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Abstract

SAT solvers are increasingly being used for cryptanalysis of hash functions and symmetric encryption

schemes. Inspired by this trend, we present MapleCrypt which is a SAT solver-based cryptanalysis tool

for inverting hash functions. We reduce the hash function inversion problem for fixed targets into the

satisfiability problem for Boolean logic, and use MapleCrypt to construct preimages for these targets.

MapleCrypt has two key features, namely, a multi-armed bandit based adaptive restart (MABR) policy

and a counterexample-guided abstraction refinement (CEGAR) technique. The MABR technique uses

reinforcement learning to adaptively choose between different restart policies during the run of the

solver. The CEGAR technique abstracts away certain steps of the input hash function, replacing them

with the identity function, and verifies whether the solution constructed by MapleCrypt indeed hashes

to the previously fixed targets. If it is determined that the solution produced is spurious, the abstraction

is refined until a correct inversion to the input hash target is produced. We show that the resultant

system is faster for inverting the SHA-1 hash function than state-of-the-art inversion tools.

1 Introduction

Over the last 15 years we have seen a dramatic improvement in the efficiency of conflict-driven
clause-learning (CDCL) SAT solvers [35, 43, 2, 7] over industrial instances generated from a
large variety of applications such as verification, testing, security, and AI [11, 9, 46]. Inspired
by this success many researchers have proposed the use of SAT solvers for cryptanalysis of hash
functions and symmetric encryption schemes [41]. The use of SAT solvers in this context holds
great promise as can be seen based on their success to-date in automating many aspects of
analysis of cryptographic primitives [51]. SAT solvers are increasingly an important tool in the
toolbox of the practical cryptanalyst and designer of hash functions and encryption schemes.
Examples of the use of SAT solvers in cryptanalysis include tools aimed at the search for
cryptographic keys in 1999 [36], logical cryptanalysis as a SAT problem in 2000 [37], encoding
modular root finding as a SAT problem in 2003 [21] and logical analysis of hash functions in 2005
[26]. Most of these approaches used a direct encoding of the said problems into a satisfiability
problem and used SAT solvers as a blackbox.

In this paper, we propose a set of techniques and an implementation, we call MapleCrypt,
that dramatically improve upon the state-of-the-art in solving the cryptographic hash function
inversion problem. The problem of inverting hash function is of great importance to cryptogra-
phers and security researchers, given that many security protocols and primitives rely on these
functions being hard-to-invert. Informally, the problem is “given a specific hash value (or target)
H find an input to the hash function that hashes to H”. We focus on the inversion problem,
as opposed to the more well-studied collision problem. The value of this research is not only
the fact that cryptanalysis is an increasingly important area of application for SAT solvers, but
also that instances generated from cryptographic applications tend to be significantly harder
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for solvers than typical industrial instances, and hence are a very good benchmark for solver
research.

Summary of Contributions. We focus on the SHA-1 cryptographic hash function in this
paper, and make the following contributions:

1. We present a counter-example guided abstraction-refinement [13] (CEGAR) based tech-
nique, wherein certain steps of the hash function under analysis are abstracted away and re-
placed by the identity function. The inversion problem for the resultant abstracted hash func-
tion is often much easier for solvers, and we find that we do not have to do too many steps of
refinement. An insight from this experiment is that certain steps of the SHA-1 hash function do
not have sufficient levels of diffusion, a key property of hash functions that makes them difficult
to invert.

2. In addition to the above-mentioned CEGAR technique, we present a multi-armed ban-
dit [50] based adaptive restart policy. The idea is that a reinforcement learning technique is
used to select among a set of restart policies in an online fashion during the run of the solver.
This method is of general value, beyond cryptanalysis. The result of combining these two
techniques is a tool, we call MapleCrypt, that is around two times faster on the hash function
inversion problem than most state-of-the-art SAT solvers. More importantly, with a time limit
of 72 hours, MapleCrypt can invert a 23-step reduced version of SHA-1 consistently, whereas
other tools we compared against can do so only occasionally.

