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ABSTRACT

In this work, we adapt the rank aggregation framework for
the discovery of optimal course sequences at the university
level. Each student provides a partial ranking of the courses
taken throughout his or her undergraduate career. We com-
pute pairwise rank comparisons between courses based on
the order students typically take them, aggregate the re-
sults over the entire student population, and then obtain a
proxy for the rank offset between pairs of courses. We ex-
tract a global ranking of the courses via several state-of-the
art algorithms for ranking with pairwise noisy information,
including SerialRank, Rank Centrality, and the recent Syn-
cRank based on the group synchronization problem. We test
this application of rank aggregation on 15 years of student
data from the Department of Mathematics at the University
of California, Los Angeles (UCLA). Furthermore, we exper-
iment with the above approach on different subsets of the
student population conditioned on final GPA, and highlight
several differences in the obtained rankings that uncover hid-
den pre-requisites in the Mathematics curriculum.

Keywords

Temporal rank aggregation, spectral methods, educational
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1. INTRODUCTION

College enrollment is at an all-time high at American
universities |16], and this generation of college students is
choosing to focus on science, technology, engineering, and
mathematics (STEM) courses [3]. University faculty and
administrators must create systems to effectively and effi-
ciently train this burgeoning population of STEM students.
The goal of this paper is to address one aspect of this broad
issue through data mining, namely the design of course se-
quences that can benefit the student population.
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For STEM courses, there is often a carefully prescribed
sequence of courses to help guide students to the comple-
tion of their degree. These prescribed course sequences are
designed so that students’ core understanding builds on the
requisite knowledge and experience for each class they com-
plete, preparing them for the next course. However, the
recommended course sequence may not be strictly enforced
due to the changing availability of particular courses and the
diverse needs of a large, intelligent student population. As a
result, students often choose the sequence in which to pur-
sue their courses based on personal preference. This may be
based on what course best meets their individual scheduling
needs each quarter, or what classes may be more accessible
to enroll in at a large university. Students may choose to
take a certain course simply based on convenience or be-
cause it works toward meeting major requirements. How-
ever, they might not take the courses in a sequence that
optimally builds their core competency in a subject area. In
this work, we apply rank aggregation to obtain course se-
quences adhered to by UCLA mathematics students to infer
hidden dependencies between mathematics courses and to
better understand how different types of students navigate
their coursework. By comparing the course sequences of A
and C students, we are better able to understand optimal
course sequences for the mathematics major. In general, we
hope to encourage more applications of rank aggregation to
order temporal events and discover patterns in sequences.

The remainder of this paper is organized as follows. In
Section we review related academic data mining tech-
niques designed for course sequence discovery. In Section
we review the technical aspects of the rank aggregation
methods that will be used. In Section we apply these
methods to analyze sequences of mathematics courses at
UCLA. We use student data from the UCLA Department
of Mathematics between 2000-2015, and interpret our find-
ings to infer course sequences from these records and latent
dependencies between them. We also compare the perfor-
mance of each rank aggregation method to demonstrate the
robustness of this particular framework. In our final Section
we review our findings and indicate future directions.

2. RELATED WORK

Academic data mining has become a valuable tool for as-
sisting university students in selecting their courses. A pop-
ular approach is to adapt eCommerce recommendation sys-
tems to the academic space 8| |18} [17]. Here, sequences are
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determined incrementally by comparing student’s records to
others with similar coursework and grades. In [19], the au-
thors construct an intricate system that describes how stu-
dents can move through the web of course dependencies.
The authors use their model to extract sequences that min-
imize the expected time to graduation within their system.
Our goal in this work, unlike those above, is to learn course
sequences by studying the flow of students from course to
course. Our approach adapts well-known rank aggregation
techniques to extract a complete sequence of all courses
based on the partial sequences of courses that students have
pursued. In our approach, the extracted course sequence
does not provide any indication on how many courses should
be taken per quarter nor what courses can be taken simul-
taneously. However, the extracted sequences can in turn
be used as inputs for more personalized recommendation
later on. Moreover, these extracted course sequences can be
used to understand how different types of students navigate
through their major. By comparing high and low perform-
ing students, we infer hidden dependencies that might be
missed in the probabilistic models.

Rank aggregation has been a powerful tool in web search
[6], sport rankings [5] [4], and more recently, grading schemes
[14]. However, it has not been used to infer trends in order-
ing temporal data, and we believe that the data mining of
such temporal sequences [21} |13} |20] will benefit from this
approach. We now review the state-of-the-art rank aggrega-
tion literature, and discuss their applicability to extracting
global course sequences that are most consistent with the
given data.

3. METHODS FOR RANK AGGREGATION

Rank aggregation is the process of obtaining a global rank-
ing from incomplete and noisy pairwise comparisons [6].
Broadly speaking, there are two important steps in such a
ranking procedure. First, we translate a pool of inconsistent
and incomplete pairwise comparisons into a directed network
model, in which links quantify the strength and frequency
of these comparisons. Second, we infer global rankings via a
variety of spectral methods that consider the weighted adja-
cency matrix of the network. Such methods are used to rank
professional sports teams based on their exhibitions, and in
turn, predict the outcomes of elimination tournaments [5,
4]. We will use rankings here not to rank individual play-
ers, teams or students, but to determine a global ordering
of the courses that is most consistent with the given data.
Performing this analysis on students with high versus low
GPA has the potential to uncover hidden pre-requisites that
could explain and perhaps improve the overall performance
of the students with a low final GPA.

For this academic application, we view each student as
providing a set of pairwise comparisons between courses
based on the order they finished their coursework. These
comparisons are often incomplete (students usually do not
take all available courses) and noisy (obstacles may force
students to take classes out of order). We implicitly assume
that there is an underlying, optimal course sequence. We ex-
tract this course sequence using rank aggregation methods,
which we describe in detail in Section [3| A review of many
of the methods used here can be found in [5]. We apply
six different methods to extract course sequences: PageR-
ank [12], Rank Centrality |11], SerialRank [7], SyncRank
[5], SVD-Rank [5], and a Least-Squares based method. We

first describe the network models that we use for all rank
aggregation methods.

3.1 Network Model and Ranking Constructions

For our academic application of rank aggregation, we wish
to extract a global ranking of all courses that is most con-
sistent with the order in which they are taken by students.
Here, our comparisons stem from the frequency with which
course 7 was taken before course j. The first step to extract
course sequences will be to translate these comparisons into
a network model. We present two network models, each
quantifying the flow of students from course to course.

In the first network model, each node represents a course,
and our edges represent the flow of students between two
courses. Let k = 1,...,ns be our enumeration of students
and similarly i, be courses with ¢,j7 = 1,...,n.. We first
define the variable Ifj as the indicator that student k took
course i before course j

& 1 if student k& took course i before j
I = .
0 otherwise.

The count matrix C is defined as

Ci; = ZIZ when i # j,
k=1

and Cj; = 0 when ¢ = j. We define the n. x n. transition
matrix P to have entries representing the number of students
that have taken course i before j, as a percentage of all
students that have taken both course i and j,

Cij
Cij + Cyi

If Ci; = Cj; = 0, then we let P;; = Pj; = 0. By construc-
tion, P;; + Pj; = 1 when course ¢ and course j are compared
at least once. The matrix P defines a directed multigraph
in which an edge weight P;; represents the flow of students
moving from course ¢ to course j. In Figure[I] we illustrate
a portion of the network model on three courses: Discrete
Structures, Linear Algebra I, and Real Analysis 1. Here, we
consider only Applied Mathematics students. We note that
of those students that take Real Analysis I and Linear Al-
gebra I in different quarters, very few take Real Analysis
first.

We now define a second related network model in which
we ensure the net flow of students between two courses is
0, which is necessary for some of the ranking methods. We
define the skew-symmetric matrix F of size n. X n., with
|Fij] € [0.5,1], which encodes the frequency with which
course % is taken before course j. We define Fj; using P;;’s

above as
P..
Fi; = {Pz 1

For example, if 70% of the students (who took both courses
¢ and j) took course i before j, then we set F;; = 0.7 and
F;; = —0.7.

In larger scale applications, the measurement matrices F
and P will most likely be sparse, with only a small subset of
the possible pairwise comparisons present. Let G(V, E) be
a graph, where the node set V represents the set of courses,
with |V| = n.. We add an edge between course ¢ and j, that

Py =

if P; >05

1
if Pij < 0.5. S



Real
Analysis T
.944 .260
.056 .740
Linear .588 Discrete
Algebra I Structures
412

Figure 1: A subgraph corresponding to P for Ap-
plied Mathematics majors. The courses shown are
Linear Algebra I, Real Analysis I, and Discrete
Structures).

is (i,7j) € E whenever P;; # 0 (equivalently, F;; # 0), and
let m = | E| be the number of edges in G.

3.2 PageRank

PageRank was designed to “bring order to the web”, rank-
ing sites according to the distribution of links between them
[12]. In [4], the authors adapted PageRank to determine
NCAA basketball team rankings based on the regular sea-
son matchups [4]. This in turn allowed the authors to fore-
cast the outcome in the NCAA tournament based on the
rankings they obtained. This adaptation is a form of rank
aggregation using pairwise comparisons that are either in-
complete (not all teams play each other) or noisy (teams
may under or over perform). Using the network determined
by P (section, PageRank defines a stochastic matrix S,
that describes the motion of a random student who is per-
mitted to teleport to non-adjacent nodes |9]. This stochastic
matrix S, is given by

S =(1-a)D 'P+ 21,
Ne

where a € (0,1), I, is the n¢ X n. identity matrix, and D is
the diagonal matrix of out degrees with d;; = ) y P;;. The
first term (1 — )D™'P means that with probability (1 — «)
the random walker travels to an adjacent node in the net-
work. The second term > 1I,,. means that with probability o
the random walker moves to any other node in the network.
The teleportation in this setting can be interpreted as the
need for a student to move randomly in the course sequence
to fulfill a requirement.

Formally, we associate the Markov chain with states q; at
time ¢, and with the transition rule given by

(qe1)” = (ar)"SY".

The PageRank vector q is defined to be the stationary dis-
tribution associated to the above Markov chain and given as
lim;— o0 ¢ We determine the vector qe via power iteration
[9]. The ith component of g denotes the ranking of course
i. The smaller the entry at i, the more likely students take
this course early in their sequence. From this ordering we
extract a global ranking for courses. Using this stationary
distribution, we adapt personalized PageRank [9] replacing
I, with 1,,, — g, where 1, is the vector of length n. of 1s.

The intuition is that students teleport to fulfill requirements
early in their course sequence before moving on.

3.3 Rank Centrality

Rank Centrality was conceived as a way to discover rank-
ings generated by the Bradley-Terry model [11]. This model
assumes players ¢ and j have latent real-valued weights w;, w;
assigned to them so that

W

P(i beats j) = P
i J

The authors used this method to in turn rank NASCAR
drivers and Indian cricket teams [11]. Again, for our appli-
cation, we compare courses i and j, in which “beat” means
course ¢ came before course j in sequence of courses. Let P
be the matrix defined in the previous section whose entries
P;; denote the number of students that took course ¢ before
j, amongst all those students that took 7 and j in different
quarters. Rank Centrality defines a Markov chain on the n.
courses with the following stochastic matrix

1

P+ (Inc . D) ,
where dmax is the maximum out degree in the network, I, is
the n. X n. identity matrix, and D is the diagonal matrix of
out degrees with di; = > ; Fiz. This differs in two important
ways from PageRank above. First, there is no teleportation
term for Rank Centrality. Second, from the latter term in
the sum, the random walker can remain at course ¢ with
probablity 1 — 1/dmax Zj P;;. It also means that courses
with smaller total out-degree will have an added self-loop of
nontrivial weight. This means less-popular courses tend to
have higher marginal values in the stationary distribution.

The above construction has useful theoretical properties.
For one, this stochastic process is reversible. Moreover, if we
assume P is a realization of a Bradley-Terry model, the sta-
tionary distribution will be proportional to the weight vector
w? = (w1, ..., wn,). We compute the stationary distribution
Qoo = lim_, o q+S™ using power iteration.

3.4 SerialRank

SerialRank [7] adapts the seriation problem proposed in
|2] to determine a global ranking of players. In SerialRank,
the authors define a similarity function determined by the
outcomes two players have with common opponents. As
such, they study the similarity graph rather than a Markov
chain, as is done in the previous two rank aggregation meth-
ods. For our academic application, we interpret links as the
likelihood two courses are taken at a similar time.

To construct the similarity matrix, we recall the matrix P
from the previous sections whose entries P;; that counts the
percentage of students taking course i before j. We proceed
as in [7]. We construct the comparison matrix Ay, for course
k to be given component-wise by

_ [P — Pl
2

whenever both course ¢ and course j have been taken in a
sequence with course k. If either course i or course j has not
been taken in sequence k, we define (Ax)i; = 3. In other
words, if course ¢ and course j have a similar percentage
of students that are taking course k afterwards, then 7 and

7 must be more similar themselves. The similarity matrix

1

dln ax

Src —

(Ag)ij =1



S® is then determined by summing over the comparison
matrices

s = iAk.
k=1

We rescale S* by subtracting the minimum value of S*' so
that course ¢ and j with the smallest similarity now have
similarity of 0. To determine a ranking from S*', we form
the combinatorial laplacian L and rank the courses using the
components of the Fiedler vector [7], where L is given by

L=D-S*.

The justification for using the Fiedler vector is proposed in
[2] as a relaxation of an NP-hard problem. Specifically, let
us assume that q is a vector with the ith component repre-
senting the ranking of the ith course. We can see that the
following energy will be minimized for an optimal ranking

q=argmin » _ s35(qgi — q})*.
@i
Observering that >, ; s3j(q; — ¢;)? = (d')"Lq, the problem
can be relaxed into the well-studied eigenvector problem

q =arg min(q/)TLq/
ql
such that ||q'l[2 =1 and 1} q' =0,

where 1,,, is the vector of length n. comprised entirely of 1’s.
The minimum of the above optimization problem is attained
by the eigenvector corresponding to the smallest non-trivial
eigenvalue of L. After ordering the n. courses using the
components of q, we obtain a global ranking. Theoretical
results in |7}, |2] give guarantees on the monotonicity of q for
particular generative models.

3.5 SyncRank: Synchronization based rank-
ing

In [5], one of the authors formulates the problem of rank-
ing with incomplete noisy information as an instance of the
group synchronization problem over the special orthogonal
group SO(2), which we briefly detail. Determining individ-
ual group elements from the measurement of their pairwise
ratios is known as the group synchronization problem [15].
The seminal paper of Singer [15] considered the angular syn-
chronization problem over SO(2), where the goal is to re-
cover n unknown ground truth angles 61,...,6, € [0,27),
given m noisy pairwise angle offsets captured in a matrix ©
of size n X n

©;; = (6; — 0; + Noise) mod 2.

Singer [15] introduced and analyzed spectral and semidefi-
nite programming (SDP) relaxations for this problem (fol-
lowed by a rounding procedure). The difficulty of the prob-
lem is amplified on one hand by the amount of noise in the
offset measurements, and on the other hand by the fact that
m K (g), i.e., only a very small subset of all possible pair-
wise offsets are measured.

The connection between ranking and angular synchroniza-
tion can be summarized as follows. Denote the true ranking
of the n. courses by r;, assuming, without loss of generality,
that r; = 4, i.e., the rank of the i*" course is i. Imagine the
ranks to lie on a one-dimensional line, with the pairwise rank
comparisons given, in the noiseless case, by R;; = r; — ;.

Note that this matrix has a similar interpretation to the
matrix F' defined in , in the sense that both are skew-
symmetric matrices that capture the outcome of the pair-
wise comparison between i and j.

Next, we consider the angular embedding given by map-
ping the ranks of the courses to the unit circle, say fixing r1
to have a zero angle with the z-axis, and the last player r,
corresponding to an angle equal to 7. We interpret the given
pairwise measurements Fj; as a proxy for the rank offsets,
and map them to ©;; € [0, 7) via the transformation

Rij — @ij = TI'Fij. (2)

In other words, we imagine the n. courses wrapped around a
fraction of the circle, interpret the available rank-offset mea-
surements as angle-offsets in the angular space, and thus
arrive at the setup of the angular synchronization prob-
lem. We then build the n. X n. Hermitian matrix H with
H;; = e if (i,j) € E, and H;; = 0 otherwise, with
1 = v/—1. We solve the angular synchronization problem
via its spectral relaxation, which considers the top eigenvec-
tor v1 of H, and denote the recovered solution by 7; = e*% =

\m;w i=1,2,...,n.. We extract the corresponding set

of angles [9\1, eeey0p, from 71,. .., 7, , which induces the final
ranking solution after modding out the best circular permu-
tation. This last step is due to the fact that the estimation
of the rotation angles is up to an additive phase, since e**vq
is also an eigenvector of H for any a € R.

3.6 Least Squares

Another method we consider for recovering the course
orderings is one based on the traditional least-squares ap-
proach. Denote by m the number of edges in the measure-
ment graph G, m = |E(G)|, which counts the number of
available pairwise comparisons, and by B the edge-vertex
incidence matrix of size m X n., with entries given by

1
Bij:{ _1

We let w the vector of length m x 1 which contains the
pairwise rank measurements w. = Fj;, for all edges e =
(1,7) € E(G). We consider the resulting over-determined
system of linear equations, and compute the least-squares
solution

if (¢,7) € E(G),
if (4,j) € E(Q),

and i > j
and ¢ < j

®3)

L 2
ml;lel%}llzeHBX wll3. (4)

Hirani et al [10] show that the problem of least-squares rank-
ing on graphs has far-reaching rich connections with various
other research areas, including spectral graph theory and
multilevel methods for graph Laplacian systems, Hodge de-
composition theory and random clique complexes in topol-

ogy.

3.7 Ranking via Singular Value Decomposi-
tion

The sixth and final ranking method we consider is the
recent SVD-based approach proposed in recent work by one
of the authors [5], and based on the traditional Singular
Value Decomposition (SVD). Let r be the ranking vector
with r; denote the rank of the ith player. The applicability
of the SVD-Rank approach stems from the observation that,
the noiseless matrix of rank offsets defined as before to be



R;; :=r; — r; is a skew-symmetric matrix of rank 2 and
R=re’ —er’, (5)

where e denotes the all-ones column vector.

For a certain noise model, R can be shown to decompose
into a low-rank (rank-2) perturbation of a random skew-
symmetric matrix |5]. In practice, we are not given access
to the clean matrix R of rank offsets, and use as a proxy
the available matrix F given by . We consider the top
two singular vectors of F', order their entries by size, extract
the resulting rankings, and choose between the first and sec-
ond singular vector based on whichever one yields a better
consistency coefficient, which we will define formally in the
next section @ Note that since the singular vectors are
obtained up to a global sign, we (again) choose the ordering
which is most consistent with the given data, by comparing
the resulting consistency coefficients @

4. COURSE SEQUENCE DISCOVERY

We now apply the six methods discussed in the previ-
ous section to data collected by the UCLA Department of
Mathematics between Fall 2000 and Spring 2015. We first
compare the output of each method on all of these stu-
dent records and then demonstrate the applicability of this
framework by quantifying the flow of students through an
obtained sequence. After assessing each method, we ana-
lyze course sequences of particular student populations to
highlight a few trends. In particular, by comparing the
course sequences of high and low performing students, we
infer that there are hidden prerequisites. This means that
some courses should follow others, so that students are build-
ing on their core competency based on a specific sequence
of courses. We now briefly discuss the data itself and the
cleaning of it.

4.1 Cleaning the Data

The data is comprised of individual student records indi-
cating each student’s quarter by quarter math coursework,
the student’s grade in the course, and the major declared
each quarter. To apply the rank aggregation methods above,
we must construct the matrix P or F defined in Section B:1l
We restrict our attention to a particular major, each major
having their very own set of requirements and objectives.
At UCLA, the Department of Mathematics has 7 unique
majors ranging from Pure Mathematics to Mathematics &
Economics to Mathematics of Computation. Since a stu-
dent can change their major from quarter to quarter, we
group students based on the major they declare in their last
quarter. We also exclude all community college transfer stu-
dents as they often exhibit very different trends compared
to students that were admitted as Freshman. Moreover, if
a student retook a class, we look only at the grade and the
quarter the class was last taken. Lastly, once a suitable pop-
ulation of students is selected, we only consider those math
classes that at least 10 percent of this population takes. In
particular, if we consider only a particular major, we ex-
clude classes that less than 10% of students in this major
has taken.

4.2 Assessing Rank Aggregation

We assess our rankings quantitatively by using a metric,
and qualitatively by examining the output sequences. To the
first end, we define an consistency coefficient that roughly

Table 1: I'(r) coefficients for Two Majors.

Method Applied Mathematics (ns = 672)
All A B C
PageRank 0.652 0.691 0.669 0.674
Rank Centrality 0.531 0.671 0.546 0.670
SerialRank 0.657 0.696 0.674 0.678
SyncRank 0.657 0.696 0.669 0.679
Least Squares 0.654 0.697 0.676 0.679
SVD 0.657 0.701 0.674 0.678
Applied Science (ns = 499)
All A B C
PageRank 0.707 0.772 0.722 0.757
Rank Centrality 0.727 0.743 0.740 0.757
SerialRank 0.725 0.768 0.737 0.767
SyncRank 0.725 0.763 0.737 0.768
Least Squares 0.725 0.760 0.727 0.771
SVD 0.715 0.746 0.735 0.766
Pure Mathematics (ns = 346)
All A B C
PageRank 0.618 0.706 0.634 0.645
Rank Centrality 0.606 0.708 0.622 0.685
SerialRank 0.617 0.713 0.631 0.692
SyncRank 0.617 0.721 0.632 0.694
Least Squares 0.619 0.718 0.634 0.707
SVD 0.618 0.714 0.632 0.692

measures both how well-ordered a course sequence is and
how well the ranking captures this ordering. Clearly, there is
no course sequence that all students follow perfectly, but we
do expect certain courses in aggregate to follow a sequence.
We assess our rankings measuring the flow of students from
course to course when we follow a given sequence. We con-
sider the matrix P defined in . If two courses ¢ and j
are independent and offered with similar frequency, we ex-
pect P;; ~ .5. However, when course ¢ crucially depends on
course j, we expect P;; > .5. Let r be a ranking of the n.
courses. Without loss of generality, we assume r; = i. We
define the consistency coefficient I'(r) as in [5]:

S (P - 5). (©)

I(r) =

The coefficient I'(r) is normalized so that I'(r) € [-1,1].
Note that in the event that all the courses are taken in ran-
dom order by students, we expect I'(r) = 0 for any ranking r.
On the other hand, if I'(r) is close to 1 for some ranking, we
infer that r was suitable for discovering an underlying course
sequence that many students followed. In other words, the
closer I'(r) is to 1, the more consistent the given data is with
the existence of a global ordering. There are other ways to
assess the strength of rankings as in 5] and by no means do
we claim I'(r) a definitive assessment. Certainly, this metric
neither takes into account how many students took ¢ and
j, nor does it consider the distance typical between courses
¢ and j. In Table [I} we provide values of I'(r) for all six
methods and their corresponding rankings r for three dif-
ferent majors across four different performance categories.
The majors considered are Applied Mathematics, Applied



Science and Pure Mathematics. The first two majors are
the largest in all of mathematics and we expect there to be
the most noise. Within each major, we illustrate three GPA
categories. From the table, we see that in general, I'(r) is
maximal for A range students and minimized when we con-
sider the entire major population. The large value of I'(r)
for A students may be an artifact of this population be-
ing substantially smaller and perhaps more homogeneous in
terms of the ordering in which classes were taken. We also
note that Rank Centrality performs rather poorly relative
to the other methods for Applied Mathematics majors, and
offer below a possible explanation for this. Despite this one
particular under performance of Rank Centrality, the coeffi-
cients for I'(r) are all within .015 of each other, an agreement
which demonstrates that for the small data set at hand, all
the ranking methods perform rather similarly.

We can also analyze the sequences obtained by rank ag-
gregation. In Table [2] we compare the output sequences for
all six methods on Applied Mathematics majors who have
an A-range GPA. All methods were able to correctly order
the calculus sequences (31AB, 32AB, 33AB) and are thus re-
moved from the table. Moreover, all methods place Linear
Algebra I and Real Analysis I fairly early in the sequence as
these are courses required for all majors. All the methods
consistently placed Real Analysis I before Real Analysis IT
and III and similarly for other courses taught in sequences.
These basic dependencies were captured by rank aggrega-
tion across the board. We did notice that Rank Centrality
had the greatest disagreement when compared to the rest of
the methods. Rank Centrality placed Applied Algebra and
Partial Differential Equations much earlier than the other
methods. We suspect the defect in I'(r) seen in Table |1 and
this particular disagreement with the other methods is due
to the relatively low enrollment in these classes relative to
those courses considered. Approximately 10% of students
in the Applied Mathematics major took Partial Differential
Equations and Applied Algebra, which was the minimum
for a class to be considered in our course sequence. We sus-
pect Rank Centrality to be affected in certain cases by the
popularity of classes. We also display the heat-map corre-
sponding to the matrix of P in Figure [2] to reflect a more
granulated view of the flow of students. See Appendix [A] for
a reference of all the course numbers and names that label
the axes. Here, we only consider Pure Math students with
A-range GPAs. Again, we can see from the same Figure
that the Calculus sequence (31A, 31B, 32A, 32B) is taken
earliest in the expected sequence. We observe P;; + Pj; =1
when both ¢ and j have been taken by at least one student
and are taken in different quarts. There are some pairs of
classes for which this is not the case. For instance, we can
see from Figure that no single student took Math 61 (Dis-
crete Structures) and Math 133 (Fourier Series) in different
quarters. Our assessments above indicate that indeed this
approach to course sequence discovery produces reasonable
results.

4.3 Inferring Hidden Prerequisites

One of the original motivations for this work was to learn
optimal course sequences through the math major. Even
though our network model is not dependent on performance,
we can still condition the students we consider in the net-
work’s construction by their overall GPA. Comparing the
extracted sequences of high and low performing students, we
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Figure 2: Above, the P matrix for A students with
a Pure Mathematics focus. The courses are ordered
by PageRank.

can infer hidden prerequisites and optimal course sequences.
In Table [3] we do just this for three different majors using
SyncRank . We compare the first 11 non-Calculus courses
for A-range students and C-range students. For pure math-
ematics students, we see that A students tend to take Dis-
crete Structures before Linear Algebra I, the latter course
being the first upper division proof-based course a math stu-
dent takes at UCLA. As such, we might infer that Discrete
Structures, which covers the basics of functions, sets, and
combinatorics to be helpful to Pure Mathematics students
entering a proof-based curriculum. Another interesting fea-
ture for Pure Mathematics students is that A students tend
to take Real Analysis I and Real Analysis II fairly close
to each other while C students do not. The Real Analysis
coursework is known to be a conceptually challenging univer-
sity course, both at UCLA and elsewhere. More statistical
analysis is needed to ascertain whether strong performance
is correlated to taking these course sequences in close suc-
cession, but rank aggregation allows us to quickly identify
such trends.

For Applied Mathematics students, we see that Probabil-
ity I is frequently taken after Real Analysis I for A students,
but not for C students. As such, we infer that Real Anal-
ysis I is a prerequisite for Probability I when considering
such students. Contrary to this ordering, Applied Science
students take Probability I before Real Analysis I whether
they are A or C students. One possible explanation for the
differences between these applied majors is that many Ap-
plied Science students are pre-actuarial and are very familiar
with the material in Probability I. As such, the ordering of
Probability I and Real Analysis I is not as pertinent for Ap-
plied Science students.

Assuming A students navigate through the major best, we
can also use rank aggregations method to study differences



Table 2: First 11 courses for A students in 5 different majors using SerialRank.

Applied Mathe-

matics
ns = 140

Pure
Mathematics
ns = 86

Applied
Sciences
ns =75

Mathematics
Economics
ns = 101

& Mathematics for
Computation
ns = 20

Lin. Algebra I

Discr. Struct.

Lin. Algebra I

Lin. Algebra I

Lin. Algebra I

Discr. Struct.

Lin. Algebra I

Probability T

Discr. Struct.

Probability T

Real Analysis I

Real Analysis I

Discr. Struct.

Probability I

Real Analysis I

Probability I

Lin. Algebra II

Act. Math

Real Analysis I

Discr. Struct.

NonLin. Systems

Real Analysis II

Probability 11

Applied Algebra

Probability II

Num. Analysis I

Algebra 1

Real Analysis I

Optimization

Act. Math

Graph Theory

Ord. Diff. Eqn.’s

Num. Analysis I

Probability IT

Math Modeling

Complex Analysis

Complex Analysis

Act. Models II

Num. Analysis I

Math Econ.

Real Analysis IT

Probability T

Graph Theory

Real Analysis 11

Act. Models IT

Math Modeling

Algebra 11

Optimization

Game Theory

Num. Analysis I

Algebra I

Graph Theory

Act. Models II

Math Econ.

Loss Models I

Table 3: Comparing the A and C students in 3 majors using SyncRank.

Applied Mathematics

A (ns = 140)

C (ns = 198)

Applied Sciecnces

A (ns =75)

C (ns = 162)

Pure Mathematics

A (ns = 86)

C (ns =95)

Lin. Algebra I

Lin. Algebra I

Lin. Algebra I

Lin. Algebra I

Discr. Struct.

Lin. Algebra I

Discr. Struct.

Discr. Struct.

Probability I

Discr. Struct.

Lin. Algebra I

Hist. of Math

Real Analysis I

Probability T

Discr. Struct.

Probability I

Real Analysis I

Real Analysis I

Probability I

Real Analysis I

Real Analysis I

Real Analysis I

Lin. Algebra IT

Discr. Struct.

Complex Analysis

Algebra 1

Act. Math

Nonlin. Syst.

Algebra I

Algebra 1

Nonlin. Syst.

Num. Analysis I

Num. Analysis I

Math Modeling

Real Analysis II

Ord. Diff. Eqn.’s

Num. Analysis I

Graph Theory

Probability II

Graph Theory

Ord. Diff. Eqn.’s

Complex Analysis

Math Modeling

Real Analysis 11

Graph Theory

Game Theory

Complex Analysis

Game Theory

Real Analysis II

Act. Math

Act. Models 11

Num. Analysis I

Probability T

Probability I

Algebra I Nonlin. Syst. Act. Models II Optimization Algebra II Graph Theory
Graph Theory Math Modeling Ord. Diff. Eqn.’s Ord. Diff. Eqn.’s Graph Theory Num. Analysis I
Ord. Diff. Eqn.’s Hist. of Math Num. Analysis IT ~ Act. Math Real Analysis I11 Optimization

Game Theory

Complex Analysis

Optimization

Probability 11

Num. Analysis I

Number Theory

Research Seminar

Probability II

Math Econ.

Act. Models I1

Logic

Algebra 11




in major course sequences as in Table [4] Here, we apply Se-
rialRank to 6 different math majors, again only considering
A-range students. We see that the Applied math disciplines
(Applied Science, Mathematics & Economics, Mathematics
for Computation, and Applied Mathematics) all take Proba-
bility I early, while Pure Mathematics students generally do
not. We also noticed that Applied Science and Mathemat-
ics for Computation students take at least one pre-actuarial
course, while other majors do not. Of course, these find-
ings do not indicate the correlation of these course sequences
with performance, but this methodology quickly illuminates
possible trends.

S.  CONCLUSIONS AND FUTURE WORK

In this paper, we demonstrated that with an appropri-
ate network model, rank aggregation techniques can extract
course sequences and infer latent course dependencies. Our
findings captured easily verifiable dependencies such as the
completion of lower division calculus courses, and then pro-
ceeding to Linear Algebra I and Real Analysis I, two gate-
way classes central to the math curriculum across all majors.
We were able to inspect the differences between the various
math majors at UCLA and the differences between A, B,
and C students within these majors. We applied six different
methods of rank aggregation: PageRank, Rank Centrality,
SerialRank, SyncRank, Least Squares, and SVD ranking.
We then compared these methods using an consistency co-
efficient I'(r) determined by rankings defined in Eq. @
We concluded that the output of all the ranking methods
considered were in rather close agreement except for Rank
Centrality, for which the ranking of a course was affected by
low enrollment. Lastly, we were able to infer that there are
some hidden prerequisites of courses that emerge based on
the trends observed in high and low performing students.

Rank aggregation has typically been used to rank sports
teams, athletes, or other competitive endeavors. The ap-
plication in our present work adapts this methodology for
temporal orderings of university course data. The crucial
ingredient was an appropriate network model that captured
how students navigate through courses, which rendered the
problem suitable for existing state-of-the-art algorithms for
ranking with incomplete and inconsistent pairwise measure-
ments.
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Table 4: Course Sequences for Applied Mathematics Majors obtained by the six methods.

PageRank

Rank Centrality

SerialRank

SVD

Least Squares

SyncRank

Linear Algebra I

Linear Algebra I

Linear Algebra I

Linear Algebra I

Linear Algebra I

Linear Algebra I

Discr. Struct.

Discr. Struct.

Discr. Struct.

Discr. Struct.

Discr. Struct.

Discr. Struct.

Real Analysis I

Applied Algebra

Real Analysis 1

Real Analysis I

Real Analysis I

Real Analysis I

Probability T

Partial Diff. Eqn.’s

Probability I

Probability T

Probability T

Probability I

Num. Analysis I

Math Modeling

Num. Analysis I

Nonlin. Syst.

Num. Analysis I

Num. Analysis I

Nonlin. Syst.

Real Analysis I

Nonlin. Syst.

Num. Analysis I

Nonlin. Syst.

Nonlin. Syst.

Complex Analysis

Abstract Algebra I

Abstract Algebra I

Complex Analysis

Complex Analysis

Complex Analysis

Abstract Algebra I

Game Theory

Complex Analysis

Abstract Algebra I

Abstract Algebra I

Abstract Algebra I

Real Analysis II

Complex Analysis

Real Analysis I1

Real Analysis II

Real Analysis II

Act. Math

Graph Theory

Num. Analysis II

Graph Theory

Graph Theory

Graph Theory

Graph Theory

Math Modeling

Num. Analysis I

Math Modeling

Act. Math

Math Modeling

Real Analysis 11

Act. Math

Graph Theory

Act. Math

Math Modeling

Act. Math

Applied Algebra

Ord. Diff. Eqn.’s

Probability I

Ord. Diff. Eqn.’s

Applied Algebra

Applied Algebra

Math Modeling

Applied Algebra

Nonlin. Syst.

Applied Algebra

Ord. Diff. Eqn.’s

Ord. Diff. Eqn.’s

Ord. Diff. Eqn.’s

Optimization

Hist. of Math

Hist. of Math

Hist. of Math

Hist. of Math

Hist. of Math

Hist. of Math

Probability II

Probability 1T

Probability II

Optimization

Probability 11

Probability II

Act. Math

Optimization

Optimization

Probability 11

Optimization

Num. Analysis II

Real Analysis IT

Game Theory

Num. Analysis II

Num. Analysis II

Num. Analysis II

Game Theory

Ord. Diff. Eqn.’s

Num. Analysis IT

Game Theory

Game Theory

Game Theory

Partial Diff. Eqn.’s Optimization Partial Diff. Eqn.’s Partial Diff. Eqn.’s Partial Diff. Eqn.’s Partial Diff. Eqn.’s
Table 5: Course names and numbers.

# Course Name # Course Name # Course Name # Course Name

31A  Calculus I 111 Number Theory 132 Complex Analysis 170B  Probability II

31B  Calculus IT 115A Linear Algebra I 133 Fourier Analysis 172A  Actuarial Mathematics

32A Multivariable CalculusI | 115B Linear Algebra II 134 Nonlinear Systems 172B  Actuarial Models 11

32B  Multivariable Calculus | 117 Applied Algebra 135 Ordinary  Differential | 172C  Actuarial Models 11
11 Equations

33A  Linear Algebra for Ap- | 120A Differential Geometry I | 136 Partial Differential | 173A  Casualty Loss Models I
plications Equations

33B  Differential Equations | 120B Differential Geometry IT | 142 Mathematical Modeling | 173B  Casualty Loss Models 11
for Applications

61 Discrete Structures 121 Toplogy 151A  Numerical Analysis I 174 Mathematical Eco-

nomics

106 History of Mathematics | 123 Axiomatic Geometry 151B  Numerical Analysis IT 180 Graph Theory

110A  Abstract Algebra I 131A  Real Analysis I 164 Optimization 184 Combinatorics

110B  Abstract Algebra II 131B  Real Analysis IT 167 Game Theory 191 Research Seminar

110C  Abstract Algebra III 131C Real Analysis I1I 170A  Probability I 199 Individual Research
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APPENDIX
A. COURSE NUMBERS

Table [5l shows the official course numbers and the associ-
ated course names used throughout the paper. We shortened
the official course names wherever possible, to make the ta-
bles more visually appealing. For example, “Introduction to
Fourier Analysis” is simply labelled “Fourier Analysis”. Also,
A, B, C are substituted with I, II, and III respectively. A
short description of each course can be found in the UCLA
general catalog [1]. A description of each major and its re-
quirements can also be found at the same link. Lastly, in the
general catalog, a list of official prerequisites can be found
to validate that the sequences obtained by our rank aggre-
gation methods are comparable with the official ones.
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