Skip to main content

Dynamic Generative Model of the Human Brain in Resting-State

  • Conference paper
  • First Online:
Book cover Complex Networks & Their Applications VI (COMPLEX NETWORKS 2017)

Part of the book series: Studies in Computational Intelligence ((SCI,volume 689))

Included in the following conference series:

Abstract

The human connectome is constructed by translating neuron activities into a complex network with nodes and edges. Although the topology of such networks is well studied, the formation rules and dynamics are not fully understood. It is challenging to develop a generative model for large scale dynamic complex networks due to the computational obstacle and nontrivial network structure. To study the node-based and subject-based network dynamics in resting-state brain, we divide the brain scan session into several sliding windows and generate a network for each segment. Then, an action-based model generator, which generates edges according to a topology manipulating actions, is fitted to the network series. This model, presumably as the first applicable approach for synthesizing the brain network dynamics, is shown capable of synthesizing a network series of the action-based model. Also, the estimated parameters shows that the actions of brain regions are related to their functionality.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Achard, S., Salvador, R., Whitcher, B., Suckling, J., Bullmore, E.D.: A resilient, low-frequency, small-world human brain functional network with highly connected association cortical hubs. J. Neurosci. 26(1), 63–72 (2006)

    Article  Google Scholar 

  2. Alexander-Bloch, A., Lambiotte, R., Roberts, B., Giedd, J., Gogtay, N., Bullmore, E.: The discovery of population differences in network community structure: new methods and applications to brain functional networks in schizophrenia. Neuroimage 59(4), 3889–3900 (2012)

    Article  Google Scholar 

  3. Amico, E., Goñi, J.: Maximizing the individual fingerprints of human functional connectomes through decomposition into brain connectivity modes. arXiv preprint arXiv:1707.02365 (2017)

  4. Arora, V., Ventresca, M.: Action-based modeling of complex networks. Sci. Rep. 7 (2017)

    Google Scholar 

  5. Bassett, D.S., Wymbs, N.F., Porter, M.A., Mucha, P.J., Carlson, J.M., Grafton, S.T.: Dynamic reconfiguration of human brain networks during learning. Proc. Natl. Acad. Sci. U.S.A. 108, 7641–7646 (2010)

    Article  Google Scholar 

  6. Betzel, R.F., Avena-Koenigsberger, A., Goñi, J., He, Y., de Reus, M.A., Griffa, A., Vértes, P.E., Mišic, B., Thiran, J.P., Hagmann, P., van den Heuvel, M., Zuo, X.N., Bullmore, E.T., Sporns, O.: Generative models of the human connectome. NeuroImage 124, 1054–1064. https://doi.org/10.1016/j.neuroimage.2015.09.041 (2016)

  7. Feinberg, D.A., Moeller, S., Smith, S.M., Auerbach, E., Ramanna, S., Glasser, M.F., Miller, K.L., Ugurbil, K., Yacoub, E.: Multiplexed echo planar imaging for sub-second whole brain FMRI and fast diffusion imaging. PloS one 5(12), e15,710 (2010)

    Google Scholar 

  8. Fischl, B., Van Der Kouwe, A., Destrieux, C., Halgren, E., Ségonne, F., Salat, D.H., Busa, E., Seidman, L.J., Goldstein, J., Kennedy, D.: Others: Automatically parcellating the human cerebral cortex. Cereb. Cortex 14(1), 11–22 (2004)

    Article  Google Scholar 

  9. Glasser, M.F., Coalson, T.S., Robinson, E.C., Hacker, C.D., Harwell, J., Yacoub, E., Ugurbil, K., Andersson, J., Beckmann, C.F., Jenkinson, M.: Others: A multi-modal parcellation of human cerebral cortex. Nature 536(7615), 171–178 (2016)

    Article  Google Scholar 

  10. Glasser, M.F., Sotiropoulos, S.N., Wilson, J.A., Coalson, T.S., Fischl, B., Andersson, J.L., Xu, J., Jbabdi, S., Webster, M., Polimeni, J.R.: Others: The minimal preprocessing pipelines for the Human Connectome Project. Neuroimage 80, 105–124 (2013)

    Article  Google Scholar 

  11. Guo, F., Hanneke, S., Fu, W., Xing, E.P.: Recovering temporally rewiring networks: A model-based approach. In: Proceedings of the 24th International Conference on Machine Learning, pp. 321–328. ACM (2007)

    Google Scholar 

  12. Hajnal, J.V., Myers, R., Oatridge, A., Schwieso, J.E., Young, I.R., Bydder, G.M.: Artifacts due to stimulus correlated motion in functional imaging of the brain. Magn. Reson. Med. 31(3), 283–291 (1994)

    Article  Google Scholar 

  13. Henson, R.N.A., Buechel, C., Josephs, O., Friston, K.J.: The slice-timing problem in event-related fMRI. NeuroImage 9, 125 (1999)

    Google Scholar 

  14. Holden, M.: A review of geometric transformations for nonrigid body registration. IEEE Trans. Med. Imaging 27(1), 111–128 (2008)

    Article  Google Scholar 

  15. Jenkinson, M., Bannister, P., Brady, M., Smith, S.: Improved optimization for the robust and accurate linear registration and motion correction of brain images. Neuroimage 17(2), 825–841 (2002)

    Article  Google Scholar 

  16. Jung, T.P., Makeig, S., McKeown, M.J., Bell, A.J., Lee, T.W., Sejnowski, T.J.: Imaging brain dynamics using independent component analysis. Proc. IEEE 89(7), 1107–1122 (2001)

    Article  Google Scholar 

  17. Leonardi, N., Richiardi, J., Gschwind, M., Simioni, S., Annoni, J.M., Schluep, M., Vuilleumier, P., Van De Ville, D.: Principal components of functional connectivity: A new approach to study dynamic brain connectivity during rest. NeuroImage 83, 937–950. https://doi.org/10.1016/j.neuroimage.2013.07.019 (2013)

  18. Logothetis, N.K., Pauls, J., Augath, M., Trinath, T., Oeltermann, A.: Neurophysiological investigation of the basis of the fMRI signal. Nature 412(6843), 150 (2001)

    Article  Google Scholar 

  19. Micheloyannis, S., Pachou, E., Stam, C.J., Breakspear, M., Bitsios, P., Vourkas, M., Erimaki, S., Zervakis, M.: Small-world networks and disturbed functional connectivity in schizophrenia. Schizophr. Res. 87(1), 60–66 (2006)

    Article  Google Scholar 

  20. Moeller, S., Yacoub, E., Olman, C.A., Auerbach, E., Strupp, J., Harel, N., Ugurbil, K.: Multiband multislice GE-EPI at 7 tesla, with 16-fold acceleration using partial parallel imaging with application to high spatial and temporal whole-brain fMRI. Magn. Reson. Med. 63(5), 1144–1153 (2010)

    Article  Google Scholar 

  21. Newman, M.E.J.: Modularity and community structure in networks. Proc. Natl. Acad. Sci. 103(23), 8577–8582 (2006)

    Article  Google Scholar 

  22. Nieto-Castanon, A., Ghosh, S.S., Tourville, J.A., Guenther, F.H.: Region of interest based analysis of functional imaging data. Neuroimage 19(4), 1303–1316 (2003)

    Article  Google Scholar 

  23. Poldrack, R.A.: Region of interest analysis for fMRI. Soc. Cogn. Affect. Neurosci. 2(1), 67–70 (2007)

    Article  Google Scholar 

  24. Power, J.D., Mitra, A., Laumann, T.O., Snyder, A.Z., Schlaggar, B.L., Petersen, S.E.: Methods to detect, characterize, and remove motion artifact in resting state fMRI. Neuroimage 84, 320–341 (2014)

    Article  Google Scholar 

  25. Rubinov, M., Sporns, O.: Complex network measures of brain connectivity: Uses and interpretations. NeuroImage 52(3), 1059–1069. https://doi.org/10.1016/j.neuroimage.2009.10.003 (2010)

  26. Rubinov, M., Ypma, R.J.F., Watson, C., Bullmore, E.T.: Wiring cost and topological participation of the mouse brain connectome. Proc. Natl. Acad. Sci. 112(32), 10032–10037 (2015)

    Article  Google Scholar 

  27. Serrano, M.Á., Boguná, M., Vespignani, A.: Extracting the multiscale backbone of complex weighted networks. Proc. Natl. Acad. Sci. 106(16), 6483–6488 (2009)

    Article  Google Scholar 

  28. Setsompop, K., Gagoski, B.A., Polimeni, J.R., Witzel, T., Wedeen, V.J., Wald, L.L.: Blipped-controlled aliasing in parallel imaging for simultaneous multislice echo planar imaging with reduced g-factor penalty. Magn. Reson. Med. 67(5), 1210–1224 (2012)

    Article  Google Scholar 

  29. Simpson, S.L., Hayasaka, S., Laurienti, P.J.: Exponential random graph modeling for complex brain networks. PLoS ONE 6(5). https://doi.org/10.1371/journal.pone.0020039 (2011)

  30. Smith, S.M., Miller, K.L., Salimi-Khorshidi, G., Webster, M., Beckmann, C.F., Nichols, T.E., Ramsey, J.D., Woolrich, M.W.: Network modelling methods for FMRI. Neuroimage 54(2), 875–891 (2011)

    Article  Google Scholar 

  31. Sporns, O., Tononi, G., Edelman, G.M.: Connectivity and complexity: the relationship between neuroanatomy and brain dynamics. Neural Networks 13(8), 909–922 (2000)

    Article  Google Scholar 

  32. Tononi, G., Sporns, O., Edelman, G.M.: A measure for brain complexity: relating functional segregation and integration in the nervous system. Proc. Natl. Acad. Sci. 91(11), 5033–5037 (1994)

    Article  Google Scholar 

  33. Van Essen, D.C., Smith, S.M., Barch, D.M., Behrens, T.E.J., Yacoub, E., Ugurbil, K., Consortium, W.M.H.C.P.: Others: The WU-Minn human connectome project: an overview. Neuroimage 80, 62–79 (2013)

    Article  Google Scholar 

  34. Vértes, P.E., Alexander-Bloch, A.F., Gogtay, N., Giedd, J.N., Rapoport, J.L., Bullmore, E.T.: Simple models of human brain functional networks. Proc. Natl. Acad. Sci. 109(15), 5868–5873 (2012)

    Article  Google Scholar 

  35. Xu, J., Moeller, S., Strupp, J., Auerbach, E.J., Chen, L., Feinberg, D.A., Ugurbil, K., Yacoub, E.: Highly accelerated whole brain imaging using aligned-blipped-controlled-aliasing multiband EPI. In: Proceedings of the 20th Annual Meeting of ISMRM, vol. 2306 (2012)

    Google Scholar 

  36. Yeo, B.T.T., Krienen, F.M., Sepulcre, J., Sabuncu, M.R., Lashkari, D., Hollinshead, M., Roffman, J.L., Smoller, J.W., Zöllei, L., Polimeni, J.R.: Others: The organization of the human cerebral cortex estimated by intrinsic functional connectivity. J. Neurophysiol. 106(3), 1125–1165 (2011)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mario Ventresca .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Guo, D., Arora, V., Amico, E., Goñi, J., Ventresca, M. (2018). Dynamic Generative Model of the Human Brain in Resting-State. In: Cherifi, C., Cherifi, H., Karsai, M., Musolesi, M. (eds) Complex Networks & Their Applications VI. COMPLEX NETWORKS 2017. Studies in Computational Intelligence, vol 689. Springer, Cham. https://doi.org/10.1007/978-3-319-72150-7_103

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-72150-7_103

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-72149-1

  • Online ISBN: 978-3-319-72150-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics