
Lecture Notes in Computer Science 10712

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, Lancaster, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Zurich, Switzerland

John C. Mitchell
Stanford University, Stanford, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbrücken, Germany

More information about this series at http://www.springer.com/series/7408

http://www.springer.com/series/7408

Andrei Paskevich • Thomas Wies (Eds.)

Verified Software

Theories, Tools, and Experiments

9th International Conference, VSTTE 2017
Heidelberg, Germany, July 22–23, 2017
Revised Selected Papers

123

Editors
Andrei Paskevich
Paris-Sud University
Orsay
France

Thomas Wies
New York University
New York, NY
USA

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-319-72307-5 ISBN 978-3-319-72308-2 (eBook)
https://doi.org/10.1007/978-3-319-72308-2

Library of Congress Control Number: 2017961803

LNCS Sublibrary: SL2 – Programming and Software Engineering

© Springer International Publishing AG 2017
Chapter 2 was created within the capacity of an US governmental employment. US copyright protection does
not apply.
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, express or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Printed on acid-free paper

This Springer imprint is published by Springer Nature
The registered company is Springer International Publishing AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

Preface

This volume contains the proceedings of the 9th International Working Conference on
Verified Software: Theories, Tools, and Experiments (VSTTE 2017), held during July
22–23, 2017 in Heidelberg, Germany, and co-located with the 29th International
Conference on Computer-Aided Verification.

The goal of the VSTTE conference series is to advance the state of the art in the
science and technology of software verification, through the interaction of theory
development, tool evolution, and experimental validation. We solicited contributions
describing significant advances in the production of verified software, i.e., software that
has been proven to meet its functional specifications. Submissions of theoretical,
practical, and experimental contributions were equally encouraged, including those that
focus on specific problems or problem domains. We were especially interested in
submissions describing large-scale verification efforts that involve collaboration, theory
unification, tool integration, and formalized domain knowledge. We also welcomed
papers describing novel experiments and case studies evaluating verification techniques
and technologies. The topics of interest included education, requirements modeling,
specification languages, specification/verification/certification case studies, formal
calculi, software design methods, automatic code generation, refinement methodolo-
gies, compositional analysis, verification tools (e.g., static analysis, dynamic analysis,
model checking, theorem proving, satisfiability), tool integration, benchmarks, chal-
lenge problems, and integrated verification environments.

The inaugural VSTTE conference was held at ETH Zurich in October 2005, and the
following editions took place in Toronto (2008 and 2016), Edinburgh (2010),
Philadelphia (2012), Menlo Park (2013), Vienna (2014), and San Francisco (2015).

This year we received 20 submissions. Each submission was reviewed by three
members of the Program Committee. The committee decided to accept 12 papers for
presentation at the conference. The program also included four invited talks, given by
Jan Hoffmann (CMU, USA), Shaz Qadeer (Microsoft, USA), Christoph Weidenbach
(MPI for Informatics, Germany), and Santiago Zanella-Beguelin (Microsoft, UK).

We would like to thank the invited speakers and the authors for their excellent
contributions to the program this year, the Program Committee and external reviewers
for diligently reviewing the submissions, and the organizers of CAV 2017 for their help
in organizing this event. We also thank Natarajan Shankar for his tireless stewardship
of the VSTTE conference series over the years.

The VSTTE 2017 conference and the present volume were prepared with the help of
EasyChair.

October 2017 Andrei Paskevich
Thomas Wies

Organization

Program Committee

June Andronick University of New South Wales, Australia
Christel Baier Technical University of Dresden, Germany
Sandrine Blazy Université de Rennes 1, France
Arthur Charguéraud Inria, France
Ernie Cohen Amazon Web Services, USA
Rayna Dimitrova UT Austin, USA
Carlo A. Furia Chalmers University of Technology, Sweden
Arie Gurfinkel University of Waterloo, Canada
Hossein Hojjat Rochester Institute of Technology, USA
Marieke Huisman University of Twente, The Netherlands
Bart Jacobs Katholieke Universiteit Leuven, Belgium
Rajeev Joshi NASA Jet Propulsion Laboratory, USA
Zachary Kincaid Princeton University, USA
Shuvendu Lahiri Microsoft, USA
Akash Lal Microsoft, India
Francesco Logozzo Facebook, USA
Peter Müller ETH Zürich, Switzerland
Jorge A. Navas SRI International, USA
Scott Owens University of Kent, UK
Andrei Paskevich Université Paris-Sud, France
Gerhard Schellhorn Universität Augsburg, Germany
Peter Schrammel University of Sussex, UK
Natarajan Shankar SRI International, USA
Mihaela Sighireanu Université Paris Diderot, France
Julien Signoles CEA LIST, France
Michael Tautschnig Queen Mary University of London, UK
Tachio Terauchi Waseda University, Japan
Oksana Tkachuk NASA Ames Research Center, USA
Mattias Ulbrich Karlsruhe Institute of Technology, Germany
Thomas Wies New York University, USA

Additional Reviewers

Dubslaff, Clemens
Haneberg, Dominik
Kumar, Ramana

Myreen, Magnus O.
Pfähler, Jörg
Trieu, Alix

Abstracts of Short Papers

Everest: A Verified and High-Performance
HTTPS Stack

Santiago Zanella-Beguelin

Microsoft Research, UK

Abstract. The HTTPS ecosystem is the foundation of Internet security, with the
TLS protocol and numerous cryptographic constructions at its core. Unfortu-
nately, this ecosystem is extremely brittle, with frequent emergency patches and
headline-grabbing attacks (e.g. Heartbleed, Logjam, Freak). The Everest expe-
dition, joint between Microsoft Research, Inria and CMU, is a 5-year large-scale
verification effort aimed at solving this problem by constructing a
machine-checked, high-performance, standards-compliant implementation
of the full HTTPS ecosystem. This talk is a report on the progress after just over
one year into our expedition, and will overview the various verification tools
that we use and their integration, including:

– F*, a dependently-typed ML-like language for programming and verification
at high level;

– Low*, a subset of F* designed for C-like imperative programming;
– KreMLin, a compiler toolchain that extracts Low* programs to C;
– Vale, an extensible macro assembly language that uses F* as a verification

backend.

Our flagship project is miTLS, a reference implementation of TLS using
cryptographic components programmed and verified in F*, Low*, and Vale. We
compile all our code to source quality C and assembly, suitable for independent
audit and deployment. miTLS supports the latest TLS 1.3 standard, including
Zero Round-Trip Time (0-RTT) resumption, and has been integrated in
libcurl and the nginx web server.

Design Principles of Automated
Reasoning Systems

Christoph Weidenbach

Max Planck Institute for Informatics, Germany

Abstract. An automated reasoning system is the implementation of an algorithm
that adds a strategy to a calculus that is based on a logic. Typically, automated
reasoning systems “solve” NP-hard problems or beyond. Therefore, I argue that
automated reasoning system need often to be specific to a given problem. The
combination of a system and a problem is called an application.

In the talk I discuss design principles based on this layered view of auto-
mated reasoning systems and their applications. I select and discuss design
principles from all six layers: application, system, implementation, algorithm,
calculus, and logic.

Why Verification Cannot Ignore
Resource Usage

Jan Hoffmann

Carnegie Mellon University, Pittsburgh, PA, USA

Abstract. Verified programs only execute as specified if a sufficient amount of
resources, such as time and memory, is available at runtime. Moreover, resource
usage is often directly connected to correctness and security properties that we
wish to verify. This talk will show examples of such connections and present
recent work on automatic inference and verification of resource-usage bounds
for functional and imperative programs. These automatic methods can be
combined with other verification techniques to provide stronger guarantees at
runtime.

Constructing Correct Concurrent Programs
Layer by Layer

Shaz Qadeer

Microsoft Research, USA

Abstract. CIVL is a refinement-oriented verifier for concurrent programs
implemented as a conservative extension to the Boogie verification system.
CIVL allows the proof of correctness of a concurrent program —
shared-memory or message-passing— to be described as a sequence of program
layers. The safety of a layer implies the safety of the layer just below, thus
allowing the safety of the highest layer to transitively imply the safety of the
lowest.

The central theme in CIVL is reasoning about atomic actions. Different
layers of a program describe the behavior of the program using atomic actions,
higher layers with coarse-grained and lower layers with fine-grained atomic
actions. The formal and automated verification justifying the connection among
layers combines several techniques — linear variables, reduction based on
movers, location invariants, and procedure-local abstraction.

CIVL is available in the master branch of Boogie together with more than
fifty micro-benchmarks. CIVL has also been used to refine a realistic concurrent
garbage collection algorithm from a simple high-level specification down to a
highly-concurrent implementation described in terms of individual memory
accesses.

Contents

A Formally Verified Interpreter for a Shell-Like Programming Language 1
Nicolas Jeannerod, Claude Marché, and Ralf Treinen

A Formal Analysis of the Compact Position Reporting Algorithm 19
Aaron Dutle, Mariano Moscato, Laura Titolo, and César Muñoz

Proving JDK’s Dual Pivot Quicksort Correct . 35
Bernhard Beckert, Jonas Schiffl, Peter H. Schmitt,
and Mattias Ulbrich

A Semi-automatic Proof of Strong Connectivity . 49
Ran Chen and Jean-Jacques Lévy

Verifying Branch-Free Assembly Code in Why3. 66
Marc Schoolderman

How to Get an Efficient yet Verified Arbitrary-Precision Integer Library 84
Raphaël Rieu-Helft, Claude Marché, and Guillaume Melquiond

Automating the Verification of Floating-Point Programs. 102
Clément Fumex, Claude Marché, and Yannick Moy

Adaptive Restart and CEGAR-Based Solver for Inverting Cryptographic
Hash Functions . 120

Saeed Nejati, Jia Hui Liang, Catherine Gebotys,
Krzysztof Czarnecki, and Vijay Ganesh

Practical Void Safety . 132
Alexander Kogtenkov

Memory-Efficient Tactics for Randomized LTL Model Checking 152
Kim Larsen, Doron Peled, and Sean Sedwards

Reordering Control Approaches to State Explosion in Model Checking with
Memory Consistency Models . 170

Tatsuya Abe, Tomoharu Ugawa, and Toshiyuki Maeda

An Abstraction Technique for Describing Concurrent Program Behaviour . . . 191
Wytse Oortwijn, Stefan Blom, Dilian Gurov, Marieke Huisman,
and Marina Zaharieva-Stojanovski

Author Index . 211

http://dx.doi.org/10.1007/978-3-319-72308-2_1
http://dx.doi.org/10.1007/978-3-319-72308-2_2
http://dx.doi.org/10.1007/978-3-319-72308-2_3
http://dx.doi.org/10.1007/978-3-319-72308-2_4
http://dx.doi.org/10.1007/978-3-319-72308-2_5
http://dx.doi.org/10.1007/978-3-319-72308-2_6
http://dx.doi.org/10.1007/978-3-319-72308-2_7
http://dx.doi.org/10.1007/978-3-319-72308-2_8
http://dx.doi.org/10.1007/978-3-319-72308-2_8
http://dx.doi.org/10.1007/978-3-319-72308-2_9
http://dx.doi.org/10.1007/978-3-319-72308-2_10
http://dx.doi.org/10.1007/978-3-319-72308-2_11
http://dx.doi.org/10.1007/978-3-319-72308-2_11
http://dx.doi.org/10.1007/978-3-319-72308-2_12

	Preface
	Organization
	Abstracts of Short Papers
	Everest: A Verified and High-Performance HTTPS Stack
	Design Principles of Automated Reasoning Systems
	Why Verification Cannot Ignore Resource Usage
	Constructing Correct Concurrent Programs Layer by Layer
	Contents

