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Abstract—Although surveillance and sensor networks play a
key role in Internet of Things, sensor nodes are usually vulnerable
to tampering due to their widespread locations. In this letter we
consider data falsification attacks where an smart attacker takes
control of critical nodes within the network, including nodes
serving as fusion centers. In order to face this critical security
thread, we propose a data aggregation scheme based on social
learning, resembling the way in which agents make decisions in
social networks. Our results suggest that social learning enables
network resilience, even when a significant portion of the nodes
have been compromised by the attacker. Finally, we show the
suitability of our scheme to sensor networks by developing a
low-complexity algorithm to facilitate the social learning data
fusion rule in devices with restricted computational power.

Index Terms—Data fusion, sensor networks, surveillance net-
works, bizantine generals problem, social learning, network
security, resilient networks.

I. INTRODUCTION

Large distributed sensor networks typically provide surveil-
lance services over extensive areas, such as activity monitoring
in military or secure zones, protection of drinkable water tanks
from chemical attacks, or intrusion detection [1], [2]. However,
the reliability of these networks is in many cases limited due
to the high vulnerability of the sensor nodes [3]. In reality,
nodes are frequently located in unprotected locations and are
susceptible to physical or cyber captures. Moreover, nodes are
generally not tamper-proof due to cost concerns, and their
limited computing power, memory, and energy capabilities do
not allow sophisticated cryptographic techniques.

One serious threat to the reliability of distributed surveil-
lance is the data falsification or “Byzantine” attack, where
an adversary takes control over a number of authenticated
nodes [4]. Following the classic Byzantine Generals Problem
[5], Byzantine nodes can generate false sensing data, exhibit
arbitrary behaviour or collude in order to create a networked
malfunction. The effect of data falsification attacks over dis-
tributed detection has been intensely studied, characterizing
the impact over the detection performance and also proposing
various defense mechanisms (c.f. [6] for an overview, and
also [7]–[9]). These works focus in networks with star or tree
topology, where the data is gathered in a special node called
“fusion center” (FC) that is responsable for the final decision.

A key assumption in the literature is that the adversary
can compromise regular sensor nodes but not the FC itself.
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However, in many scenarios the short range of the nodes’
transmissions force the FC to be installed in unsafe loca-
tions, being vulnerable to tampering as well. A tampered FC
completely disables the detecting capabilities of the network,
generating a single point of failure and hence becoming the
weakest point of the system [10]. To address this serious
security thread, this letter is novel in considering powerful
topology-aware data falsification attacks, where the adversary
knows the network topology and leverage this knowledge to
take control of the most critical nodes of the network —either
regular nodes or FCs. This represents a worst-case scenario,
where the network structure has been disclosed e.g. from
network tomography via traffic analysis [11].

The design of reliable distributed detection schemes is a
challenging task. In effect, even though the distributed sensing
literature is vast (see e.g. [1], [2] and references therein), the
construction of optimal schemes is in general NP-hard [12].
Moreover, although in many cases the optimal schemes can be
characterized as a set of thresholds for likelihood functions,
the determination of these thresholds is usually an intractable
problem [13]. For example, symmetric thresholds can be
suboptimal even for networks with similar sensors arranged
in star topology [14], being only asymptotically optimal when
the network size increases [13], [15]. Moreover, symmetric
strategies are not suitable for more elaborate network topolo-
gies, and hence heuristic methods are usually necessary.

To deal with this dilemma, in this letter we propose a low-
complexity data aggregation scheme based on social learn-
ing principles, which resembles social decisions-making pro-
cesses while avoiding fusion center functions [16]–[18]. The
scheme is a threshold-based data fusion strategy related to the
ones considered in [13]. However, its connection with social
decision-making enables an intuitive understanding of its inner
mechanisms, and also allows an efficient implementation that
is suitable for the limited computational capabilities of a sensor
node. For avoiding the security threads introduced by fusion
centers, our scheme uses a tandem or serial topology [19]–
[23]. Contrasting with the literature, our analysis does not
focus on optimality issues of the data fusion but aims to illus-
trate how this scheme can enable network resilience against a
powerful topology-aware data falsification attacker, even when
a significant number of nodes have been compromised.

II. SYSTEM MODEL AND PROBLEM STATEMENT

A. System model

We consider a network of N sensor nodes that are deployed
over an area where surveillance is needed. The output of the

ar
X

iv
:1

71
0.

06
53

1v
1 

 [
ee

ss
.S

P]
  1

8 
O

ct
 2

01
7



2

sensor of the n-th node is denoted by Sn, taking values over
a set S that can be discrete or continuous. Based on these sig-
nals, the network needs to infer the value of the binary variable
W , with events {W = 1} and {W = 0} corresponding to the
presence or absence of an attack, respectively. No knowledge
about of the prior distribution of W is assumed, as attacks are
rare and might follow unpredictable patters.

We consider nodes with equal sensing capabilities, and
hence assume that the signals Sn are identically distributed.
For the sake of tractability, it is assumed that the variables
S1, . . . , SN are conditionally independent∗ given the event
{W = w}, following a probability distribution denoted by µw.
It is assumed that both µ0 and µ1 are absolutely continuous
with respect to each other [25], i.e. no particular signal
determines W unequivocally. The log-likelihood ratio of these
two distributions is therefore given by the logarithm of the cor-
responding Radon-Nikodym derivative ΛS(s) = log dµ1

dµ0
(s)†.

In addition to sensing hardware, each node is equipped
with computing capability and a low-power transceiver to
transit and receive data. However, battery limitations impose
severe restrictions over the communication bandwidth, and
thus it is assumed that each node forward its data to others
by broadcasting a binary variable Xn. Note that these signals
could be appended to wireless control packages and viceversa.

The nodes transmit their signals sequentially according to
their indices. Due to the nature of wireless broadcasting,
which might be overlooked in some security literatures, nearby
transmissions can be overheard. Therefore, it is assumed
that the n-th node can generate Xn based on information
provided by Sn and Xn−1 = (X1, . . . , Xn−1). A strategy
is a collection of functions πn : S × {0, 1}n−1 → {0, 1} such
that Xn = π(Sn,X

n−1). Although the burden of overhearing
all the previously broadcasted signals can be reduced by
designing smart network topologies and routing strategies,
these networking functions are left for future studies.

The network operator collects the transmitted packages
from a specific node labeled as nc ∈ {1, . . . , N}, possibly
employing unmanned ground or aerial vehicles that access
a shared signal at a specific network location, or by using
a shared communication channel. The network performance
is quantified by the corresponding miss-detection and false
alarm rates, given by P {MD} = P {Xnc = 0|W = 1} and
P {FA} = P {Xnc = 1|W = 0}, respectively.

Finally, it is assumed that N∗ Byzantine nodes are con-
trolled by an adversary without being noticed by the network
operator. The adversary can freely define the values of the
binary signals transmitted by byzantine nodes in order to
degrade the network performance. It is further assumed that
the adversary is “topology-aware”, knowing the node sequence
and the strategy that is in use. Therefore, the adversary could
well control the N∗ most critical nodes in terms of network

∗The conditional independency of sensor signals is satisfied when the sensor
noise is due to local causes (e.g. thermal noise), but do not hold when
there exist common noise sources (e.g. in the case of distributed acoustic
sensors [24]).
†When Sn takes a finite number of values then dµ1

dµ0
(s) =

P{Sn=s|W=1}
P{Sn=s|W=0} ,

while if Sn is a continuous random variable with conditional p.d.f. p(Sn|w)

then dµ1
dµ0

(s) =
p(s|w=1)
p(s|w=0)

.

performance. However, the adversary has no knowledge about
nc, as it can be chosen at run-time and changed regularly.

B. Problem statement

Our goal is to develop a network-resilient strategy to
mitigate the effect from a powerful topology-aware adversary
when the network operator (i.e. defender) has no knowledge of
the number of Byzantine nodes or other attack’s statistics. Note
that in most surveillance applications miss-detections are more
important than false alarms, being difficult to estimate the cost
of the worst-case scenario. Therefore, the system performance
is evaluated following the Neyman-Pearson criteria by setting
an allowable false alarm rate and focusing on the achievable
miss-detection rate.

Most signal processing techniques for distributed detection
rely on a FC(s) that gather data and generate estimators, and
sensor nodes that provide informative signals to them [26].
Intuitively, if Xn is influenced by Xm with m < n, this would
“double-count” the information provided by Sm. Therefore, in
order to guarantee diversity, traditional distributed detection
schemes choose to ignore previously broadcasted signals.
However, as nodes don’t perform any data aggregation, each of
their shared signals are not, by themselves, good estimations
of the target variable. This generates a single point of failure
in the network, as if the adversary compromises the FC(s) then
the only accurate estimator that exist within the network is lost
and hence the inference process fails.

III. SOCIAL LEARNING AS A DATA AGGREGATION SCHEME

A. Data fusion rule

Social learning models supply new directions to analyze the
sequential decision processes where agents combine personal
information and peers’ opinions [18]. Applied to a sensor
network, each node can be considered as an agent that
decides the presence of attacks based on measurements and
overheard signals from other nodes. In this letter we consider
rational agents that follow a Bayesian strategy, denoted as
πb
n(Sn,X

n−1), which can be described by

P
{
W = 1|Sn,Xn−1

}
P
{
W = 0|Sn,Xn−1

} πb
n=0

≶
πb
n=1

u(0, 0)− u(1, 0)

u(1, 1)− u(0, 1)
. (1)

Above, u(x,w) is a cost assigned to the decision Xn = x
when W = w, which can be engineered in order to match the
relevance of miss-detections and false alarms [27]. Moreover,
by noting that Xn−1 = πb

n−1(Sn−1,X
n−2) is influenced only

by S1, . . . , Sn−1, the conditional independency of the signals
imply that Sn and Xn−1 are also conditionally independent
given W = w. Therefore, using the Bayes rule, a direct
calculation shows that (1) can be re-written as

ΛS(Sn) + ΛXn−1(Xn−1)
πb
n=0

≶
πb
n=1

τ , (2)

where τ = log P{W=0}
P{W=1}+log u(0,0)−u(1,0)

u(1,1)−u(0,1) and ΛXn−1(Xn−1)

is the log-likelihood ratio of Xn−1. As the prior distribution
of W is usually unknown, the network operator needs to select
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the lowest value of τ that satisfies the required false alarm rate
given by the Neyman-Pearson criteria (c.f. Section II-B).

As in a realistic scenario the statistical properties of the
potential topology-aware data falsification attacks are not
available to the defender, our approach is to make each node to
follow a bayesian strategy ignoring the potential attack. Such
an approach has three attractive features:

1. Provides a computation rule that does not need to adapt
to different attacker’s profiles.

2. Minimizes the average cost E
{
u(πn(Sn,X

n−1),W )
}

when no attacks take place [27].
3. Enables network resilience (c.f. Section III-C and IV).
Clearly Byzantine nodes do not follow (2), as their interest

is to degrade the network performance. Let us denote as B the
set of indices of the Byzantine nodes and N∗ the cardinality of
B. As events {W = 0} are much more frequent than {W =
1}, any abnormal increase of the false alarm rate would be
easily noted and hence provides no benefit to the adversary.
Therefore, a rational strategy for the adversary is to increase
the miss-detection rate by forcing Xn = 0 for all n ∈ B.

B. An algorithm for computing the social log-likelihood
The only challenge for implementing (2) in a sensor node

as a data fusion rule is to have an efficient algorithm for
computing ΛXn−1(xn−1). For finding such an algorithm, a
direct application of the chain rule of probabilities shows that

ΛXn(xn) = log

n∏
k=1

P
{
Xk = xk|Xk−1 = xk−1,W = 1

}
P
{
Xk = xk|Xk−1 = xk−1,W = 0

} ,
with the understanding that X0 = x0 is null. Then, follow-
ing the discussion presented in Section III-A, we compute
P{Xk = xk |Xk−1 = xk−1,W = w} ignoring potential
attacks. Assuming that the k-th node is not a Byzantine node,
one obtains

P{Xk = 0 |Xk−1 = xk−1,W = w}

=

∫
S
P
{
Xk = 0|Xk−1 = xk−1,W = w, Sk = s

}
dµw(s)

=

∫
S
1
{
πb
k(s,xk−1) = 0

}
dµw(s)

= Pw
{

ΛS(Sk) + ΛXk−1(xk−1) < τ
}

= FΛ
w (τ − ΛXk−1(xk−1)) , (3)

where FΛ
w (·) is the c.d.f. of the variable Λs(Sn) conditioned

to W = w. Using the above results, it can be shown that

ΛXn+1(xn+1)− ΛXn(xn) = λ(xk, τ − ΛXn(xn)) ,

where λ(·, ·) is defined as

λ(x, a) = x log
FΛ

1 (a)

FΛ
0 (a)

+ (1− x) log
1− FΛ

1 (a)

1− FΛ
0 (a)

.

Leveraging above derivations, we develop Algorithm 1 as
a simple iterative procedure for computing ΛXn(xn). Note
that the algorithm’s complexity scales gracefully, as it grows
linearly with the length of xn. Moreover, the algorithm does
not need any information about potential attack, only requiring
knowledge of the signals statistics as given by FΛ

w .

Algorithm 1 Computation of ΛXn(xn)

1: function LOGLIKELIHOOD(xn, τ )
2: L1 = λ(x1, τ).
3: for k = 2, . . . , n do
4: Lk = Lk−1 + λ(xk+1, τ − Lk−1).
5: end for
6: return Ln
7: end function

C. Information cascades as strength or weakness

The term “social learning” refers to the fact that the ac-
curacy of Xn as a predictor of W grows with n, and hence
nc is usually chosen as one of the last nodes in the decision
sequence. However, as the number of shared signals grows
the increasing “social pressure” can make the nodes to ignore
their individual measurements and blindly follow the dominant
choice [16]. This phenomenon, known as information cascade,
introduces severe limitations in the achievable asymptotic
performance of social learning [17].

A positive effect of information cascades, which has been
overlooked before, is to make a large number of agents/nodes
to hold equally qualified estimator(s), generating many loca-
tions where the network operator can collect and aggregate
the data. This property avoids the existence of a single point
of failure to robustly face topology-aware attacks. An attempt
to blindly guess nc in order to tamper the nc-node would be
inefficient due to the large number of potential candidates.

However, an attacker can also leverage the information
cascade phenomenon. A rational attacking strategy is to tamper
the first N∗ nodes of the decision sequence, setting their
signals in order to push the networked decisions towards a
misleading cascade‡. If N∗ is large enough an information
cascade can be triggered almost surely, making the learning
process to fail. However, if N∗ is not large enough then the
network may undo the initial pool of wrong opinions and
end up triggering a correct cascade anyway. This capability
of “resilience” is explored in the next section.

IV. PROOF OF CONCEPT

To illustrate the application of social learning against
topology-aware data falsification attacks, we consider a net-
work of randomly distributed sensors over a sensitive area
following a Poisson Point process (PPP). The ratio of the area
that is within the range of each sensor is denoted by r. If
attacks occur uniformly over the surveilled area, then r is also
the probability of an attack taking place under the coverage
area of a particular sensor is. It is further assumed that each
node is equipped with a binary sensor (i.e. Sn ∈ {0, 1}),
whose probability of generating a wrong measurement due
to electronic and other imperfections is denoted by q.

‡Intuitively, it is more likely for a node to follow a misleading cascade if
all the previous N∗ nodes have been tampered and act homogeneously, than
for a node of higher index if the previous decisions are non-homogeneous.
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For finding the posterior distributions of Sn, first note that
P0 {Sn = 1} = q, as a sensor false-alarm can only be due to
noise. The probability of detecting an event is given by

P{Sn = 1|W = 1} = P {attack in range, good measurement|W = 1}
+ P {attack out of range, bad measurement|W = 1}
= r + q − 2rq .

Therefore, the sensor miss-detection rate is P1 {Sn = 0} =
1− r − q + 2rq. The signal log-likehood is hence given by

ΛS(Sn) = Sn log
r + q − 2rq

q
+(1−Sn) log

1− r − q + 2rp

1− q
.

Note that ΛS(1) > ΛS(0), which is consequence of r + q −
2rq > q and q < 1/2. Correspondingly, the c.d.f. of ΛS is

FΛ
w (l) =


0 if l < Λ(0),
P {Sn = 0|W = w} if Λ(0) ≤ l < Λ(1),
1 if Λ(1) ≥ l.

We studied a network composed by N = 200 sensor
nodes, generating Xn sequentially following (3) and using
Algorithm 1 to compute ΛXn(Xn). Following Section III-C,
it is assumed that a topology-aware attacker tampered the first
N∗ nodes of the decision sequence and uses them to increase
the miss-detection rate by setting Xn = 0 for n = 1, . . . , N∗.
Finally, in order to favour the reduction of miss-detections
over false alarms, τ = 0 is chosen as is the lowest value
that still allows a non-trivial inference process.For each set of
parameter values, 104 simulation runs are performed.

Simulations demonstrate that the proposed scheme enables
strong network resilience in this scenario, allowing the sensor
network to maintain a low miss-detection rate even in the
presence of an important number of Byzantine nodes (see
Figure 1). In contrast, f a traditional distributed detection
scheme is used, a topology-aware attacker can cause a miss-
detection rate of 100% by just compromising the few nodes
that perform data aggregation, i.e. the FC(s). Figure 1 shows
that nodes aggregating data by social learning can achieve an
average asymptotic miss-detection rate of less than 5% even
when 30% of the most critical nodes are under the control of
the attacker, having some resemblance with the well-known
1/3 threshold of the Byzantine generals problem [5]. Moreover,
Figure 1 also suggest that our scheme can still provide network
resilience within the 10% most unfavorable cases.

Interestingly, the data aggregation is performed node by
node independently of the network size. Hence, in a very
large network the first 200 nodes would exhibit the same
performance as the one shown in Figure 1. Adding more nodes
may not introduce significant improvements to the asymptotic
performance, as the asymptotic estimator is copied by later
nodes following an information cascade. Nevertheless, in a
large network information cascades provide the fundamental
benefit of creating a large number of nodes from where the
network operator can access aggregated data.

The network resilience provided by our scheme is influenced
by the sensor statistics, which are determined by q and r (see
Figure 2). Intuitively, the achievable miss-detection rate under
a low number of Byzantine nodes is reduced by a smaller q
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Fig. 1: Above: Performance of a surveillance network based on social
learning, with binary signals of range r = 5% and error rate q =
10−4, when N∗ out of N nodes are compromised by an attacker.
Bellow: Performance considering the 10% most unfavorable cases.
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Fig. 2: Asymptotic average performance of a surveillance system.
A smaller sensor error rate (q) or large sensing range (r) improves
the performance under a low N∗, but the latter also makes the
performance degradation less graceful when N∗ grows.

or larger r. Furthermore, our numerical results suggest that
the number of Byzantine nodes affects the miss-detection rate
exponentially with a rate of growth inversely proportional to
r, as nodes with smaller r trust each others decisions less and
hence are less affected by “social pressure”. Consequently,
it is desirable to deploy sensors with smaller probability of
malfunction (q) than larger coverage (r), as a larger coverage
makes the network more vulnerable to Byzantine nodes and
subsequent misleading information cascades.

Our scheme does not require knowledge about attack statis-
tics, being well-suited for practical scenarios as operation in
large scale or mobile scenarios suggest dynamically changing
topology. Moreover, simulations show that if the adversary
tamper not the initial nodes but a different set of the same
cardinality, then the attack has less impact over the system
performance. This suggests that our scheme can provide fur-
ther resilience against attackers who are not topology-aware.
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