we can assume that those k3
and k4 seeds are also on those pairs representing subsets.

Since k1 + k2 + k3 + k4 ≤ 2k and the SetCover instance is a NO instance, by the fact that we need
2 seeds to pick a subset, we conclude that at least one clique will not be activated, and the vertices in this
clique are infected with probability 0.

By the effect of the (2n, (2n)c, f)-AND gadget, except for those (at most) k4+k5 AND gadgets containing
seeds, the output vertices of the remaining 2M2 − k4 − k5 AND gadgets will be infected with probability 0,
which have no effect on those M1 vertices. Therefore, even if all the vertices in the set cover part, the k4+k5
copies of the verification parts, and the 2M2 (2n, (2n)c, f)-AND gadgets are infected, the total number of
infected vertices cannot exceed

2K + 6K(2n)m+ 2nm
︸ ︷︷ ︸

size of the set cover part

+2M2 (2n)c+1

︸ ︷︷ ︸

size of an AND gadget

+(k4 + k5)
(
(2n)c+1 +M1

)

︸ ︷︷ ︸

size of a verification part

= O
(
knc+10

)
,

which concludes the lemma.

Noticing that the total number of vertices in G is

N = 2K + 6K(2n)m+ 2nm+M2

(
(2n)c+1 +M1

)
= Θ

(
nc+12

)
,

and knc+10 = O(nc+11). we conclude Theorem 4 in the case a1 = 0 by setting τ = 1
c+12 .
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7 Conclusion

We show the hardness of approximating InfMax in several settings restricting the network structure or the
cascade model. Before our results there was some hope that the hardness of nonsubmodular influence max-
imization was only caused by the hardness of detecting community structure within the network. However,
our results show that even for very plain community structures, InfMax can remain hard. Moreover, in our
construction, even if the algorithm is told the community structure, the problem remains hard. We show
that it is the bidirectional nature of contagions which renders the problem hard.

We also show the inapproximability of InfMax even in the restrictive universal local influence model
(Definition 9) with any 2-quasi-submodular local influence function f , even if f is almost submodular. Since
it turns out assumptions on either the graph topology or the cascade model do not really make InfMax

easy, a natural question is that, what if we make assumptions on both?
We conclude with the following open problem: considering the universal local influence model in Defi-

nition 9 with 2-quasi-submodular f on the stochastic hierarchical blockmodel18, does there exist a 2-quasi-
submodular f , such that InfMax is NP-hard to approximate to within a constant factor? Or is it the case
that for any 2-quasi-submodular f , there exists a constant factor approximation to InfMax?
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A A Variant of Theorem 4

Li et al. [29] considered a model where there is only a sublinear fraction of vertices admitting nonsubmodular
local influence functions that are almost submodular. They showed that, even though this appears to make
the cascade model globally closer to submodularity, InfMax is still NP-hard to approximate to within N τ

for certain constant τ . In this section, we adapt Theorem 4 to a variant that is of a similar style of this.

Theorem 5. Consider the InfMax problem (G,F,D, k). For any fixed 2-quasi-submodular f , any fixed
submodular function g : Z≥0 → [0, 1] with g(1) > g(0) = 0, and any γ ∈ (0, 1), there exists a constant τ
depending on f and γ such that, even if D is the uniform distribution on [0, 1], fv ∈ F is symmetric with
either fv = f or fv = g, and |{v ∈ V : fv = f}| ≤ Nγ, it is NP-hard to distinguish between the following
two cases:

• YES: there exists a seed set S with |S| = k such that σG
F,D(S) = Θ(N);

• NO: for any seed set S with |S| = k, we have σG
F,D(S) = O(N1−τ ).

Proof. We again discuss two different cases: a1 = f(1) > 0 and a1 = f(1) = 0.
For the first case, the reduction in Sect. 6.3 can be modified to prove this theorem (if we only need

to prove this theorem for directed graphs, the much simpler reduction in Sect. 6.2 can be used), with the
following modifications.

• Except for those M1 vertices on the right-hand side of Fig. 11 in each of the M2 copies of the verification
part, the remaining vertices are equipped with f . Those M1 vertices in each of the M2 copies are
equipped with g.

• Change M1 = n(30c1+30c2+70)d (as it is in Sect. 6.3) to M1 = n
1
γ (30c1+30c2+70)d, where n is the number

of elements in the SetCover instance and c1, c2, d are the constants in Lemma 4 and Lemma 7.

Recall from Sect. 6.3 that the set cover part has O(n(3c1+3c2+7)d+c1+c2+4) vertices and the AND gadget
has O(nc1+c2+1) vertices, the total number of vertices in G is

N = O
(

n(3c1+3c2+7)d+c1+c2+4
)

+M2

(
O
(
nc1+c2+1

)
+M1

)
= Θ

(

n
1
γ (30c1+30c2+70)d+2

)

,

which is of polynomial size. Moreover, the total number of vertices that are equipped with f is

O
(

n(3c1+3c2+7)d+c1+c2+4
)

+M2O
(
nc1+c2+1

)
= o

(

n(30c1+30c2+70)d
)

≪ Nγ .

The remaining part of the proof is almost identical to the proof of Lemma 9. The only difference is that,
if the output of the AND gadget, the vertex v in Fig. 11, is infected, then each of those M1 vertices is now
infected with probability g(1), instead of a1 = f(1) before. With this change, when the SetCover instance
is a YES instance, the total number of infected vertices (for properly choosing seeds corresponding to the
subsets) become

pactivatedg(1)(p2 − ε2)M1M2 = Θ
(

n
1
γ (30c1+30c2+70)d+2

)

= Θ(N),

where pactivated is the same as it is in the proof of Lemma 9, p2, ε2 are the parameters for the AND gadget
which are the same as defined in Sect. 6.3. When the SetCover instance is a NO instance, following the same
analysis, the upper bound for the total number of infected vertices can also be computed by Equation (8),
with M1 replaced by the modified value n

1
γ (30c1+30c2+70)d here. In particular, the first three terms in (8) are

dominated, the fourth and the fifth terms are both at most O(n
1
γ (30c1+30c2+70)d+1). Therefore, we conclude

the theorem for the case a1 > 0 by setting τ = 1
1
γ (30c1+30c2+70)d+2

.

For the second case a1 = f(1) = 0, the reduction is almost the same as it is in Sect. 6.8, except for the
following changes.

• Those M1 vertices in each of the M2 copies are equipped with g, while the remaining vertices are
equipped with f .

52



• Change the value of M1 from nc+10 (as it is in Sect. 6.8) to n
1
γ (c+10).

Following the same analysis in Sect. 6.8, we can see that the graph has N = n
1
γ (c+10)+2 vertices, and there are

only O(nc+4)≪ Nγ vertices that have f as their local influence functions. Corresponding to Lemma 16, we
can show that the expected number of infections is at least 1

4a
2
2g(2)n

1
γ (c+10)+2 = Θ(N) when appropriately

choosing 2k seeds for a YES instance, and the expected number of infections can be at most O(kn
1
γ (c+10)) for

a NO instance. By noticing kn
1
γ (c+10) = O(n

1
γ (c+10)+1) and taking τ = 1

1
γ (c+10)+2

, we conclude the theorem

for the case a1 = 0.

We remark that Theorem 5 can be viewed as a generalization of the inapproximability result in [29] in
the following two directions.

1. Our result holds for any f that is fixed in advance, while f is set to f(1) = 1−ε
2 and f(2) = 1 in [29]

(where ε is an arbitrary constant fixed in advance).

2. Our result holds for undirected graphs, while it is unknown if the proof in [29] can be adapted to
show the same inapproximability result for undirected graphs (notice that an undirected graph can be
viewed as a special case of a directed graph with anti-parallel edges, so an inapproximability result for
a more special case is stronger).
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