Skip to main content

Action-Based Model for Topologically Resilient Supply Networks

  • Conference paper
  • First Online:
  • 4796 Accesses

Part of the book series: Studies in Computational Intelligence ((SCI,volume 689))

Abstract

The ubiquity of supply chains has ignited interest in studying supply networks through the lens of complex adaptive systems. A particularly important characteristic of supply chains is the desirable goal of sustaining their operation when exposed to unexpected perturbations. Network models focusing on the critical aspect of supply chain resilience may provide insights into the design of supply networks that may quickly recover from disruptions. This paper proposes an action-based perspective for creating a compact probabilistic model for a given real-world supply network. The action-based model consists of a set of rules (actions) that a firm may use to connect with other firms, such that the synthesized networks are topologically resilient. Additionally, it captures the heterogeneous roles of different firms by incorporating domain specific constraints. Results analyzing the resilience of networks subjected to node disruptions show that networks synthesized using the proposed model can outperform its real-world counterpart.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    This action is currently based on shortest distances in the network. If available, node information about location of firms can also be used.

References

  1. Anderson, C.J., Wasserman, S., Crouch, B.: A p* Primer: Logit Models for Social Networks (1999). https://doi.org/10.1016/S0378-8733(98)00012-4

  2. Arora, V., Ventresca, M.: Action-based modeling of complex networks. Sci. Rep. 7(1), 6673 (2017). https://doi.org/10.1038/s41598-017-05444-4

    Article  Google Scholar 

  3. Barroso, A., Machado, V., Carvalho, H., Cruz Machado, V.: Quantifying the supply chain resilience. In: Applications of Contemporary Management Approaches in Supply Chains, pp. 13–32. InTech (2015). 10.5772/59580

    Google Scholar 

  4. Barthélemy, M.: Spatial networks. Phys. Rep. 499(1–3), 1–101 (2011)

    Article  MathSciNet  Google Scholar 

  5. Barthélemy, M., Barrat, A., Pastor-Satorras, R., Vespignani, A.: Characterization and modeling of weighted networks. Physica A 346, 34–43 (2005)

    Article  Google Scholar 

  6. Bell, M., Perera, S., Piraveenan, M., Bliemer, M., Latty, T., Reid, C.: Network growth models: a behavioural basis for attachment proportional to fitness. Sci. Rep. 7(October 2016), 42431 (2017). 10.1038/srep42431

    Google Scholar 

  7. Bellamy, M.A., Basole, R.C.: Network analysis of supply chain systems: a systematic review and future research. Syst. Eng. 16(2), 235–249 (2013). https://doi.org/10.1002/sys.21238

    Article  Google Scholar 

  8. Borgatti, S.P., Li, X.: On social network analysis in a supply chain context. J. Supply Chain Manag. 45(2), 5–22 (2009). https://doi.org/10.1111/j.1745-493X.2009.03166.x

    Article  Google Scholar 

  9. Brintrup, A., Ledwoch, A., Barros, J.: Topological robustness of the global automotive industry. Logist. Res. 9(1), 1 (2016). https://doi.org/10.1007/s12159-015-0128-1

    Article  Google Scholar 

  10. Brintrup, A., Wang, Y., Tiwari, A.: Supply networks as complex systems: a network-science-based characterization. IEEE Syst. J. (99), 1–12 (2015). https://doi.org/10.1109/JSYST.2015.2425137

  11. Choi, T.Y., Dooley, K.J., Rungtusanatham, M.: Supply networks and complex adaptive systems: control versus emergence. J. Oper. Manag. 19(3), 351–366 (2001). https://doi.org/10.1016/S0272-6963(00)00068-1

    Article  Google Scholar 

  12. Czyzak, P., Jaszkiewicz, A.: Pareto simulated annealing-a metaheuristic technique for multiple-objective combinatorial optimization. J. Multi-Criteria Decis. Anal. 7(1), 34–47 (1998). https://doi.org/10.1002/(SICI)1099-1360(199801)7:1<34::AID-MCDA161>3.0.CO;2-6

  13. Erdös, P., Rényi, A.: On random graphs. Publicationes Mathematicae Debrecen 6, 290–297 (1959)

    MathSciNet  MATH  Google Scholar 

  14. Fay, D., Moore, A.W., Brown, K., Filosi, M., Jurman, G.: Graph metrics as summary statistics for approximate Bayesian computation with application to network model parameter estimation. J. Complex Netw., cnu009 (2014)

    Google Scholar 

  15. Fienberg, S.E.: A brief history of statistical models for network analysis and open challenges. J. Comput. Graph. Stat. 21(4), 825–839 (2012). https://doi.org/10.1080/10618600.2012.738106

    Article  MathSciNet  Google Scholar 

  16. Goldenberg, A., Zheng, A.X., Fienberg, S.E., Airoldi, E.M.: A survey of statistical network models. Found. Trends Mach. Learn. 2(2), 129–233 (2010)

    Article  MATH  Google Scholar 

  17. Harrison, K.R., Ventresca, M., Ombuki-Berman, B.M.: A meta-analysis of centrality measures for comparing and generating complex network models. J. Comput. Sci. 17, 205–215 (2016). https://doi.org/10.1016/j.jocs.2015.09.011

    Article  Google Scholar 

  18. Hearnshaw, E.J., Wilson, M.M.: A complex network approach to supply chain network theory. Int. J. Oper. Prod. Manag. 33(4), 442–469 (2013). https://doi.org/10.1108/01443571311307343

    Article  Google Scholar 

  19. Keqiang, W.K.W., Zhaofeng, Z.Z.Z., Dongchuan, S.D.S.: Structure analysis of supply chain networks based on complex network theory. In: 2008 Fourth International Conference on Semantics, Knowledge and Grid, pp. 493–494 (2008). https://doi.org/10.1109/SKG.2008.71

  20. Kim, M., Leskovec, J.: The network completion problem: inferring missing nodes and edges in networks. In: SIAM International Conference on Data Mining, pp. 47–58 (2011)

    Google Scholar 

  21. Kim, Y., Chen, Y.S., Linderman, K.: Supply network disruption and resilience: a network structural perspective. J. Oper. Manag. 33–34, 43–59 (2015). https://doi.org/10.1016/j.jom.2014.10.006

    Article  Google Scholar 

  22. Li, G., Ji, P., Sun, L., Lee, W.: Modeling and simulation of supply network evolution based on complex adaptive system and fitness landscape. Comput. Ind. Eng. 56(3), 839–853 (2009). https://doi.org/10.1016/j.cie.2008.09.039

    Article  Google Scholar 

  23. Li, G., Yang, H., Sun, L., Ji, P., Feng, L.: The evolutionary complexity of complex adaptive supply networks: a simulation and case study. Int. J. Prod. Econ. 124(2), 310–330 (2010). https://doi.org/10.1016/j.ijpe.2009.11.027

    Article  Google Scholar 

  24. Lomi, A., Pattison, P.: Manufacturing relations: an empirical study of the organization of production across multiple networks. Organ. Sci. 17(3), 313–332 (2006). https://doi.org/10.1287/orsc.1060.0190

    Article  Google Scholar 

  25. Mari, S.I., Lee, Y.H., Memon, M.S., Soo Park, Y., Kim, M.: Adaptivity of complex network topologies for designing resilient supply chain networks. Int. J. Ind. Eng.: Theory Appl. Pract. 22, 102–116 (2015)

    Google Scholar 

  26. Nair, A., Vidal, J.M.: Supply network topology and robustness against disruptions—an investigation using multi-agent model. Int. J. Prod. Res. 49(5), 1391–1404 (2011). https://doi.org/10.1080/00207543.2010.518744

    Article  Google Scholar 

  27. Newman, M.E.J.: The structure and function of complex networks. SIAM Rev. 45(2), 167–256 (2003). https://doi.org/10.1137/S003614450342480

    Article  MathSciNet  MATH  Google Scholar 

  28. Pathak, S.D., Dilts, D.M., Biswas, G.: On the evolutionary dynamics of supply network topologies. IEEE Trans. Eng. Manag. 54(4), 662–672 (2007). https://doi.org/10.1109/TEM.2007.906856

    Article  Google Scholar 

  29. Pathak, S.D., Dilts, D.M., Mahadevan, S.: Investigating population and topological evolution in a complex adaptive supply network. J. Supply Chain Manag. 45(3), 54–67 (2009). https://doi.org/10.1111/j.1745-493X.2009.03171.x

    Article  Google Scholar 

  30. Perera, S., Perera, H.N., Kasthurirathna, D.: Structural characteristics of complex supply chain networks. In: 2017 Moratuwa Engineering Research Conference (MERCon), pp. 135–140. IEEE (2017). https://doi.org/10.1109/MERCon.2017.7980470

  31. Pržulj, N.: Biological network comparison using graphlet degree distribution. Bioinformatics 23(2), e177–e183 (2007). https://doi.org/10.1093/bioinformatics/btl301

    Article  Google Scholar 

  32. Robins, G., Pattison, P., Kalish, Y., Lusher, D.: An introduction to exponential random graph (p*) models for social networks. Soc. Netw. 29(2), 173–191 (2007). https://doi.org/10.1016/j.socnet.2006.08.002

    Article  Google Scholar 

  33. Song, C., Havlin, S., Makse, H.A.: Origins of fractality in the growth of complex networks_nature. Nat. Phys. 2(April), 275–281 (2006). https://doi.org/10.1038/nphys266

    Article  Google Scholar 

  34. Strauss, D.: On a general class of models for interaction. SIAM Rev. 28(4), 513–527 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  35. Surana, A., Kumara, S., Greaves, M., Raghavan, U.N.: Supply-chain networks: a complex adaptive systems perspective. Int. J. Prod. Res. 43(20), 4235–4265 (2005). https://doi.org/10.1080/00207540500142274

    Article  Google Scholar 

  36. Thadakamalla, H., Raghavan, U., Kumara, S., Albert, A.: Survivability of multiagent-based supply networks: a topological perspective. IEEE Intell. Syst. 19(5), 24–31 (2004). https://doi.org/10.1109/MIS.2004.49

    Article  Google Scholar 

  37. Wang, W., Street, W.N., DeMatta, R.E.: Topological resilience analysis of supply networks under random disruptions and targeted attacks. In: Proceedings of the 2015 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining 2015 - ASONAM ’15, pp. 250–257 (2015). https://doi.org/10.1145/2808797.2809325

  38. Wasserman, S., Pattison, P.: Logit models and logistic regressions for social networks. Psychometrika 60, 401–425 (1996)

    Article  MATH  Google Scholar 

  39. Willems, S.P.: Data set real-world multiechelon supply chains used for inventory optimization. Manuf. Serv. Oper. Manag. 10(1), 19–23 (2008). https://doi.org/10.1287/msom.1070.0176

    Article  Google Scholar 

  40. Xuan, Q., Du, F., Li, Y., Wu, T.J.: A framework to model the topological structure of supply networks. IEEE Trans. Autom. Sci. Eng. 8(2), 442–446 (2011). https://doi.org/10.1109/TASE.2010.2071414

  41. Yaverolu, Ö.N., Malod-Dognin, N., Davis, D., Levnajic, Z., Janjic, V., Karapandza, R., Stojmirovic, A., Pržulj, N.: Revealing the hidden language of complex networks. Sci. Rep. 4(1), 4547 (2015). https://doi.org/10.1038/srep04547

    Article  Google Scholar 

  42. Zhang, Q.M., Lü, L., Wang, W.Q., Xiao, Y., Zhou, T.: Potential Theory for Directed Networks. PLoS ONE 8(2), e55,437 (2013)

    Google Scholar 

  43. Zhao, K., Kumar, A., Harrison, T.P., Yen, J.: Analyzing the resilience of complex supply network topologies against random and targeted disruptions. IEEE Syst. J. 5(1), 28–39 (2011). https://doi.org/10.1109/JSYST.2010.2100192

    Article  Google Scholar 

  44. Zheng, B., Wu, H., Kuang, L., Qin, J., Du, W., Wang, J., Li, D.: A simple model clarifies the complicated relationships of complex networks. Sci. Rep. 4, 6197 (2014). https://doi.org/10.1038/srep06197

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mario Ventresca .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Arora, V., Ventresca, M. (2018). Action-Based Model for Topologically Resilient Supply Networks. In: Cherifi, C., Cherifi, H., Karsai, M., Musolesi, M. (eds) Complex Networks & Their Applications VI. COMPLEX NETWORKS 2017. Studies in Computational Intelligence, vol 689. Springer, Cham. https://doi.org/10.1007/978-3-319-72150-7_53

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-72150-7_53

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-72149-1

  • Online ISBN: 978-3-319-72150-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics