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Abstract

We consider the Leader Election Problem in the Signal-to-Interference-plus-
Noise-Ratio (SINR) model where nodes can adjust their transmission power.
We show that in this setting it is possible to elect a leader in two communi-
cation rounds, with high probability. Previously, it was known that Θ(log n)
rounds were sufficient and necessary when using uniform power, where n is
the number of nodes in the network.

We then examine how much power control is needed to achieve fast
leader election. We show that every 2-round leader election algorithm in
the SINR model running correctly w.h.p. requires a power range 2Ω(n), even
when n is known. We complement this with an algorithm that uses power
range 2Õ(n)1, when n is known, and 2Õ(n1.5), when n is not known. We also
explore tradeoffs between time and power used, and show that to elect a
leader in t rounds, a range of possible power levels of size exp(n1/Θ(t)) is
sufficient and necessary.
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1. Introduction

In this article we discuss what we can accomplish in a Signal-to-Interference-
plus-Noise-Ratio (SINR) network using power control, the ability of nodes
to transmit with variable transmission power, and the capture effect, a prop-
erty of SINR networks, where a node’s transmission can be successful even
if other nodes within its communication range transmit at the same time.

We study the leader election problem as a vehicle to explore this fron-
tier. Leader election, the problem of determining a unique leader among the
nodes in a network, is one of the oldest and most studied problems in dis-
tributed computing. It provides a strong form of breaking symmetry within
radio networks in an initially unknown system, and is frequently used as a
preliminary step in more complex communication tasks.

The leader election problem was originally introduced in the 1970s, with
the publication of the ALOHA radio network paper [1]. In the following
years, many variations of the leader election problem have been extensively
studied under a variety of models and algorithmic constraints. For example,
in the multiple access channel model with collision detection [12], and in the
SINR model with no collision detection [8].

We consider the leader election problem in SINR networks. In the SINR
model, nodes operate in synchronous rounds. In each round a node either
broadcasts a message to its neighbors or listens. A node v may or may
not receive a message from node u depending on the distance between u
and v, the transmission power of u, and the interference generated by other
broadcasting nodes, as defined in Section 3.

In the classical radio network model, the leader election problem re-
quires Θ(log2 n) rounds w.h.p. [11]. Fineman et al. [8] show that O(log n)
rounds are sufficient and necessary to elect a leader in SINR networks with-
out power control. They suggest that improved bounds may be possible
using power control. Indeed, we show that power control can provide the
ultimate speedup.

Our Contributions: We present an algorithm that solves the leader
election problem in two rounds w.h.p. We also present a multi-round leader
election algorithm that uses limited transmission power. Our work is com-
plemented by nearly matching lower bounds on the transmission power range
for both two-round and multi-round leader election algorithms.
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2. Related Work

Gallager [9] presents a good survey of early work on leader election. From
the mid-eighties, there was an increased interest in the radio network model
[5], where concurrent transmissions are lost due to collisions, and nodes
do not learn if their messages are successfully received. In this classical
model, the leader election problem can be solved in Θ(log2 n) rounds w.h.p.
[7] where n is the number of nodes in the network. This bound can be
improved to Θ(log n) w.h.p. assuming that nodes can detect collisions [4],
and to O(log nu) expected rounds assuming an upper bound nu of n [2].

In the beginning of the new millennium came a renewed interest in fad-
ing radio networks, especially the SINR model, which take interference into
account in a more realistic way. Moscibroda and Wattenhofer [10] showed
that algorithms in the fading radio networks model can achieve better run-
times than algorithms for the radio networks model on certain problems, as
SINR allows for better spatial reuse.

The most efficient leader election protocol known in the SINR modelis
by Fineman et al. [8]. It runs in time O(log n + logR) w.h.p. in a single-
hop network using uniform transmission power, where n is the number of
nodes and R = O(poly(n)) is the ratio between the longest and the shortest
link. Fineman et al. suggest that it may be possible to achieve better per-
formance using power control. Indeed, for problems like link scheduling and
connectivity, power control has been shown to give much better performance
[10]. Power control has also been used in the SINR setting to solve the link
scheduling problem while conserving energy, e.g. [3], [6].

To our knowledge, there has been no published work using power control
to optimize the runtime of the leader election problem, or examining the
trade-offs between the required communication complexity and power range
of a leader election algorithm.

3. Model and Problem Statement

Let V be a set of n nodes, that represent wireless devices, deployed
in a single-hop network located on a metric space. Time is divided into
synchronous rounds. In each round, a node v can either transmit a message
of size O(log n) with some power Pv, or listen. Node v ∈ V receives a
message transmitted by node u ∈ V , iff v is listening and

SINR(u, v, I) =

Pu
d(u,v)α

N +
∑

w∈I
Pw

d(w,v)α

≥ β, (1)
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where I is the set of other nodes transmitting simultaneously, d(u, v) is the
internode distance, and α, β,N are constants. Specifically, α is the path-loss
exponent, N is the non-zero ambient noise, and β is a hardware-dependent
minimum SINR threshold required for a successful message reception.

Our algorithms work for any β > 0, while the lower bounds use β ≥ 2.
Every node can communicate with any other node using transmission

power Pmin, in absence of interference from other nodes, that is Pmin
Nd(u,v)α ≥ β,

∀u, v ∈ V .
In this paper, we consider the leader election problem.

Problem 1 (Leader Election Problem). Given n nodes in a network, elect
exactly one node (called the leader), with all nodes knowing the identity of
the leader.

We denote by R the ratio of the longest to the shortest distance between
nodes in the network. Similarly to [8], we assume that there exists some
constant c ∈ N, such that R ≤ nc. Let γ be a constant such that γ ≥
max(1, cα+ 1 + log β). We assume that the nodes know γ.

The Õ-notation omits logarithmic factors. All logs are base 2. We
consider that an event happens with high probability (w.h.p.) if it happens
with probability greater than 1− 1/n.

Definition 2 (Bernoulli(p) Random Variable). A Bernoulli(p) random vari-
able X takes on the values competitor or listener such that Pr[X = competitor] =
p and Pr[X = listener] = 1− p.

4. 2-Round Leader Election Algorithm

In this section, we present a 2-round leader election algorithm that uses
power control and requires no knowledge of n. First, we give some key ideas
behind our algorithm. Then, we present a 2-round leader election algorithm
followed by the analysis.

4.1. The Essence of Our Algorithm

Below we present a high level description of the key ideas behind our
algorithm.

(i) Breaking symmetry: Each node computes a geometric random vari-
able k. Then, it picks an ID uniformly at random from a range that
depends on k. We ensure that with high enough probability the largest
ID is picked by exactly one node.
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(ii) The loudest node wins: Each broadcasting node v determines its
transmission power by evaluating power function f(ID) := Pmin ·
IDγID using its identification number, IDv. Any listening nodes re-
ceive the message sent by the node with the highest ID, with a high
enough probability.

(iii) Feedback: In order to inform all nodes of the leader node v, we split
the set of nodes V into listeners and competitors. The competitors
compete for the leader position during the first round of the two-round
protocol. The listeners inform the competitors of the winner during
the second round.

4.2. Leader Election Algorithm

The algorithm proceeds as follows. Initially, each node v flips a fair coin
(a Bernoulli(1

2) random variable) to determine its role, which is a competitor
if heads are flipped, and listener if tails. It then computes a geometric
random variable (r.v.) kv, which counts the tails flipped in a sequence of
coin flips before the first heads is flipped. The ID of the node, IDv, is
an integer selected uniformly at random from the range [J, 2 · J ], where
J = g(k) := 2kk4. Finally, the power Pv that v uses for broadcast is given
by f(ID) := Pmin · IDγID, where Pmin is the minimum power needed to
reach all nodes in the network (overcoming the ambient noise).

During round 1, each competitor v transmits its ID using power Pv,
which is to be received by the listeners. In round 2, the roles are reversed,
as each listener reports back the ID of the purported leader that it received.
In the unlikely scenario that no message was received, the listener broad-
casts an empty string.

We shall argue that, with high probability, a unique competitor suc-
ceeds in transmitting to all the listeners, and a unique listener succeeds in
reporting back to all the competitors. The leader is then that successful
competitor.

4.3. Analysis

We proceed by showing that the highest power used by a competitor is
sufficient to overpower all the other competitors, ensuring that this competi-
tor is heard by all the listeners. Identical arguments hold for the reporting
back in round 2.

To this end, we first show that there is a competitor whose geometric
r.v. is nearly log n, and at most a logarithmic number of competitors have
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Algorithm 1 2-Round Leader Election Algorithm for node v

1: Preprocessing:
2: Role: a boolean Bernoulli(1

2) random variable {‘competitor ’ if heads,
‘listener ’ if tails}

3: k: a Geometric(1
2) random variable, k ∈ Z≥0

4: ID: chosen uniformly at random from [J, 2 ·J ], where J = g(k) := 2kk4,
ID ∈ Z≥0

5: P : the transmission power, P = f(ID) := Pmin · (ID)γID, P ∈ Z≥0

6: Leader: a string denoting the identity of the leader, initially empty
7:

8: Round 1:
9: if Role = competitor then

10: Broadcast ID using power P
11: else
12: If v receives message m, set Leader = m
13:

14: Round 2:
15: if Role = competitor then
16: If v receives message m, set Leader = m
17: else
18: Broadcast Leader using power P
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that large value. We then show that all the O(log n) IDs at the high end
of the spectrum are unique, i.e., selected by a single node. The difference
in power used by nodes with different ID ensures that the competitor with
highest ID will overpower all the other competitors and be heard by all the
listeners.

We need the following version of Chernoff bounds.

Theorem 3 (Chernoff Bound). Let X1, X2, . . . , Xn be independent Bernoulli
random variables and X =

∑n
i=1Xi. For R ≥ 4E[X],

Pr[X ≥ R] ≤ 2−0.55R .

Proof. The standard Chernoff bound is that for any δ > 0,

Pr[X ≥ (1 + δ)E[X]] ≤
(

eδ

(1 + δ)1+δ

)E[X]

.

Set δ be such that R = (1 + δ)E[X], so δ ≥ 3. We get that

Pr[X ≥ R] ≤
(

eδ

(1 + δ)1+δ

)E[X]

≤
(

e

1 + δ

)(1+δ)E[X]

= 2− log((1+δ)/e)R ,

which is maximized when δ is minimized. Finally, observe that log(4/e) ≥
0.55.

Lemma 4. Let k1 := log n − log logn − 2. With probability greater than
1 − 1

8n , for at least one and at most 32 log n competitors v, it holds that
kv ≥ k1.

Proof. Let t = dk1e = dlog n − log logn − 2e. Let Av be the event that
a given node v is a competitor and has kv ≥ t. The probability of Av is
Pr[Av] = 21−t = 21−dk1e. Thus,

4 log n

n
= 2−k1 ≤ Pr[Av] ≤ 21−k1 =

8 log n

n
.

The probability that no node satisfies Av is then at most

Pr

[∧
v

Av

]
≤
(

1− 4 log n

n

)n
≤ e−4 logn ≤ n−5.7 ≤ 1

16n
,

for n sufficiently large, establishing the first part of the claim.
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Let X be the number of nodes v for which Av holds. Then E[X] ≤ 8 log n
and by Chernoff bound (Thm. 3) with R = 32 log n,

Pr[X ≥ 32 log n] ≤ 2−0.55·32 logn = n−17.6 ≤ 1

16n
,

for n large enough. I.e., at most 32 logn nodes satisfy Av, with probability
greater than 1− 1

16n .
Combined, with probability at least 1− 1

8n , both of these claimed events
hold.

The range from which the IDs are chosen is [J, 2J ], for J ≥ g(k1), with

high probability. Observe that g(k1) = 2k1k4
1 ≥

n·log3 n
8 , for sufficiently large

values of n.

Lemma 5. A sole competitor receives the highest ID with probability greater
than 1− 1

8n , given that at least one node calculated kv ≥ k1.

Proof. The ranges of IDs assigned to nodes of different kv values are dis-
joint. The competitor receiving the highest ID will therefore necessarily be
one with a highest kv value, which we denote by K. Let Z be the set of
competitors with kv = K ≥ k1(= log n − log log n − 2). By Lemma 4, Z is
non-empty and contains at most 32 log n nodes.

The probability that a given pair of nodes in Z receive the same ID is
inversely proportional to the range of IDs sampled from, or 1/J ≤ 1

g(k1) ≤
8

n·log3 n
. The probability that some pair of nodes in Z are assigned the same

ID is then, by the union bound, at most(|Z|
2

)
J
≤ (32 log n)2

n·log3 n
8

=
128

n log n
<

1

8n
,

for large enough n. In particular, all nodes in Z receive different IDs with
probability greater than 1− 1

8n .

The highest ID received, IDw, is at least g(k1) ≥ n, for sufficiently large
values of n.

Lemma 6. If a sole competitor receives the highest ID, then its transmission
is received by all the listeners.

Proof. Let w be the sole competitor with the highest ID. For any other
competitor v it then holds that

Pw
Pv
≥ f(IDw)

f(IDw − 1)
≥ IDγ

w ≥ nγ ≥ βncα+1 . (2)
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Let u be a listener. We bound the noise and interference received by u
in terms of the signal Su := Pw/d(w, u)α it receives from w. Recall that
d(w, u) ≤ R · d(v, u) ≤ nc · d(v, u), and thus d(w, u)α ≤ ncα · d(v, u)α, for
any competitor v. Hence, applying (2), the interference received from a
competitor v is bounded by

Iv :=
Pv

d(v, u)α
≤ Pw · ncα

βncα+1 · d(w, u)α
=
Su
βn

. (3)

The definition of minimum power Pmin ensures that Pmin/d(w,u)α

N ≥ β. Thus,
we can use (2) to bound the noise term by

N ≤ Pmin
d(w, u)α · β

≤ Pw
d(w, u)α · nγ · β

=
Su
βnγ

≤ Su
βn

. (4)

Combining (3) and (4), we get that the SINR of w’s signal at receiver u is
bounded below by

Su
N +

∑
v∈X Iv

≥ βn

1 + |X|
≥ β ,

where X is the set of competitors other than w. Thus, w overpowers all
other competitors at all the listeners.

Theorem 7. The 2-round leader election algorithm terminates with all
nodes agreeing on a common leader, w.h.p.

Proof. Using a union bound, we add up the error probabilities of Lemmas
4 and 5, we find that a sole competitor w receives the highest ID, with
probability at least 1 − 1

4n . By Lemma 6, w then successfully informs all
the receivers. All three lemmas work identically for the reporting process in
round 2. Hence, with probability at least 1− 1

2n , the algorithm succeeds.

Remark 8. Leader election can be achieved in a single round if simultaneous
transmission and reception is possible. Such full-duplex radios operate by
subtracting the transmitted signal from the received one. While they are
still rare, being hard to implement, such technology has been progressing
significantly in recent years and may well become a commodity feature. With
full-duplex, our arguments apply unchanged to the success of reception by the
other competitors, thus succeeding after only a single round.
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5. Range of Power Needed For a 2-Round Leader Election

Power control is the essential feature that allows our algorithms to work.
That begs the question how much power control is needed?

We say that an algorithm uses a power range X if the powers assigned fall
in the range [Pmin, . . . , X ·Pmin]. The basic question is then how the power
range must grow as a function of n for leader election to work correctly.

5.1. Upper Bound

Theorem 9. Our 2-round leader election algorithm can be made to work
correctly with a power range of 2Õ(n1.5), w.h.p.

Proof. The algorithm as is may select power assignments inducing a range
of 2Õ(n2), since kv is no larger than 2 log n+ 2, with probability greater than
1 − 1

2n . However, if the range is bounded, we may assume that the nodes
know the upper bound of the range, Pmax. Thus, the algorithm would
automatically truncate the power assigned to be at most Pmax. We observe
that this truncation can occur for at most one vertex, for the node with
the highest ID to succeed. Namely, the probability that two or more nodes
select a kv value greater than 1.5 log n is at most(

n

2

)
2−3 logn ≤ 1

2n
.

The bound on the maximum power now follows immediately.

If nodes know n, we can work with a smaller power range as follows: We
can first sample the nodes with probability Θ(log n/n), and have each se-
lected node select ID uniformly at random from the range [J, 2J ], where J =
n log2 n. The power used is f(IDv) as before, and the arguments are other-

wise the same. This results in a power range of at most 2(n log2 n)n log2 n =

2Õ(n).

Proposition 10. When nodes know n, a power range of 2Õ(n) suffices.

5.2. Lower bound

We show that an exponential-size power range is actually necessary for
any leader election protocol running in (at most) two rounds.

Theorem 11. Every 2-round leader election algorithm in the SINR model
running correctly w.h.p. requires a power range 2Ω(n). This holds even if
the nodes know n, the number of nodes in the network, and if the nodes are
located in a unit metric space (where all distances are equal).
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Proof. Consider n nodes located in a unit metric. In the unit metric, either
a single message is received by all the listeners or none of them hear anything
(assuming β ≥ 1). Since the nodes don’t operate full-duplex, two rounds
are needed to inform the transmitting nodes of the winner, and the winner
must be heard by all listeners in the first round.

We divide the available range of power into subranges, each within factor
2. Namely, if Pmax is the maximum power available, then the i-th highest
subrange is [Pmax/2

i, Pmax/2
i−1]. If the highest range used is used by two or

more nodes, then the algorithm fails (assuming β ≥ 2). We shall bound from
below the probability that exactly two nodes use the highest subrange in use;
this is clearly a lower bound on the failure probability of the algorithm.

Let Xv
i be the event that node v transmits in the first round using the

i-th highest subrange. Since the nodes are identical, the same probability
holds for them all, so let pi = Pr[Xv

i ]. Observe that the probability that no
node transmits in the round is at least 1− n

∑
i pi, and since that can hold

with probability at most 1/n, it follows that∑
i

pi ≥
1

n
(1− 1

n
) . (5)

Let q be the largest number such that

q∑
i=1

pi ≤
1

2n
. (6)

So, a subrange of rank at least q + 1 is in use.
Let Ai be the event that at least two nodes use the i-th highest subrange,

Bi be the event that no node transmits at subranges 1, 2, . . . , i − 1, and
Ci = Ai∩Bi be the event that both Ai and Bi occur, for i = 1, 2, . . .. Then,
C =

⋃
iCi is the event that at least two nodes use the highest subrange in

use. Observe that Pr[Ai|Bi] ≥ Pr[Ai], since the non-use of the i− 1 highest
subranges only makes the event Ai more likely. Then,

Pr[Ci] = Pr[Ai ∩Bi] = Pr[Ai|Bi] Pr[Bi] ≥ Pr[Ai] Pr[Bi] .

We bound the probability of Ai, i ≤ q, by the first term of the binomial
expansion:

Pr[Ai] >

(
n

2

)
p2
i (1− pi)n−2 >

n2

3
p2
i

(
1− 1

2n

)n−2

>
n2

3e
p2
i .
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Also, applying (6),

Pr[Bi] ≥ 1− n
i−1∑
j=1

pi ≥
1

2
.

Observe that the Ci’s are mutually exclusive and apply the Cauchy-Schwarz
inequality followed by (5) to obtain:

Pr[C] ≥
q∑
i=1

Pr[Ci] ≥
n2

3e

q∑
i=1

p2
i ·

1

2
≥ n2

6e

(
∑q

i=1 pi)
2

q
≥ (1− 1/n)21

6e · q
.

The algorithm fails when C holds, and thus we may assume that Pr[C] ≤
1/n, which implies that q = Ω(n). Hence, the claim.

Observe that for the case of known n, we obtain an essentially tight
bound of 2Θ̃(n) on the needed power range.

Remark 12. We note that a construction can be given in the Euclidean
plane that achieves the same result but with slightly weaker power tradeoffs.
It consists of n/2 well-separated node-pairs that are internally close. It,
however, does not avail itself to easy generalizations to protocols with greater
number of rounds, and is therefore omitted.

6. Trading Time for Power Range

In this section, we explore how much the power range can be reduced by
increasing the round complexity. We present a multi-round protocol that
requires limited power range and derive a lower bound on the power range
required by any t-round leader election algorithm, for t ≥ 2.

6.1. Multi-Round Protocol

When a smaller power range is available, we can give a protocol that
uses a larger number of rounds.

Our multi-round algorithm simply repeats the 2-round algorithm t times,
for a given number t ≥ 1, but using a slower-growing power function.
Namely, we change the ID-selection function to gt(k) = 2kk3t+1, and the

power function to ft(IDv) = Pmin · IDγ(IDv)1/t

v . After each round-pair rep-
etition, each competitor v updates its leaderv value to the largest among
those heard so far.

First, we observe that it suffices to succeed in one of the round-pairs.
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Observation 13. If, in some round-pair, all receivers hear from a particular
node v, and the senders all get informed of v as a leader, then the algorithm
successfully terminates with v as leader.

Proof. After this round-pair, all nodes have leaderv value set as w. Thus,
all broadcasts that follow use w for the value of leaderv.

We say that a node w is strong in a given round if (IDw)1/t ≥ (IDv)
1/t−

1, for all other nodes v. We first argue that a strong node will be heard by
all.

Lemma 14. A strong transmitting node is heard by all listeners.

Proof. Recall that, as before, it holds that the highest ID, IDw, is at least
n. If a node w is strong in a round then it satisfies

ft(IDw)

ft(IDv)
=
ID

γ(IDw)1/t

w

ID
γ(IDv)1/t
v

≥ IDγ(ID
1/t
w −ID

1/t
v )

v ≥ IDγ
w ≥ nγ ≥ βncα+1 .

Thus, by the same argument as in Lemma 6, w overpowers all other trans-
mitters at every receiver.

We next observe that a strong node is likely to emerge.

Lemma 15. Let U = n1/t. In a given round, some node is strong, with
probability at least 1− 1/(2U).

Proof. Let Z be the set of competitors with the largest kv-value. By Lemma
4, |Z| ≤ 32 log n. Recall that IDs are allocated uniformly at random, and
for nodes in Z, the range is of size at least gt(k1) = 2logn−log logn−2(log n−
log logn− 2)3t+1 = n

4 logn( logn
2 )3t+1 ≥ 1

8·23tn log3t n, for large enough n. The
probability that a given pair of nodes u, v in Z receive nearly equivalent

IDs, with |(IDu)1/t− (IDv)
1/t| ≤ 1, is at most gt(k1)−1/t ≤ 81+1/t

n1/t log3 n
. Thus,

the probability that some two nodes in Z receive nearly equivalent IDs is at
most (|Z|

2

)
gt(k1)1/t

≤ 81+1/t · 322 log2 n

n1/t log3 n
<

1

2n1/t
,

for sufficiently large n.

The correctness of the algorithm follows from the above observations.

Theorem 16. For each number t = O(log n/ log log n), there is a 2t-round

algorithm using a power range 2n
O(1/t)

that correctly elects a leader, w.h.p.
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Proof. A round-pair is strong if both of its round feature a strong (partic-
ipating) node. In a strong round-pair, all the listeners hear from a strong
competitor in the first round and all the competitors receive the acknowl-
edgment from a strong listener, by Lemma 14. By Observation 13, the
algorithm is therefore successful as long as there is some strong round-pair.
We proceed to argue the probability of a strong round-pair occurring.

Let U = n1/t. By Lemma 15, a strong node fails to emerge in a given
round with probability at most 1/(2U). Thus, a given round-pair fails to
be strong with probability at most 1/U . By independence, the probability
that none of the t round-pairs are strong is at most 1/U t = 1/n.

6.2. Lower Bound for Multi-Round Protocols

Theorem 17. Any t-round leader election algorithm in the SINR model
running correctly w.h.p. requires a power range 2Ω( t−1√n), t ≥ 2. This holds
even if the nodes know n, the number of nodes in the network, and the nodes
are located in a unit metric (where all distances are equal).

Proof. We consider n nodes located in a unit metric space. In this setting,
after any round of the algorithm either all listening nodes receive a message,
or no progress is made (assuming β ≥ 1). Since the nodes do not operate
full-duplex, any leader election algorithm requires at least two rounds, one
round for the winner to broadcast its message, and one round to be informed
of the victory.

Let A be a t-round leader election algorithm in the SINR model that
runs correctly with probability greater than 1 − 1/n. Since at least two
rounds of successful communication are needed, Algorithm A fails when no
listening node receives a message during the first t−1 rounds. This happens
with probability

∏t−1
r=1 pr, where pr denotes the probability that no listener

receives a message in round r. Since algorithm A succeeds with probability
greater than 1− 1/n,

1

n
>

t−1∏
r=1

pr.

Now, consider round r. Let q and C be as in Theorem 11. We can show
by a similar argument that Pr[C] ≥ 1

12e·q , assuming β ≥ 2. No listener
receives a message in round r when C holds, and thus Pr[C] ≤ pr, which
implies that

q ≥ 1

12e · pr
.
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It follows that 1/n ≥ ( 1
12eq )t−1, and therefore q ≥ t−1

√
n/(12e) = Ω( t−1

√
n).

Thus, algorithm A requires a power range 2Ω( t−1√n).

7. Conclusions and Acknowledgments

We have shown that power control can yield the ultimate speedup for
leader election in the SINR model. This is thanks to the capture effect, which
is the crucial property in which SINR differs from graphs-based models.

It would be exciting to see these techniques applied more widely. Multi-
hop settings and more restricted power ranges are natural directions to ex-
amine, as well as problems beyond leader election. In general, the value of
power control and the capture effect is still not fully understood.

We thank Hsin-Hao Su and Nancy Lynch for helpful comments and dis-
cussions.
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