Skip to main content

An Opportunistic Network Approach Towards Disease Spreading

  • Conference paper
  • First Online:
Complex Networks & Their Applications VI (COMPLEX NETWORKS 2017)

Part of the book series: Studies in Computational Intelligence ((SCI,volume 689))

Included in the following conference series:

Abstract

Research in modeling epidemic spreading in static networks has reached maturity in recent years. On the contrary, disease spreading in dynamic networks can be considered as an important open issue. Hence, mapping dynamic interactions of crowds to a static network and then immunizing the resulting network is the subject of this paper. In this work, we analogize spreading of diseases in dynamic networks -based on dynamic interactions- to message delivery in opportunistic networks. Thus, different diseases which have different spreading behaviors could be simulated by specific routing protocols. Having used interactions among individuals in the utilized dataset, the resulting network is immunized by vaccinating most central nodes. Our results show that in case of seasonal disease, optimal DTN (Delay Tolerant Network) solution is Epidemic routing to detect influential persons and in case of infectious disease, Direct Delivery routing is an optimal solution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hay, S.I., George, D.B., Moyes, C.L., Brownstein, J.S.: Big data opportunities for global infectious disease surveillance. PLoS Med. 10(4), 714–717 (2011)

    Google Scholar 

  2. Salathe, M., Bengtsson, L., Bodnar, T.J., Brewer, D.D., Brownstein, J.S., Buckee, C., Campbell, E.M., Cattuto, C., Khandelwal, Sh, Mabry, P.L., et al.: Digital epidemiology. PLoS ComputBiol 8(7), e1002616 (2012)

    Article  Google Scholar 

  3. Salathe, M., Freifeld, C.C., Mekaru, S.R., Tomasulo, A.F., Brownstein, J.S.: Influenza a (h7n9) and the importance of digital epidemiology. N. Engl. J. Med. 369(5), 401–404 (2013)

    Article  Google Scholar 

  4. Chan, E.H., Brewer, T.F., Madoff, L.C., Pollack, M.P., Sonricker, A.L., Keller, M., Freifeld, C.C., Blench, M., Mawudeku, A., Brownstein, J.S.: Global capacity for emerging infectious disease detection. Proc. Natl. Acad. Sci. 107(50), 21701–21706 (2010)

    Article  Google Scholar 

  5. Anderson, R. M., May, R. M, Anderson, B.: Infectious Diseases of Humans: Dynamics and Control, vol. 28. Wiley Online Library (1992)

    Google Scholar 

  6. May, R.M., Fine, P.E.M., Anderson, R.M. (eds.): Population Biology of Infectious Diseases: Report of the Dahlem Workshop on Population Biology of Infectious Disease Agents. Springer, New York (1982)

    Google Scholar 

  7. Brownstein, J.S., Freifeld, C.C., Madoff, L.C.: Digital disease detection harnessing the web for public health surveillance. N. Engl. J. Med. 360(21), 2153–2157 (2009)

    Article  Google Scholar 

  8. Shams, B., Khansari, M.: Using network properties to evaluate targeted immunization algorithms. Netw. Biol. 4(3), 74–94 (2014)

    Google Scholar 

  9. Khansari, M.: Centrality measures for immunization of weighted networks. Netw. Biol. 6(1), 12–55 (2016)

    Google Scholar 

  10. Socievole, A., Yoneki, E., De Rango, F., Crowcroft, J.: Mlsor: message routing using multi-layer social networks in opportunistic communications. Comput. Netw. 81, 201–219 (2015)

    Article  Google Scholar 

  11. Farrahi, K., Emonet, R., Cebrian, M.: Epidemic contact tracing via communication traces. PLoS ONE 9(5), e95133 (2014)

    Article  Google Scholar 

  12. Socievole, A., De Rango, F., Caputo, A.: Wireless contacts, facebook friendships and interests: analysis of a multi-layer social network in an academic environment. In: Wireless Days (WD), 2014 IFIP, pp. 1–7. IEEE (2014)

    Google Scholar 

  13. Gonzalez, M.C., Hidalgo, C.A., Barabasi, A.L.: Understanding individual human mobility patterns. Nature 453(7196), 779–782 (2008)

    Article  Google Scholar 

  14. Bengtsson, L., Lu, X., Thorson, A., Garfield, R., Von Schreeb, J.: Improved response to disasters and outbreaks by tracking population movements with mobile phone network data: a post-earthquake geospatial study in haiti. PLoS Med. 8(8), e1001083 (2011)

    Article  Google Scholar 

  15. Cattuto, C., Van den Broeck, W., Barrat, A., Colizza, V., Pinton, J.F., Vespignani, A.: Dynamics of person-to-person interactions from distributed RFID sensor networks. PLoS ONE 5(7), e11596 (2010)

    Article  Google Scholar 

  16. Caputo, A., Socievole, A., De Rango, F.: CRAWDAD dataset unical/socialblueconn (v.2015-02-08) (2015). http://crawdad.org/unical/socialblueconn/20150208

  17. G. D. Schmidt, L. S. Roberts, J. Janovy.: Foundations of Parasitology, 8 edn. McGraw Hill, New York (2009)

    Google Scholar 

  18. Pelusi, L., Passarella, A., Conti, M.: Opportunistic networking: data forwarding in disconnected mobile ad hoc networks. IEEE Commun. Mag. 44(11), 134–141 (2006)

    Article  Google Scholar 

  19. Socievole, A., Caputo, A., Marano, S.: Multi-layer sociality in opportunistic networks: an extensive analysis of online and offline node social behaviors. In: 2015 International Symposium on Performance Evaluation of Computer and Telecommunication Systems (SPECTS). IEEE, pp. 1–8 (2015)

    Google Scholar 

  20. Spyropoulos, T., Psounis, K., Raghav, C. S.: Single-copy routing in intermittently connected mobile networks. In: First Annual IEEE Communications Society Conference on Sensor and Ad Hoc Communications and Networks, IEEE SECON, pp. 252–259 (2014)

    Google Scholar 

  21. Le, V., Scholten, H., Havinga, P.: Evaluation of opportunistic routing algorithms on opportunistic mobile sensor networks with infrastructure assistance. Int. J. Adv. Netw. Serv. 5(3–4), 279–290 (2012)

    Google Scholar 

  22. Vahdat, A., Becker, D.: Epidemic routing for partially connected ad hoc networks, Technical Report, Duke University, Durham, NC (2000)

    Google Scholar 

  23. Woungang, I., Dhurandher, S. K., Anpalagan, A., Vasilakos, A.: Routing in Opportunistic Networks. Springer, New York (2013)

    Google Scholar 

  24. Spyropoulos, T., Psounis, K., Raghavendra, C. S.: Spray and wait: an efficient routing scheme for intermit-tently connected mobile networks. In: Proceedings of the 2005 ACM SIGCOMM Workshop on Delay-tolerant Networking. ACM, pp. 252–259 (2005)

    Google Scholar 

  25. Sukhbar, R., Singh, R.: Effective routing protocols for delay tolerant network. IJMER 2(4), 1732–1735 (2012)

    Google Scholar 

  26. Woungang, I., Dhurandher, S.K., Anpalagan, A., Vasilakos, A.: Routing in Opportunistic Network. Springer, New York (2013)

    Google Scholar 

  27. Cohen, R., Havlin, S.: Complex Networks Structure, Robustness and Function. Cambridge University Press, Cambridge (2010)

    Google Scholar 

  28. Shang, J., Liu, L., Xie, F., Wu, C.H.: How overlapping community structure affects epidemic spreading in complex networks. In: IEEE 38th Annual International Computers, Software and applications Conference Workshops, pp. 240–245 (2014)

    Google Scholar 

  29. Fathima, M., Ahmad, K.H., Fathima, A.: Mobility models and routing protocols in opportunistic networks: a survey. IJARCS 8(5) (2017). https://doi.org/10.26483/ijarcs.v8i5.3306

  30. Thakur, A., Kumar, U., Helmy, A., Hsu, W.: Analysis of spatio-temporal preferences and encounter statistics for DTN performance. In: 7th International Wireless Communications and Mobile Computing Conference, IWCMC 2011. IEEE (2011)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Khansari .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Joneydi, S., Khansari, M., Kaveh, A. (2018). An Opportunistic Network Approach Towards Disease Spreading. In: Cherifi, C., Cherifi, H., Karsai, M., Musolesi, M. (eds) Complex Networks & Their Applications VI. COMPLEX NETWORKS 2017. Studies in Computational Intelligence, vol 689. Springer, Cham. https://doi.org/10.1007/978-3-319-72150-7_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-72150-7_26

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-72149-1

  • Online ISBN: 978-3-319-72150-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics