Skip to main content

On Mining Temporal Patterns in Dynamic Graphs, and Other Unrelated Problems

  • Conference paper
  • First Online:

Part of the book series: Studies in Computational Intelligence ((SCI,volume 689))

Abstract

Given a social network with dynamic interactions, how can we discover frequent interactions between groups of entities? What are the temporal patterns exhibited by these interactions? Which entities interact frequently with each other before, during, or after others have stopped or started? Such dynamic-network datasets are becoming prevailing, as modern data-gathering capabilities allow to record not only a static view of the network structure, but also detailed activity of the network entities and interactions along the network edges. Analysis of dynamic networks has applications in telecommunication networks, social network analysis, computational biology, and more. We study the problem of mining interactions in dynamic graphs. We assume that these interactions are not instantaneous, but more naturally, each interaction has a duration. We solve the problem of mining dynamic graphs by establishing a novel connection with the problem of mining event-interval sequences, and adapting methods from the latter domain. We apply the proposed methods to a real-world social network and to dynamic graphs from the field of sports. In addition, having established the aforementioned equivalence between the two pattern-mining settings, we proceed to describe how other graph-related problems, such as prediction, learning, and summarization, can be solved by applying out-of-the-box algorithms devised for event-interval sequences. In light of these results, we conjecture that there may be further connections between the two research domains, and the two communities should work closer to share goals and methodology.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    We have used the implementation provided publicly by the author.

  2. 2.

    We have made the dataset publicly available at: https://goo.gl/uD7a41.

References

  1. Agrawal, R., Srikant, R., et al.: Fast algorithms for mining association rules. In: Proceedings 20th VLDB, vol. 1215, pp. 487–499 (1994)

    Google Scholar 

  2. Allen, J.F.: Maintaining knowledge about temporal intervals. Commun. ACM 26(11), 832–843 (1983)

    Article  MATH  Google Scholar 

  3. Araujo, M., Papadimitriou, S., Günnemann, S., Faloutsos, C., Basu, P., Swami, A., Papalexakis, E.E., Koutra, D.: Com2: fast automatic discovery of temporal (comet) communities. In: Pacific-Asia Conference on Knowledge Discovery and Data Mining, pp. 271–283. Springer (2014)

    Google Scholar 

  4. Berlingerio, M., Bonchi, F., Bringmann, B., Gionis, A.: Mining graph evolution rules. In: ECML PKDD, pp. 115–130 (2009)

    Google Scholar 

  5. Borgwardt, K.M., Kriegel, H.P., Wackersreuther, P.: Pattern mining in frequent dynamic subgraphs. In: Proceedings of ICDM, pp. 818–822. IEEE (2006)

    Google Scholar 

  6. Chen, X., Petrounias, I.: Mining temporal features in association rules. In: Proceedings of the 3rd European Conference on Principles and Practice of Knowledge Discovery in Databases, pp. 295–300. Springer-Verlag (1999)

    Google Scholar 

  7. Chen, Y.C., Weng, J.T.Y., Hui, L.: A novel algorithm for mining closed temporal patterns from interval-based data. Knowl. Inf. Syst. 1–33 (2015)

    Google Scholar 

  8. Cordeiro, M., Sarmento, R.P., Gama, J.: Dynamic community detection in evolving networks using locality modularity optimization. Soc. Netw. Anal. Min. 6(1), 1–20 (2016)

    Article  Google Scholar 

  9. Crouch, M., McGregor, A., Stubbs, D.: Dynamic graphs in the sliding-window model. In: ESA, pp. 337–348 (2013)

    Google Scholar 

  10. Ding, B., Yu, J.X., Qin, L.: Finding time-dependent shortest paths over large graphs. In: Proceedings of the 11th International Conference on Extending Database Technology: Advances in Database Technology, pp. 205–216. ACM (2008)

    Google Scholar 

  11. Eagle, N., Pentland, A.: Reality mining: sensing complex social systems. Pers. Ubiquitous Comput. 10(4), 255–268 (2006)

    Article  Google Scholar 

  12. Henzinger, M., King, V.: Maintaining minimum spanning trees in dynamic graphs. In: Automata, Languages and Programming, pp. 594–604 (1997)

    Google Scholar 

  13. Holm, J., De Lichtenberg, K., Thorup, M.: Poly-logarithmic deterministic fully-dynamic algorithms for connectivity, minimum spanning tree, 2-edge, and biconnectivity. J. ACM (JACM) 48(4), 723–760 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  14. Holme, P., Saramäki, J.: Temporal networks. Phys. Rep. 519(3), 97–125 (2012)

    Article  Google Scholar 

  15. Kostakis, O., Papapetrou, P.: Finding the longest common sub-pattern in sequences of temporal intervals. Data Min. Knowl. Discov. 1–33 (2015)

    Google Scholar 

  16. Kostakis, O., Papapetrou, P.: On searching and indexing sequences of temporal intervals. Data Min. Knowl. Discov. 31(3), 809–850 (2017)

    Article  MathSciNet  Google Scholar 

  17. Kostakis, O.K., Gionis, A.G.: Subsequence search in event-interval sequences. In: In Proceedings of ACM SIGIR, pp. 851–854. ACM (2015)

    Google Scholar 

  18. Koyutürk, M., Grama, A., Szpankowski, W.: An efficient algorithm for detecting frequent subgraphs in biological networks. Bioinformatics 20(suppl 1), i200–i207 (2004)

    Article  Google Scholar 

  19. Lahiri, M., Berger-Wolf, T.Y.: Mining periodic behavior in dynamic social networks. In: Proceedings of ICDM, pp. 373–382. IEEE (2008)

    Google Scholar 

  20. Laxman, S., Sastry, P., Unnikrishnan, K.: Discovering frequent generalized episodes when events persist for different durations. IEEE TKDE 19(9), 1188–1201 (2007)

    Google Scholar 

  21. Mathioudakis, M., Bonchi, F., Castillo, C., Gionis, A., Ukkonen, A.: Sparsification of influence networks. In: Proceedings of ACM SIGKDD, pp. 529–537. ACM (2011)

    Google Scholar 

  22. McGarry, K.: A survey of interestingness measures for knowledge discovery. Knowl. Eng. Rev. 20(01), 39–61 (2005)

    Article  Google Scholar 

  23. Meisen, P., Keng, D., Meisen, T., Recchioni, M., Jeschke, S.: Similarity search of bounded tidasets within large time interval databases. In: Computational Science and Computational Intelligence (CSCI), pp. 24–29. IEEE (2015)

    Google Scholar 

  24. Moerchen, F., Fradkin, D.: Robust mining of time intervals with semi-interval partial order patterns. In: SDM, pp. 315–326 (2010)

    Google Scholar 

  25. Mongiovi, M., Bogdanov, P., Singh, A.K.: Mining evolving network processes. In: Data Mining (ICDM), 2013 IEEE 13th International Conference on, pp. 537–546. IEEE (2013)

    Google Scholar 

  26. Monroe, M., Lan, R., Lee, H., Plaisant, C., Shneiderman, B.: Temporal event sequence simplification. IEEE TVCG 19(12), 2227–2236 (2013)

    Google Scholar 

  27. Mooney, C., Roddick, J.F.: Mining relationships between interacting episodes. In: Proceedings of the 4th SIAM International Conference on Data Mining (2004)

    Google Scholar 

  28. Mörchen, F., Ultsch, A.: Optimizing time series discretization for knowledge discovery. In: Proceedings of ACM SIGKDD, pp. 660–665. ACM (2005)

    Google Scholar 

  29. Moskovitch, R., Choi, H., Hripcsak, G., Tatonetti, N.P.: Prognosis of clinical outcomes with temporal patterns and experiences with one class feature selection. IEEE/ACM TCBB 14(3), 555–563 (2017)

    Google Scholar 

  30. Moskovitch, R., Shahar, Y.: Classification-driven temporal discretization of multivariate time series. Data Min. Knowl. Discov. 29(4), 871–913 (2015)

    Article  MathSciNet  Google Scholar 

  31. Moskovitch, R., Shahar, Y.: Fast time intervals mining using the transitivity of temporal relations. Knowl. Inf. Syst. 42(1), 21–48 (2015)

    Article  Google Scholar 

  32. Papapetrou, P., Kollios, G., Sclaroff, S., Gunopulos, D.: Mining frequent arrangements of temporal intervals. KAIS 21(2), 133–171 (2009)

    Google Scholar 

  33. Patel, D., Hsu, W., Lee, M.L.: Mining relationships among interval-based events for classification. In: Proceedings of ACM SIGMOD, pp. 393–404 (2008)

    Google Scholar 

  34. Pei, J., Han, J., Mao, R., et al.: Closet: An efficient algorithm for mining frequent closed itemsets. In: ACM SIGMOD Workshop on Research Issues in Data Mining and Knowledge Discovery 4, 21–30 (2000)

    Google Scholar 

  35. Robardet, C.: Constraint-based pattern mining in dynamic graphs. In: Proceedings of ICDM, pp. 950–955. IEEE (2009)

    Google Scholar 

  36. Rozenshtein, P., Tatti, N., Gionis, A.: Discovering dynamic communities in interaction networks. In: ECML PKDD, pp. 678–693. Springer (2014)

    Google Scholar 

  37. Shah, N., Koutra, D., Zou, T., Gallagher, B., Faloutsos, C.: Timecrunch: Interpretable dynamic graph summarization. In: Proceedings of ACM SIGKDD, pp. 1055–1064 (2015)

    Google Scholar 

  38. Spielman, D.A., Teng, S.H.: Nearly-linear time algorithms for graph partitioning, graph sparsification, and solving linear systems. In: Proceedings of ACM STOC, pp. 81–90. ACM (2004)

    Google Scholar 

  39. Stix, V.: Finding all maximal cliques in dynamic graphs. Comput. Optim. Appl. 27(2), 173–186 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  40. Viger, P.F., Gomariz, A., Gueniche, T., Soltani, A., Wu, C.W., Tseng, V.S.: Spmf: A java open-source pattern mining library. JMLR 15, 3389–3393 (2014)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Orestis Kostakis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kostakis, O., Gionis, A. (2018). On Mining Temporal Patterns in Dynamic Graphs, and Other Unrelated Problems. In: Cherifi, C., Cherifi, H., Karsai, M., Musolesi, M. (eds) Complex Networks & Their Applications VI. COMPLEX NETWORKS 2017. Studies in Computational Intelligence, vol 689. Springer, Cham. https://doi.org/10.1007/978-3-319-72150-7_42

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-72150-7_42

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-72149-1

  • Online ISBN: 978-3-319-72150-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics