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Consistent Estimation of Mixed Memberships
with Successive Projections

Maxim Panov, Konstantin Slavnov and Roman Ushakov

Abstract This paper considers the parameter estimation problem in Mixed Mem-

bership Stochastic Block Model (MMSB), which is a quite general instance of ran-

dom graph model allowing for overlapping community structure. We present the

new algorithm successive projection overlapping clustering (SPOC) which com-

bines the ideas of spectral clustering and geometric approach for separable non-

negative matrix factorization. The proposed algorithm is provably consistent under

MMSB with general conditions on the parameters of the model. SPOC is also shown

to perform well experimentally in comparison to other algorithms.

1 Introduction

Community detection is an important problem in modern network analysis. It has

wide applications in analysis of social and biological networks [8, 5], designing net-

work protocols [14] and many other areas. Recently, much attention has been paid

to detection of overlapping communities, where each node in a network may belong

to multiple communities. Such a situation is quite common, and most prominent ex-

amples include overlapping communities in social networks [12], where each user

may belong to several social circles, and protein-protein interaction networks [18],

where a protein may belong to multiple protein complexes.
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One of the most widely used approaches for designing community detection al-

gorithms (both for detection of overlapping and non-overlapping communities) can

be summarized by the following general scheme:

1. Based on the adjacency matrix of a graph A, the embedding vectors ui for the

nodes are computed.

2. The resulting embedding vectors ui are clustered and the representative vectors

ck are found for each cluster.

3. Certain post-processing is done, which determines for each node i to which com-

munities it belongs based on the embedding vector ui and community represen-

tatives ck.

The step (1) can be done in multiple ways, the most popular being spectral em-

beddings [21], non-negative matrix factorization [22] and embeddings based on ran-

dom walks [19]. The step (2) is usually done via k-means or k-medians clustering

with ck being cluster centroids. For some methods the step (2) is avoided and al-

gorithm directly detects community affiliations from embedding vectors ui, see, for

example, [22]. The step (3) is usually done by the decomposition of vector ui in

terms of basis vectors ck and thresholding the coefficients of this decomposition.

We note that the majority of overlapping community detection methods come

with no guarantees on their performance. However, recently several approaches

were proposed which consistently estimate parameters and detect overlapping com-

munities in graphs under certain assumptions on the graph generation model, see, for

example, OCCAM [23], SAAC [10], GeoNMF [15] and tensor-based approach [2].

The models assumed in these works start from the classical Stochastic Block Model

(SBM) and consider different generalizations which allow for overlapping commu-

nity structure. All these methods follow the aforementioned general scheme, how-

ever have their own peculiarities and limitations. For example, SAAC assumes that

specific node either belongs or not to the particular community while other meth-

ods assume more general community membership weights which are supposed to

be real numbers from [0,1]. OCCAM method has a very general model, however, it

comes with certain conditions for consistent parameter recovery which seem to be

rarely satisfied. GeoNMF algorithm considers MMSB model, but concentrates on

the limited situation, where the nodes can have an edge between them only if they

belong to the same community, while inter-community edges are prohibited. Finally,

tensor-based method of [2] is built for general MMSB model, but its high computa-

tional complexity limits applications to large graphs. Also all these algorithms come

with certain parameters which do not have a clear guidelines for selection, except

some suggestions on the asymptotic order of the parameter.

In this work, we propose a new algorithm for parameter estimation in Mixed

Membership Stochastic Block Model (MMSB) [1], called successive projection

overlapping clustering (SPOC). The algorithm starts from the spectral embedding

based on the adjacency matrix of the graph, then finds nearly pure nodes via suc-

cessive projection algorithm (SPA) [3] and finally reconstructs community member-

ships via least-squares fit. SPOC has following important features:
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1. The algorithm consistently estimates parameters for general variant of MMSB,

where nodes can belong to communities with continuous weights (from [0,1])
and all the communities can generate edges between each other.

2. The algorithm has no input parameters except number of clusters.

3. The algorithm is computationally efficient with complexity dominated by the

SVD of the adjacency matrix.

4. Empirically SPOC shows the better performance in wide range of problems in

comparison with other algorithms for parameter estimation in MMSB and related

models.

The paper is structured as follows. In Section 2 we introduce the MMSB model,

compare it with other related models from the literature and discuss the identifi-

ability of the parameters in this model. In Section 3 we introduce the new SPOC

algorithm and discuss the intuition behind it. In Section 4 we prove that SPOC con-

sistently estimates the parameters of the MMSB. Section 5 describes the experimen-

tal comparison of SPOC and other algorithms on simulated and real data. Finally,

some conclusive remarks are made in Section 6.

2 Mixed membership stochastic block model (MMSB)

2.1 The model

Let us introduce the basic model we are going to work with. We assume that we

observe symmetric binary matrix A of size n. Each Ai j for 1 ≤ i < j ≤ n is an

independent Bernoulli random variable with respective parameter Pi j ∈ [0,1], which

form symmetric matrix P ∈ [0,1]n×n. In the matrix form we can write it as:

A ∼ Bernoulli(P).

We note that A can be considered as the adjacency matrix of the random graph and

further assume that there are K communities in the graph. The mixed membership

stochastic block model (MMSB) assumes that Pi j = θθθ iBθθθ T
j for 1 ≤ i < j ≤ n. Here

B ∈ [0,1]K×K is a symmetric matrix of community-community edge probabilities,

which element Bkl is a probability of an edge between nodes from communities k

and l. The row vector θθθ i ∈ [0,1]K is a community membership vector for node i.

We introduce community membership matrix ΘΘΘ ∈ [0,1]n×K and further assume that

each row θθθ i of ΘΘΘ is normalized ∑K
k=1 θik = 1. So, we can interpret θθθ i as a vector

of probabilities for the node i to belong to one of the communities. Finally, in the

matrix form we can write

P =ΘΘΘBΘΘΘT. (1)

Let us further denote
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Θ̄ΘΘn,K =
{

ΘΘΘ ∈ [0,1]n×K :
K

∑
k=1

θik = 1, i = 1, . . . ,n
}

.

The considered model is directly related to several models in the literature. We

note that compared to original definition of MMSB [1] we do not assume Dirich-

let distribution of community memberships θθθ i. The other related models are OC-

CAM [23], where different normalization of community membership vectors is con-

sidered, and SBMO [10], where only binary community memberships are allowed.

Compared to the variant of MMSB considered in [15] we consider more general

situation, where matrix B is allowed to be any full rank symmetric matrix. Finally,

the ordinary stochastic block model is particular instance of our model, where each

vector of community memberships θθθ i has exactly one non-zero entry (equal to one).

2.2 Identifiability

In general, the models of type (1) are not identifiable and certain conditions are

needed to ensure identifiability. The identifiability issue is due to the fact that there

might be different pairs of matrices B and ΘΘΘ which generate the same matrix P, see

related discussion and examples of non-identifiability in [10]. We note that in the

considered setting the indices of communities are not identifiable and thus can be

recovered only up to permutation.

We impose the following conditions which make the MMSB identifiable.

Condition 1 (Identifiability)

1. There is at least one “pure” node at each community, i.e. for each k = 1, . . . ,K
there exists i such that θik = ∑K

l=1 θil = 1.

2. Matrix B ∈ [0,1]K×K is full rank.

3. ΘΘΘ ∈ Θ̄ΘΘn,K , i.e. every row of matrix ΘΘΘ sums to 1: ∑K
k=1 θik = 1, i = 1, . . . ,n.

It appears that these conditions are sufficient for the identifiability of MMSB, see

the following theorem.

Theorem 1. If the Condition 1 is satisfied then MMSB model (1) is identifiable up to

simultaneous permutation of rows and columns in matrix B and columns in matrix

ΘΘΘ.

The Condition 1 may seem quite strict. However, we note that if the matrix B is

not full rank then there might be multiple matrices ΘΘΘ, which give the same matrix

P. Some normalization condition on matrices B and ΘΘΘ is needed to set the scale

of one matrix and make the scale of the other matrix identifiable. The particular

condition ΘΘΘ ∈ Θ̄ΘΘn,K is chosen for the ease of probabilistic interpretation, while other

conditions can be considered (leading to models formally different from MMSB).

Finally, the condition on existence of “pure” nodes is the most tricky one and is

not necessarily satisfied in the real life applications. However, while it is also not

necessary for identifiability, the possible alternative conditions for the identifiability

are still quite strict, see discussion in [9].
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3 Algorithm

The SPOC algorithm general scheme can be summarized as follows.

Algorithm 1 SPOC

Input: Adjacency matrix A and number of communities K.

Output: Estimated community-community edge probability B̂ and community membership Θ̂ΘΘ
matrices.

1: Get the rank-K eigenvalue decomposition A ≃ ÛL̂ÛT.

2: Run SPA algorithm with input (ÛT,K), which outputs set of indices J of cardinality K.

3: F̂ = Û[J, :].
4: B̂ = F̂L̂F̂T.

5: Θ̂ΘΘ = ÛF̂T(F̂F̂T)−1.

The only unspecified part of the algorithm is the application of successive pro-

jection algorithm (SPA) to the matrix ÛT. We will briefly describe this algorithm in

Section 3.2 below, see also the detailed discussions in [6, 7, 17].

3.1 Adjacency matrix decomposition

An important first step of the algorithm is decomposition of the adjacency matrix

in a form A ≃ ÛL̂ÛT, where L̂ is the K ×K diagonal matrix containing K leading

eigenvalues of A and Û is the n×K orthogonal matrix of corresponding eigenvec-

tors. We note that we can in parallel consider the eigen decomposition of matrix

P = ULUT, where diagonal matrix L ∈R
K×K and orthogonal matrix U ∈ R

n×K are

population counterparts of matrices L̂ and Û.

3.2 Separable noisy matrix factorization

Now our goal is to compute estimates for matrices B and ΘΘΘ based on the matrix Û.

We can represent matrix Û in the following way:

Û =ΘΘΘF+N, (2)

where F is a matrix such that U =ΘΘΘF and N ∈ R
n×K is a matrix of noise due to the

approximation of the matrix U =ΘΘΘF by an empirical counterpart Û.

Due to normalization assumption on matrix ΘΘΘ ∈ Θ̄ΘΘn,K linear combinations θθθ iF

lie in the simplex with vertices corresponding to rows of matrix F. Thus, the matrix

factorization problem (2) is a particular instance of so-called noisy separable non-

negative matrix factorization which was extensively studied in the literature, see
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[4, 6, 16, 13] for the examples of provably efficient algorithms for this problem.

Separability here means the existence of “pure” nodes in terms of MMSB model.

The main idea for the whole family of algorithms called successive projective

estimation (SPA) [3] is to iteratively find the rows of matrix Û with maximum norm

and project on the subspace orthogonal to these rows. The correctness of the algo-

rithm in noiseless case bases on the fact that any strongly convex function attains its

maximum in one of the basis vertices of simplex, which means that we iteratively

detect the set of “pure” nodes for all the communities. In the noisy case, certain

conditions are needed for the noise level to ensure that nearly “pure” nodes will

be extracted, see the precise statement in Section 7.2. In SPOC algorithm, we use

the variant of SPA algorithm from [16], which performs additional preconditioning

before running actual SPA procedure.

We finally note that if the rows of matrix ΘΘΘ have some general distribution then

these rows won’t concentrate around “pure” nodes, which prohibits the direct ap-

plication of clustering algorithms like k-means to this problem as it was used in

OCCAM algorithm [23]. The approach to overcome this difficulty was proposed in

GeoNMF algorithm [15] which filters the “intermediate” nodes and leaves the nodes

sufficiently close to pure nodes. However, it is unclear how to choose the parameter

of GeoNMF which governs the filtering threshold in practice.

3.3 Post-processing

We note that some elements in matrices B̂ and Θ̂ΘΘ may be negative or greater than 1.

While these estimates are still consistent as we will see in Section 4, for the practical

usage we threshold elements of matrices B̂ and Θ̂ΘΘ to be between 0 and 1. Obviously,

this can only improve the consistency properties of the estimates. Importantly, we

do not perform any normalization for matrix Θ̂ΘΘ, so that Θ̂ΘΘ is only asymptotically

close to Θ̄ΘΘn,K , but doesn’t belong to it exactly. The finite sample performance of

the algorithm might be improved if some variant of normalized estimate for ΘΘΘ is

considered. Finally, we note that one can conduct the community detection based

on the estimated parameters. The simplest possible way is to report that the node

belongs to the community if corresponding community membership exceeds some

prespecified threshold.

4 Provable guarantees for SPOC

In this section, we are going to provide theoretical guarantees assuring that esti-

mates B̂ and Θ̂ΘΘ concentrate around corresponding population parameters B and ΘΘΘ.

Certain assumptions are needed for our analysis. We will assume, that the condi-

tion number κ(B) of matrix B is fixed while the value ρ = maxi, j Bi, j is allowed to

change with the sample size. For the matrix ΘΘΘ the most natural way is to assume
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that its rows are random vectors from some distribution on Θ̄ΘΘn,K . The well known

example of such approach is the original variant of MMSB model introduced in [1],

where community memberships follow the Dirichlet distribution: θθθ i ∼Dirichlet(ααα)
for some ααα ∈ R

K
+. In our analysis, we will consider more general situation and as-

sume that θθθ i are i.i.d. samples from some general distribution Pθθθ on Θ̄ΘΘn,K . More

specifically, we will require the following condition.

Condition 2 (Community memberships distribution)

Community membership vectors θθθ i are i.i.d. samples from the distribution Pθθθ on

Θ̄ΘΘn,K , which has non-zero mass in all “pure” nodes.

Our goal is to study the properties of the estimates in case when the community

memberships follow the model above. The main result is summarized in the next

theorem.

Theorem 2. Let’s consider the model (1) with matrix B being full rank. Let the

Condition 2 is satisfied. Let SPOC algorithm outputs matrices Θ̂ΘΘ and B̂. Then there

exist constants c and C depending only on the condition numbers of the matrices B

and ΘΘΘ and parameter r > 0 such that for ρ ≥ c
logn

n
it holds with probability at least

1− n−r that

∥

∥B̂−ΠFBΠT
F

∥

∥

F

‖B‖F

≤CK

√

logn

ρ2n
(3)

and

∥

∥Θ̂ΘΘ−ΘΘΘΠT
F

∥

∥

F

‖ΘΘΘ‖F

≤CK

√

logn

ρ2n
, (4)

where ΠF is some permutation matrix.

The bounds (3) and (4) show, that SPOC algorithm provides accurate estimates of

MMSB model parameters with high probability.

Remark 1. We expect, that there should exist different algorithm which can improve

the rate in bound (3) by
√

n. Also, it is likely to be possible to improve both bounds

by
√

ρ using more elaborate analysis of spectral properties.

5 Experiments

We conducted the series of experiments on both simulated and real data to assess the

quality of results obtained by SPOC algorithm and compare it to other algorithms

for detection of parameters in MMSB and related models.
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5.1 Simulated data

We generate the rows of matrix ΘΘΘ from Dirichlet distribution and add some num-

ber of pure nodes to ensure the identifiability condition. Default parameter settings

were: number of nodes n = 1000, number of communities K = 3, pure nodes num-

ber 3, Dirichlet parameter α = 0.5 and B = diag(0.3, 0.5, 0.7). Each experiment

was repeated 10 times and results were averaged over runs.

We considered the series of experiments varying one of the parameters in each

of them.

1. We varied the number of nodes in the graph n ∈ [1000,5000].
2. We varied the diagonal elements of matrix B making it skewed: B = diag(0.5−

ε, 0.5, 0.5+ ε) for ε ∈ [0.05,0.45].
3. We varied the Dirichlet distribution parameter α ∈ [0.5,4].
4. We started from default diagonal matrix B and varied off-diagonal elements in

range [0,0.4].

We experimentally compared our proposed algorithm SPOC with GeoNMF algo-

rithm [15]. We did not compare SPOC with other algorithms for parameter estima-

tion in MMSB model [1, 2, 15] as these algorithms were significantly outperformed

by GeoNMF according to [15]. We report the relative error of estimation for both

parameters B and ΘΘΘ.

Fig. 1 Experiment with varying number of nodes n.

The results of experiments are presented on Figures 1–3. We note that in the first

3 experiments GeoNMF algorithm is expected to have advantage over SPOC as it

assumes the diagonal structure of matrix B. However, we see that this advantage

is not significant in most cases for estimation of B, while for ΘΘΘ the considered

methods show very similar performance. Surprisingly, GeoNMF performance is not
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Fig. 2 Experiment with skewed B matrix.

Fig. 3 Experiment with varying parameter ααα of Dirichlet distribution.

improving with the growth of the graph, which is not the case for SPOC. In the

last experiment, SPOC outperforms GeoNMF as it is based on more general (non-

diagonal) structure of matrix B.

5.2 Real data

Finally, we tested the considered methods on the co-authorship networks created

from DBLP and from the Microsoft Academic Graph by [15]. In these data, nodes

correspond to authors and ground truth community memberships θθθ i are determined
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Fig. 4 Experiment with noisy off-diagonal elements of B.

normalizing the number of papers published by the author in a subfield. We refer

to [15] for the detailed description of data preprocessing. The considered networks

have the following subfields:

• DBLP1: Machine Learning, Theoretical Computer Science, Data Mining, Com-

puter Vision, Artificial Intelligence, Natural Language Processing;

• DBLP2: Networking and Communications, Systems, Information Theory;

• DBLP3: Databases, Data Mining, World Wide Web;

• DBLP4: Programming Languages, Software Engineering, Formal Methods;

• DBLP5: Computer Architecture, Computer Hardware, Real-time and Embedded

Systems, Computer-aided Design;

• MAG1: Computational Biology and Bioinformatics, Organic Chemistry, Genet-

ics;

• MAG2: Machine Learning, Artificial Intelligence, Mathematical Optimization.

We use average Spearman correlation coefficient between actual and predicted com-

munity memberships as a quality measure. The results are summarized in Figure 5.

We note that either GeoNMF or SPOC show best results for all datasets. However,

all the algorithms show very limited performance on all the considered problems.

6 Conclusions

In this work, we consider the problem of parameter estimation in Mixed Member-

ship Stochastic Block Model (MMSB), which is directly related to the problem of

overlapping community detection. We present the new algorithm successive pro-

jection overlapping clustering (SPOC) which combines the ideas of spectral clus-

tering and geometric approach to parameter estimation in separable non-negative

matrix factorization. The proposed algorithm is provably consistent under MMSB
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Fig. 5 Experiments on DBLP and MAG co-authorship networks.

with general conditions on the parameters of the model. SPOC is also shown to

perform well experimentally in comparison to other algorithms.

The work leaves several important open questions including the lower bounds

for the considered problem over the certain subclass of identifiable MMSB’s and

the possibility to propose the algorithm with improved upper bound for the estimate

of matrix B. Also the more detailed experimental comparison is needed on real

world networks which allow for good quality of community detection.
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7 Consistency analysis

7.1 Concentration of spectral embedding

The main step in analyzing consistency of our algorithm is consistency of estimation

of matrix U =ΘΘΘF by Û. We note that the eigenvectors can be identified up to some

rotation defined by orthogonal matrix OP. The difference Û−UOP can be bounded

in Frobenious norm, however the error bound of SPA algorithm (see Section 7.2 for

details) depends on maximum of norms for rows of matrix Û−UOP, which is of

smaller order. The following lemma gives a bound on the distance between rows of

Û and UOP.

Lemma 1. Assume that P ∈ R
n×n is a rank K symmetric matrix with smallest non-

zero singular value λK(P). Let A be any symmetric matrix such that ‖A− P‖ ≤
1
2
λK(P) and Û,U are the n×K matrices of eigenvectors for matrices A and P cor-

responding to top-K eigenvalues. Then

‖eT
i (Û−UOP)‖F ≤ 23K1/2κ(P)

‖eT
i A‖F · ‖A−P‖

λ 2
K(P)

+
‖eT

i (A−P)U‖F

λK(P)
, (5)

where ei is a vector of length n with 1 in the i-th position and OP is some orthogonal

matrix.

This lemma may seem rather technical, however it shows that the right hand side

has the terms, which are projections of vector of bounded random variables onto

span of K orthogonal vectors, which can be bounded better then just by multiple of

matrix norms, see Theorem 2 below.

Let us denote the right hand side of (5) by

βi(A,P) = 23K1/2κ(P)
‖eT

i A‖F · ‖A−P‖
λ 2

K(P)
+

‖eT
i (A−P)U‖F

λK(P)

and also let’s define

β (A,P) = max
i∈{1,...,n}

βi(A,P). (6)

7.2 Noisy separable matrix factorization

Now we are going to give the bound on the error of the matrix factorization in

separable case, i.e. the solution of the following problem:

G = FW for F ∈ R
r×K ,W = (I,M)Π ∈ R

K×n
+ ,
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where I ∈R
K×K is an identity matrix, M ∈R

K×(n−K)
+ and Π∈R

n×n is a permutation

matrix. We expect that we observe

G̃ = G+N = FW+N,

where N ∈ R
K×n is a perturbation (noise) matrix.

The following theorem can be proved for the preconditioned SPA algorithm,

see [7, 17].

Theorem 3. Let G = FW and G̃ = G+N. Suppose that K ≥ 2 and the Condition 1

is satisfied. If in matrix N each column ni satisfies ‖ni‖F ≤ ε with

ε ≤ λmin(F)

1225
√

r
,

then SPA algorithm with the input (G̃,r) returns the set of indices J such that there

exists a permutation π which gives

‖g̃J( j)− fπ( j)‖2 ≤ (432κ(F)+ 4)ε

for all j = 1, . . . ,r, where g̃k and fk are the columns of matrices G̃ and F corre-

spondingly. Here we denote by κ(F) = λmax(F)
λmin(F)

is the condition number of the matrix

F.

We note that this error bound depends on the upper bound on individual errors ‖ni‖.

From statistical point of view one might expect, that there should be an algorithm,

which improves over this error bound if there are many “pure” columns in the matrix

G so that the value of the error is diminished by averaging. However, to the best of

our knowledge, no such algorithm complemented with the performance analysis can

be found in the literature.

Now we can reformulate the result of Theorem 3 for our particular situation with

G = ÛT and r = K.

Corollary 1. Let us consider the model (2) and let the Condition 1 holds. Let also

‖A−P‖ ≤ 1
2
λK(P). Then, the SPA algorithm with input (ÛT,K) returns the output

set of indices J and corresponding matrix F̂ = Û[J, :] such that there exist constants

c1 and C0, and permutation π , which ensure

∥

∥f̂ j − fπ( j)

∥

∥

2
≤C0κ(F)β (A,P)

for all j = 1, . . . ,K if the condition β (A,P)≤ c1
λmin(F)

K1/2 is satisfied.

Consequently,

∥

∥F̂−ΠFFOP

∥

∥

F
≤C0K1/2κ(F)β (A,P), (7)

where ΠF is a permutation matrix corresponding to the permutation π .
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7.3 Consistency of parameter estimates

Now we are ready to state the results on consistency of parameter estimates by

SPOC algorithm. Based on inequality (7) it is straightforward to get the error bound

for an estimate B̂ = F̂L̂F̂T of matrix B.

Theorem 4. Let us consider the model (2) and let the Condition 1 holds. Let also

‖A−P‖ ≤ 1
2
λK(P). Then SPOC algorithm outputs matrix B̂ such that it holds

∥

∥B̂−ΠFBΠT
F

∥

∥

F
≤CK1/2κ(ΘΘΘ)

‖P‖
λK(ΘΘΘ)

β (A,P)+CK1/2κ(P)
‖A−P‖
λ 2

K(ΘΘΘ)
,

where κ(ΘΘΘ) and κ(P) are the condition numbers of matrices ΘΘΘ and P respectively,

ΠF is some permutation matrix and β (A,P) is defined by (6).

Finally, we can get a bound on the estimation error of community memberships:

Theorem 5. Let us consider the model (2) and let the Condition 1 holds. Let also

‖A−P‖ ≤ 1
2
λK(P). Then SPOC algorithm outputs matrix Θ̂ΘΘ such that it holds

∥

∥Θ̂ΘΘ−ΘΘΘΠT
F

∥

∥

F
≤CK1/2κ3(ΘΘΘ)λ 2

max(ΘΘΘ)β (A,P)+CK1/2κ(ΘΘΘ)λmax(ΘΘΘ)
‖A−P‖
λK(P)

,

where λmax(ΘΘΘ) is the maximum singular value of matrix ΘΘΘ and κ(ΘΘΘ) is the condition

number of matrix ΘΘΘ, ΠF is a permutation matrix and β (A,P) is defined by (6).

The bounds of the Theorems 4 and 5 depend on the properties of matrices ΘΘΘ and P,

which can be further quantified for the particular random graph models.

8 Tools

This section collects some general statements which are useful for our analysis. We

start by the following important lemma which is a variant of Davis-Kahan theorem.

Lemma 2 (Lemma 5.1 of [11]). Assume that P∈R
n×n is a rank K symmetric matrix

with smallest nonzero singular value λK(P). Let A be any symmetric matrix and

Û,U ∈ R
n×K be the K leading eigenvectors of A and P, respectively. Then there

exists a K ×K orthogonal matrix OP such that

‖Û−UOP‖F ≤ 2
√

2K‖A−P‖
λK(P)

.

Based on this result it is quite straightforward to get the following bounds for the

matrix of eigenvalues.
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Corollary 2. Let us assume that the conditions of Lemma 2 hold. Let L̂,L be di-

agonal K ×K-matrices with K largest in absolute value eigenvalues of A and P

respectively on the diagonal. Then it holds

‖L̂−OT
PLOP‖ ≤

(

2
√

2K
‖A‖+ ‖P‖

λK(P)
+ 1

)

‖A−P‖

and

‖L̂−1 −OT
PL−1OP‖ ≤

(

2
√

2K
‖A‖+ ‖P‖

λK(P)
+ 1

) ‖A−P‖
λK(A) ·λK(P)

,

where the orthogonal matrix OP is the same as in Lemma 2.

Proof. We start by noting that

‖ÛL̂ÛT −ULUT‖ ≤ ‖A−P‖

and further

‖ÛL̂ÛT −UOPOT
PLOPOT

PUT‖ ≥ ‖UOP(L̂−OT
PLOP)Û

T‖

− ‖(Û−UOP)L̂ÛT‖−‖ULOP(Û−UOP)
T‖.

Then

‖L̂−OT
PLOP‖ ≤ ‖A−P‖+ ‖(Û−UOP)L̂ÛT‖+ ‖ULOP(Û−UOP)

T‖

≤ ‖A−P‖+(‖A‖+‖P‖)‖Û−UOP‖ ≤
(

2
√

2K
‖A‖+ ‖P‖

λK(P)
+ 1

)

‖A−P‖.

where the last inequality is due to Lemma 2. Now we can bound

‖L̂−1 −OT
PL−1OP‖= ‖L̂−1(OT

PLOP − L̂)OT
PL−1OP‖

≤ ‖L̂−1‖ · ‖L̂−OT
PLOP‖ · ‖L−1‖ ≤

(

2
√

2K
‖A‖+ ‖P‖

λK(P)
+ 1

) ‖A−P‖
λK(A) ·λK(P)

,

where λK(A),λK(P) are the K-th largest in absolute value eigenvalues of matrices

A and P respectively.

The following result gives a tight bound on spectral norm for the centered sym-

metric matrix of independent Bernoulli variables.

Lemma 3 (Theorem 5.2 of [11]). Let A be the adjacency matrix of a random graph

on n nodes in which edges occur independently. Set E[A] = P = (pi j)i, j=1,...,n and

assume that nmaxi j pi j ≤ d for d ≥ c0 logn and c0 > 0. Then, for any r > 0 there

exists a constant C =C(r,c0) such that
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‖A−P‖≤C
√

d

with probability at least 1− n−r.

Also we want to remind the matrix Chernoff inequality.

Theorem 6 (Matrix Chernoff, Theorem 1.1 of [20]). Consider a finite sequence

Xk of independent, random, self-adjoint matrices with dimension K. Assume that

each random matrix satisfies

Xk ≥ 0 and λmax(Xk)≤ R almost surely.

Define

µmin = λmin

(

∑
k

EXk

)

and µmax = λmax

(

∑
k

EXk

)

.

Then

P

{

λmin

(

∑
k

Xk

)

≤ (1− δ )µmin

}

≤ K

[

e−δ

(1− δ )1−δ

]

µmin
R

for δ ∈ [0,1], and

P

{

λmax

(

∑
k

Xk

)

≥ (1+ δ )µmax

}

≤ K

[

eδ

(1+ δ )1+δ

]

µmax
R

for δ ≥ 0.

The following corollary is particularly useful for our analysis.

Corollary 3 ([20]). Under the conditions of Theorem 6 it holds

P

{

λmin

(

∑
k

Xk

)

≤ tµmin

}

≤ Ke−(1−t)2µmin/2R for t ∈ [0,1], and

P

{

λmax

(

∑
k

Xk

)

≥ tµmax

}

≤ K
[e

t

]tµmax/R

for t ≥ e.

We finish the section by proving the following lemma.

Lemma 4. Let for two K × K full-rank matrices U1 and U2 it holds that ‖U1 −
U2‖F ≤ ε . Then

∥

∥U1UT
1 −U2UT

2

∥

∥

F
≤ (‖U1‖+ ‖U2‖)ε

and

∥

∥

(

U1UT
1

)−1 −
(

U2UT
2

)−1∥
∥

F
≤

∥

∥U1

∥

∥+
∥

∥U2

∥

∥

λ 2
min(U1)λ

2
min(U2)

ε.
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Proof. The first result follows from the following sequence of inequalities:

∥

∥U1UT
1 −U2UT

2

∥

∥

F
=
∥

∥U1(U1 −U2)
T − (U2 −U1)U

T
2

∥

∥

F
≤
∥

∥U1(U1 −U2)
T
∥

∥

F
+
∥

∥(U2 −U1)U
T
2

∥

∥

F

≤
(∥

∥U1

∥

∥+
∥

∥U2

∥

∥

)∥

∥U1 −U2

∥

∥

F
≤
(∥

∥U1

∥

∥+
∥

∥U2

∥

∥

)

ε.

The second result holds due to

∥

∥

(

U1UT
1

)−1 −
(

U2UT
2

)−1∥
∥

F
=
∥

∥

(

U1UT
1

)−1(
U2UT

2 −U1UT
1

)(

U2UT
2

)−1∥
∥

F

≤
∥

∥

(

U1UT
1

)−1∥
∥ ·

∥

∥

(

U2UT
2

)−1∥
∥ ·

∥

∥U2UT
2 −U1UT

1

∥

∥

F
≤

∥

∥U1

∥

∥+
∥

∥U2

∥

∥

λ 2
min(U1)λ 2

min(U2)
ε.

9 Proofs

This section collects the proofs of the main results.

9.1 Proof of Theorem 1

We start by noting that if model (1) satisfies the Condition 1, then rank(P) =
rank(B) = K, which means that the parameter K is identifiable.

Let us assume that ΘΘΘ,ΘΘΘ′ ∈ Θ̄ΘΘn,K and B,B′ are invertible matrices such that P =

ΘΘΘBΘΘΘT = ΘΘΘ′B′ΘΘΘ′T. We show that there exists some permutation σ such that ΘΘΘ =
ΘΘΘ′Πσ and B = Πσ−1B′ΠT

σ−1 .

Let U be a matrix containing K independent normalized eigenvectors of P as-

sociated to non-zero eigenvalues. The columns of U form a basis and there exist

invertible matrices X ,X ′ such that U =ΘΘΘX =ΘΘΘ′X ′.
We further note, that for all k = 1, . . . ,K there exists some ik such that θik, j = δ j,k

for j = 1, . . . ,K. It means, that k-th row of X can be represented as a weighted sum

of rows in X ′:

Xk =
K

∑
l=1

θ
′
ik,l

X
′
l .

The same can be done for any row in X ′. If we substitute each X
′
l by the correspond-

ing convex combination then we obtain

Xk =
K

∑
m=1

amXm,

where
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am =
K

∑
l=1

θ
′
ik,l

θ
i
′
l
,m
.

Due to the fact, the matrix X is full rank we conclude that am = δm,k. Further ak = 1 is

equivalent to the fact that θ
i
′
l
,m
= 1 for that values of l which correspond to θ

′
ik ,l

> 0.

At least one such l exists, which means that

X
′
l = Xm.

So we can find pairwise correspondence between rows of X and X ′ which is nec-

essary a perfect matching as both matrices are full rank. We can conclude, that

X ′ = Πσ X for some permutation σ . We deduce that ΘΘΘBΘΘΘT = ΘΘΘΠσ−1B′ΠT
σ−1ΘΘΘ

T

and B = Πσ−1B′ΠT
σ−1 as mapping ΘΘΘ is injective.

9.2 Proof of Lemma 1

We start by upper bounding

‖eT
i (Û−UOP)‖F = ‖eT

i (AÛL̂−1 −PUL−1OP)‖F

= ‖eT
i AÛ(L̂−1 −OT

PL−1OP)+ eT
i A(Û−UOP)O

T
PL−1OP + eT

i (A−P)UL−1OP‖F

≤ ‖eT
i AÛ(L̂−1 −OT

PL−1OP)‖F + ‖eT
i A(Û−UOP)O

T
PL−1OP‖F + ‖eT

i (A−P)UL−1OP‖F

= I1 + I2 + I3.

Let us bound these three terms separately. For the first term we proceed as

I1 = ‖eT
i AÛ(L̂−1 −OT

PL−1OP)‖F ≤ ‖eT
i A‖F · ‖Û‖ · ‖L̂−1 −OT

PL−1OP‖

≤
(

2
√

2K
‖A‖+ ‖P‖

λK(P)
+ 1

)‖eT
i A‖F · ‖A−P‖
λK(A) ·λK(P)

≤ 20K1/2κ(P)
‖eT

i A‖F · ‖A−P‖
λ 2

K(P)
,

where the last two inequalities are due to Corollary 2 and the condition ‖A−P‖ ≤
1
2
λK(P). The other two terms can be bounded using the bounds for the norm of

matrix product

I2 = ‖eT
i A(Û−UOP)O

T
PL−1OP‖F ≤ ‖eT

i A‖F · ‖Û−UOP‖ · ‖L−1‖= ‖eT
i A‖F · ‖Û−UOP‖

λK(P)

≤ 2
√

2K
‖eT

i A‖F · ‖A−P‖
λ 2

K(P)
≤ 3K1/2 ‖eT

i A‖F · ‖A−P‖
λ 2

K(P)

and
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I3 = ‖eT
i (A−P)UL−1OP‖F ≤ ‖eT

i (A−P)U‖F · ‖L−1‖= ‖eT
i (A−P)U‖F

λK(P)
.

Combination of these bounds gives the desired result.

9.3 Proof of Theorem 4

We start by the following sequence of inequalities.

∥

∥F̂L̂F̂T −ΠFFLFTΠT
F

∥

∥

F
≤
∥

∥(F̂−ΠFFOP)O
T
PLFTΠT

F

∥

∥

F
+
∥

∥F̂(L̂−OT
PLOP)O

T
PFTΠT

F

∥

∥

F

+
∥

∥F̂L̂(F̂−ΠFFOP)
T
∥

∥

F
= I1 + I2 + I3.

We bound three terms separately:

I1 =
∥

∥(F̂−ΠFFOP)O
T
PLFTΠT

F

∥

∥

F
≤
∥

∥F̂−ΠFFOP

∥

∥

F
· ‖L‖ · ‖F‖

≤ C0K1/2κ(F)‖P‖ · ‖F‖β (A,P).

For the second term we get

I2 =
∥

∥F̂(L̂−OT
PLOP)O

T
PFTΠT

F

∥

∥

F
≤ ‖F̂‖ · ‖L̂−OT

PLOP‖ · ‖F‖

≤ 8K1/2κ(P)‖F‖2 · ‖A−P‖.

Finally, by analogy with the first term we obtain for the third term I3 =
∥

∥F̂L̂(F̂−
ΠFFOP)

T
∥

∥

F
≤ 4C0K1/2κ(F)‖P‖ · ‖F‖β (A,P). The combination of the obtained

bounds for I1, I2 and I3 gives the final result.

9.4 Proof of Theorem 5

We remind that

Θ̂ΘΘ = ÛF̂T
(

F̂F̂T
)−1

and note

ΘΘΘΠT
F = UFT

(

FFT
)−1

ΠT
F = UOPOT

PFT
(

ΠT
FΠFFFTΠT

FΠF

)−1
ΠT

F

= UOP

[

ΠFFOP

]T(
ΠFFFTΠT

F

)−1
.

Let us bound an error of approximation
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∥

∥Θ̂ΘΘ−ΘΘΘΠT
F

∥

∥

F
=
∥

∥ÛF̂T
(

F̂F̂T
)−1 −UOP

[

ΠFFOP

]T(
ΠFFFTΠT

F

)−1∥
∥

F

≤
∥

∥ÛF̂T
[(

F̂F̂T
)−1 −

(

ΠFFFTΠT
F

)−1]∥
∥

F
+
∥

∥Û
[

F̂−ΠFFOP

]T(
ΠFFFTΠT

F

)−1∥
∥

F

+
∥

∥

[

Û−UOP

][

ΠFFOP

]T(
ΠFFFTΠT

F

)−1∥
∥

F
= I1 + I2 + I3.

We proceed by bounding each summand separately denoting by C > 0 some suffi-

ciently large constant:

I1 =
∥

∥ÛF̂T
[(

F̂F̂T
)−1 −

(

ΠFFFTΠT
F

)−1]∥
∥

F
≤
∥

∥Û
∥

∥ ·
∥

∥F̂
∥

∥ ·
∥

∥

(

F̂F̂T
)−1 −

(

ΠFFFTΠT
F

)−1∥
∥

F

≤
∥

∥Û
∥

∥ ·
(∥

∥F
∥

∥+
∥

∥F̂−ΠFFOP

∥

∥

)

·
∥

∥

(

F̂F̂T
)−1 −

(

ΠFFFTΠT
F

)−1∥
∥

F

≤ 2
∥

∥Û
∥

∥ ·
∥

∥F
∥

∥ ·
∥

∥

(

F̂F̂T
)−1 −

(

ΠFFFTΠT
F

)−1∥
∥

F
≤ 2λmax(F)6C0K1/2 κ2(F)

λ 3
min(F)

β (A,P)

= 12C0K1/2 κ3(F)

λ 2
min(F)

β (A,P).

Here we use the bound

∥

∥

(

F̂F̂T
)−1 −

(

ΠFFFTΠT
F

)−1∥
∥

F
≤ 6C0K1/2 κ2(F)

λ 3
min(F)

β (A,P),

which follows from Lemma 4.

We continue by bounding

I2 =
∥

∥Û
[

F̂−ΠFFOP

]T(
ΠFFFTΠT

F

)−1∥
∥

F
≤
∥

∥Û
∥

∥

∥

∥F̂−ΠFFOP

∥

∥

F

∥

∥

(

FFT
)−1∥

∥

≤
∥

∥Û
∥

∥ ·
∥

∥F̂−ΠFFOP

∥

∥

F
·
∥

∥

(

FFT
)−1∥

∥≤ 2C0K1/2κ(F)β (A,P)
1

λ 2
min(F)

= 2C0K1/2 κ(F)

λ 2
min(F)

β (A,P).

For the last term we get

I3 =
∥

∥

[

Û−UOP

][

ΠFFOP

]T(
ΠFFFTΠT

F

)−1∥
∥

F

≤
∥

∥Û−UOP

∥

∥

F
·
∥

∥F
∥

∥ ·
∥

∥

(

FFT
)−1∥

∥≤ 2
√

2K
κ(F)

λmin(F)

‖A−P‖
λK(P)

.

Finally, we can bound

∥

∥Θ̂ΘΘ−ΘΘΘΠT
F

∥

∥

F
≤ 12C0K1/2 κ3(F)+κ(F)

λ 2
min(F)

β (A,P)+ 2
√

2K
κ(F)

λmin(F)

‖A−P‖
λK(P)

and the claimed bound follows in a view of λmin(F) = 1/λmax(ΘΘΘ),λmax(F) =
1/λK(ΘΘΘ) and κ(F) = κ(ΘΘΘ).
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9.5 Proof of Theorem 2

We start from following simple fact.

Lemma 5. Under the model (1) it holds

max
i, j

Pi, j = ρ = max
k,l

Bk,l .

The next lemma deals with singular values of matrices ΘΘΘ and P.

Lemma 6. Let’s consider the model (1) and let the Condition 2 is satisfied. Then

there exist such constants c̄ and C̄ depending only on the distribution Pθθθ of vectors

θθθ i such that with probability at least 1− e−n

√
c̄n ≤ λK(ΘΘΘ)≤ λmax(ΘΘΘ)≤

√

C̄n; (8)

c̄λmin(B)n ≤ λK(P)≤ C̄λmin(B)n (9)

and

c̄λmax(B)n ≤ λmax(P)≤ C̄λmax(B)n. (10)

We note that inequalities (8), (9) and (10) can be used as deterministic bounds on the

behaviour of eigenvalues of matrices ΘΘΘ and P without considering any probabilistic

interpretation.

Let us continue with the proof of main results. We mainly need to bound all the

quantities involved in the definition of β (A,P). All the statements below hold with

a high probability

1. We start by noting that ‖A−P‖ ≤ C
√

d for some d ≥ nρ ∨ c0 logn with proba-

bility at least 1− n−r due to Lemma 3.

2. Next, maxi ‖eT
i A‖F can be bounded by simple sequence of inequalities:

max
i

‖eT
i A‖F ≤ max

i
‖eT

i (A−P)‖F +max
i

‖eT
i P‖F ≤ ‖A−P‖+max

i
‖eT

i P‖F

≤ ‖A−P‖+ρ
√

n ≤C0

√
ρn+ρ

√
n ≤C

√
ρn,

where the ‖A−P‖ is bounded with probability at least 1− n−r using the result

from Lemma 3.

3. Further, maxi ‖eT
i (A−P)U‖F can be bounded as

P
(

‖eT
i (A−P)U‖F ≥ t

)

= P

(

K

∑
k=1

[

n

∑
j=1

(ai j − pi j)u jk

]2

≥ t2

)

≤ P

(

max
k

[

n

∑
j=1

(ai j − pi j)u jk

]2

≥ t2/K

)

≤ 2
K

∑
k=1

P

(

n

∑
j=1

(ai j − pi j)u jk ≥ t/K1/2

)

≤ 2K exp
(

−t2/2K
)

,
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where the last inequality follows from Azuma’s inequality and the fact that

∑n
j=1 u2

j1 = 1. Now we again apply union bound and get

P(max
i

‖eT
i (A−P)U‖F ≥ t)≤

n

∑
i=1

P(‖eT
i (A−P)U‖F ≥ t)≤ 2nK exp

(

−t2/2K
)

.

By taking tr =
√

4K log n1+r

K
with some r > 0 we achieve that maxi ‖eT

i (A −
P)U‖F ≤ tr with probability at least 1− n−r.

Finally, we can bound

β (A,P) = max
i

[

23K1/2κ(P)
‖eT

i A‖F · ‖A−P‖
λ 2

K(P)
+

‖eT
i (A−P)U‖F

λK(P)

]

≤ CK1/2

√
ρn ·√ρn

(ρn)2
+C

K1/2
√

logn√
ρn

≤CK1/2

√
logn

ρn
.

The required bounds follow from the following inequalities

∥

∥B̂−ΠFBΠT
F

∥

∥

F

‖B‖F

≤CK1/2κ2(ΘΘΘ)λmax(ΘΘΘ)β (A,P)+CK1/2 κ(P)

λmax(B)

‖A−P‖
λ 2

K(ΘΘΘ)
≤CK

√

logn

ρ2n

and

∥

∥Θ̂ΘΘ−ΘΘΘΠT
F

∥

∥

F

‖ΘΘΘ‖F

≤CK1/2κ3(ΘΘΘ)λmax(ΘΘΘ)β (A,P)+CK1/2κ(ΘΘΘ)
‖A−P‖
λK(P)

≤CK

√

logn

ρ2n
,

which hold with probability at least 1− n−r for the properly chosen constant C.

9.6 Proof of Lemma 5

We start by noting that

max
i, j

Pi, j = max
i, j

θθθ iBθθθ T
j . (11)

As we assume, that there exist pure nodes for each community then we can take

community membership vectors that correspond to pure nodes for the communities,

which have maximum inter-community probability. Due to the fact, that all θθθ i are

convex combinations such a choice of nodes will give maximum to (11). Thus, we

obtain maxi, j Pi, j = maxk,l Bk,l = ρ .
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9.7 Proof of Lemma 6

Let us consider the behaviour of k-th eigenvalue of matrix P for k = 1, . . . ,K:

λk(P) = λk

(

ΘΘΘBΘΘΘT
)

= λk

(

ΘΘΘFLFTΘΘΘT
)

= λk

(

FTΘΘΘTΘΘΘFL
)

.

Let us consider matrix

H =ΘΘΘTΘΘΘ =
n

∑
i=1

θθθT
i θθθ i.

The expectation of matrix H is given by the following formula:

EH = nE
[

θθθ T
1 θθθ1

]

.

We note that if distribution of θθθ 1 has a non-zero mass at all “pure” nodes, then the

matrix EH is positive definite. Consequently, we can state that

λmin(EH) =Θ(n) and λmax(EH) =Θ(n).

We proceed by bounding the fluctuations of eigenvalues of matrix H around the

mean with help of following lemma:

Lemma 7. There exist such constants c and C depending only on distribution of

vector θθθ i such that

P

{

λmin

( n

∑
i=1

θθθ T
i θθθ i

)

≤ cn
}

≤ Ke−cn/4;

P

{

λmax

( n

∑
i=1

θθθ T
i θθθ i

)

≥Cn
}

≤ K

2Cn
.

Proof. Let us note that the every matrix θθθT
i θθθ i is positive semidefinite and

λmax(θθθ
T
i θθθ i)≤ 1.

Let us take t = 0.5 and note that λmin

(

E∑n
i=1 θθθ T

i θθθ i

)

= cn. Then by matrix Chernoff

bound (see Theorem 6 and Corollary 3) we obtain

P

{

λmin

( n

∑
i=1

θθθ T
i θθθ i

)

≤ c

2
n
}

≤ Ke−cn/8.

We further note that λmax

(

E∑n
i=1 θθθ T

i θθθ i

)

=Cn and again we can bound
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P

{

λmax

( n

∑
i=1

θθθT
i θθθ i

)

≥ 2Cen
}

≤ K
1

22Cen
.

This completes the proof of the desired result.

The result of Lemma 7 directly implies bounds (8). Further by Lemma 7 there exist

such constants c and C that with probability at least 1−K(e−cn/4+ K
2Cn ) it holds

λmin(H)≥ cn and λmax(H)≤Cn.

Finally we get

λmin(P)≥ λmin

(

B
)

·λmin

(

ΘΘΘTΘΘΘ
)

≥ cλmin(B)n

and

λmax(P)≤ λmax

(

B
)

·λmax

(

ΘΘΘTΘΘΘ
)

≤Cλmax(B)n.

The respective bounds from below for λmax(P) and from above for λmin(P) come

from the fact that cnI ≺ H ≺CnI.


