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Preface

This volume contains the proceedings of the 9th International Working Conference on
Verified Software: Theories, Tools, and Experiments (VSTTE 2017), held during July
22–23, 2017 in Heidelberg, Germany, and co-located with the 29th International
Conference on Computer-Aided Verification.

The goal of the VSTTE conference series is to advance the state of the art in the
science and technology of software verification, through the interaction of theory
development, tool evolution, and experimental validation. We solicited contributions
describing significant advances in the production of verified software, i.e., software that
has been proven to meet its functional specifications. Submissions of theoretical,
practical, and experimental contributions were equally encouraged, including those that
focus on specific problems or problem domains. We were especially interested in
submissions describing large-scale verification efforts that involve collaboration, theory
unification, tool integration, and formalized domain knowledge. We also welcomed
papers describing novel experiments and case studies evaluating verification techniques
and technologies. The topics of interest included education, requirements modeling,
specification languages, specification/verification/certification case studies, formal
calculi, software design methods, automatic code generation, refinement methodolo-
gies, compositional analysis, verification tools (e.g., static analysis, dynamic analysis,
model checking, theorem proving, satisfiability), tool integration, benchmarks, chal-
lenge problems, and integrated verification environments.

The inaugural VSTTE conference was held at ETH Zurich in October 2005, and the
following editions took place in Toronto (2008 and 2016), Edinburgh (2010),
Philadelphia (2012), Menlo Park (2013), Vienna (2014), and San Francisco (2015).

This year we received 20 submissions. Each submission was reviewed by three
members of the Program Committee. The committee decided to accept 12 papers for
presentation at the conference. The program also included four invited talks, given by
Jan Hoffmann (CMU, USA), Shaz Qadeer (Microsoft, USA), Christoph Weidenbach
(MPI for Informatics, Germany), and Santiago Zanella-Beguelin (Microsoft, UK).

We would like to thank the invited speakers and the authors for their excellent
contributions to the program this year, the Program Committee and external reviewers
for diligently reviewing the submissions, and the organizers of CAV 2017 for their help
in organizing this event. We also thank Natarajan Shankar for his tireless stewardship
of the VSTTE conference series over the years.

The VSTTE 2017 conference and the present volume were prepared with the help of
EasyChair.

October 2017 Andrei Paskevich
Thomas Wies
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Abstracts of Short Papers



Everest: A Verified and High-Performance
HTTPS Stack

Santiago Zanella-Beguelin

Microsoft Research, UK

Abstract. The HTTPS ecosystem is the foundation of Internet security, with the
TLS protocol and numerous cryptographic constructions at its core. Unfortu-
nately, this ecosystem is extremely brittle, with frequent emergency patches and
headline-grabbing attacks (e.g. Heartbleed, Logjam, Freak). The Everest expe-
dition, joint between Microsoft Research, Inria and CMU, is a 5-year large-scale
verification effort aimed at solving this problem by constructing a
machine-checked, high-performance, standards-compliant implementation
of the full HTTPS ecosystem. This talk is a report on the progress after just over
one year into our expedition, and will overview the various verification tools
that we use and their integration, including:

– F*, a dependently-typed ML-like language for programming and verification
at high level;

– Low*, a subset of F* designed for C-like imperative programming;
– KreMLin, a compiler toolchain that extracts Low* programs to C;
– Vale, an extensible macro assembly language that uses F* as a verification

backend.

Our flagship project is miTLS, a reference implementation of TLS using
cryptographic components programmed and verified in F*, Low*, and Vale. We
compile all our code to source quality C and assembly, suitable for independent
audit and deployment. miTLS supports the latest TLS 1.3 standard, including
Zero Round-Trip Time (0-RTT) resumption, and has been integrated in
libcurl and the nginx web server.



Design Principles of Automated
Reasoning Systems

Christoph Weidenbach

Max Planck Institute for Informatics, Germany

Abstract. An automated reasoning system is the implementation of an algorithm
that adds a strategy to a calculus that is based on a logic. Typically, automated
reasoning systems “solve” NP-hard problems or beyond. Therefore, I argue that
automated reasoning system need often to be specific to a given problem. The
combination of a system and a problem is called an application.

In the talk I discuss design principles based on this layered view of auto-
mated reasoning systems and their applications. I select and discuss design
principles from all six layers: application, system, implementation, algorithm,
calculus, and logic.



Why Verification Cannot Ignore
Resource Usage

Jan Hoffmann

Carnegie Mellon University, Pittsburgh, PA, USA

Abstract. Verified programs only execute as specified if a sufficient amount of
resources, such as time and memory, is available at runtime. Moreover, resource
usage is often directly connected to correctness and security properties that we
wish to verify. This talk will show examples of such connections and present
recent work on automatic inference and verification of resource-usage bounds
for functional and imperative programs. These automatic methods can be
combined with other verification techniques to provide stronger guarantees at
runtime.



Constructing Correct Concurrent Programs
Layer by Layer

Shaz Qadeer

Microsoft Research, USA

Abstract. CIVL is a refinement-oriented verifier for concurrent programs
implemented as a conservative extension to the Boogie verification system.
CIVL allows the proof of correctness of a concurrent program —
shared-memory or message-passing— to be described as a sequence of program
layers. The safety of a layer implies the safety of the layer just below, thus
allowing the safety of the highest layer to transitively imply the safety of the
lowest.

The central theme in CIVL is reasoning about atomic actions. Different
layers of a program describe the behavior of the program using atomic actions,
higher layers with coarse-grained and lower layers with fine-grained atomic
actions. The formal and automated verification justifying the connection among
layers combines several techniques — linear variables, reduction based on
movers, location invariants, and procedure-local abstraction.

CIVL is available in the master branch of Boogie together with more than
fifty micro-benchmarks. CIVL has also been used to refine a realistic concurrent
garbage collection algorithm from a simple high-level specification down to a
highly-concurrent implementation described in terms of individual memory
accesses.
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