3. We perform extensive evaluation of MapleCrypt on the SHA-1 inversion problem, and
compare against CryptoMiniSat, Lingeling, MiniSAT, Minisat-BLBD. In particular, MapleCrypt
is competitive against the best tools out there for inverting SHA-1.

2 Background on Cryptographic Hash Functions

In this section we provide a brief background on cryptographic hash functions, esp. SHA-1.
We refer the reader to [22] for a more detailed overview of hash functions. A hash function
maps an arbitrary length input string to a fixed length output string (e.g., 160 bits in the case
of SHA-1). There are three main properties that are desired for a cryptographic hash function
[30]. Informally, they are:

• Preimage Resistance: Given a hash value H, it should be computationally infeasible to
find a message M , where H = hash(M).

• Second Preimage Resistance: Given a message M1, it should be computationally infeasible
to find another message M2, where hash(M1) = hash(M2) and M1 6= M2.

• Collision Resistance: It should be computationally infeasible to find a pair of messages
M1 and M2, where hash(M1) = hash(M2) and M1 6= M2. (There is a subtle difference
between second pre-image resistance and collision resistance, in that the message M1 is
not fixed in the case of collision resistance).

Preimage resistance implies that the hash function should be hard to invert. The terms
preimage attack and inversion attack are used interchangeably. Standard cryptographic hash
functions at their core have a compression function, which can essentially be seen as repeated
application of a step function on its input bits for a fixed number of steps. The compression
function takes as input a fixed length input and outputs a fixed length (with smaller length)
output. For making a collision resistant compression function, one method is to use a block
cipher and apply the Davis-Meyer method. Feistel ladder which is widely used in hash functions
like MD5 and SHA-1 (and also block ciphers like DES), is an implementation of this method,
where the key is a message word. If the key is known, each step is easily reversible. For making
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a hash function able to accept arbitrary long messages as input, one can use Merkle-Damgard
structure [40], where it is shown that if one block is collision resistant, the whole structure
would be collision resistant.

2.1 SHA-1

SHA-1 (Secure Hash Algorithm), was designed by NSA, and adopted as a standard in 1995
[22], and is still widely used in many applications. SHA-1 consists of iterative application of
a so-called compression function which takes a 160-bit chaining value and transforms it into
the next chaining value using a 512-bit message block. The current chaining value would
be added to the output of compression function to make the next chaining value: CVi+1 =
Comp(CVi,Mi) + CVi, and the CV0 is set to a fixed initialization vector. Before starting the
process, the message is padded with a single bit ’1’ followed by a set of ’0’s and original message
length as a 64-bit value. The length of padded version is a multiple of 512. The message is
broken down to blocks of 512 bits. Each compression function breaks down the input message
block into sixteen 32-bit words. Then it will go through a message expansion phase, which
extends sixteen words to eighty words, using the following formulation (consider that Wi for
0 ≤ i ≤ 15 refers to input message words):

Wi = (Wi−3 ⊕Wi−8 ⊕Wi−14 ⊕Wi−16)≪ 1 (16 ≤ i ≤ 79) (1)

where ’≪ 1’ is left rotation by one position.
There are five 32-bit words (namely, a, b, c, d, e) as the intermediate variables. In each step

a function Ft is applied to three of these words, and it changes every 20 steps:

Ft(b, c, d) =


Ch(b, c, d) = (b ∧ c)⊕ (¬b ∧ d) 0 ≤ t ≤ 19
Parity(b, c, d) = b⊕ c⊕ d 20 ≤ t ≤ 39
Maj(b, c, d) = (b ∧ c)⊕ (b ∧ d)⊕ (c ∧ d) 40 ≤ t ≤ 59
Parity(b, c, d) = b⊕ c⊕ d 60 ≤ t ≤ 79

(2)

The step process would be like:

(at+1, bt+1, ct+1, dt+1, et+1)←
(Ft(bt, ct, dt)� et � (at≪ 5)�Wt �Kt, at, bt≪ 30, ct, dt) (3)

where ≪ is left rotation, � is modulo-232 addition and Kt is the round constant. This is
repeated for next 512-bit message block in the Merkel-Damagard chain.
Step-Reduced Version: Usually inverting or finding collision for full version of a hash func-
tion is very hard. Thus, cryptanalysts work on a relaxed version of those functions like step-
reduced versions, which means the function under attack is the same, except that the number
of steps is reduced.

3 Architecture of MapleCrypt

We seek to perform a preimage or inversion attack on a step-reduced version of SHA-1, with
one block input (512 bits). Although the current work is focused on SHA-1, our approach
is applicable to other iterative hash functions. The two main contributions in our design are
adaptive restart and a CEGAR-based approach. The adaptive restart is not directly dealing
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with the structure of the function and therefore could be used in solving other SAT instances.
The CEGAR approach is abstracting and refining step functions. Thus it could be mounted on
the other hash functions that have a repeated use of a step function (e.g. MD4, MD5, SHA-2).

3.1 SAT Encoding

The encoding we use in this paper is based on the given in [44]. Most of the operations
are encoded using Tseitin transformation, but some operations are described using high level
relations. There is a 5-operand addition in each step of SHA-1 (refer to equation (3)). The main
contribution of the encoding in [44] is the encoding of this multi-operand addition (instead of
encoding of multiple two-operand additions). Current SHA-1 instances in SAT competition are
generated using this tool [45]. We have made minor modifications, namely to the encoding of
round-dependent logical function (Ft in equation (2)), replacing XOR operations with inclusive-
OR to simplify the corresponding clauses.

3.2 CEGAR Loop Design

The SHA-1 SAT instances of up to 20 steps are very easy to solve (less than a second using
most modern solvers), but the level of difficulty rapidly rises from 20 steps to 23 steps (needs
2 to 3 days to solve). To the best of our knowledge, preimage for more than 23 steps cannot
be constructed in a reasonable amount of time even with the latest techniques and hardware
[44, 32, 31].

For the instances of more than 20 steps (e.g. 22 steps), we abstract away initial step functions
and keep the last 20 steps intact (abstracting first 2 steps), but we do not abstract away the
message words and the message expansion relations. We solve the simplified instance, and
find a solution for the message words. However, the resultant solution may be spurious, i.e.,
may not actually hold for the specific hash target. In order to verify the solution, we run the
hash function in the forward direction and check the result with the target, and record values of
intermediate variables throughout the hashing. If the computed hash does not match the target
(i.e., the solution produced by the solver is spurious), we refine back those parts of abstracted
steps of the hash function that are unsatisfiable under the spurious solution. Finally we also
add a subset (all except last 8 steps) of intermediate values (computed during the forward run
of the hash function on spurious solutions) as blocking clauses.

The intuition behind this procedure is that, first of all, 20 steps are very easy to solve, and
it is the highest number of steps that we are better off solving directly, rather than using an
abstraction. Secondly, the first few intermediate variables have the most degree of freedom
when searching for a preimage or collision. Lastly, blocking a subset of intermediate values,
although might block some legitimate solutions, but also blocks many spurious solutions. We
can divide our main procedure into two main functions, listed in Algorithm 1.

In the listing of algorithm 1, interValues refers to the collection of intermediate variables
across working steps that will be negated and added as a conflict clause to a CCDB (conflict
clause database). The Refine function evaluates the clauses of the original formula with the
found solution and checks which variables are in the UNSAT clauses and add them back to the
current abstracted instance.

3.3 Multi-Armed Bandit Restart

Many restart policies have been proposed in the SAT literature [5, 4, 34, 6], in particular we
focus on the uniform, linear, luby, and geometric restart policies [10]. For a given preimage
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Algorithm 1 Finding Preimage using a CEGAR loop

Require: W : 512-bit found preimage, H: Hash target, nsteps: number of hash steps
Ensure: true if W is a valid preimage, false otherwise
1: function Check(W,H, nsteps)
2: (H ′, interValues) ← SHA-1(W , nsteps)
3: if H = H ′ then
4: return true
5: else
6: CCDB.add(interValues)
7: return false
8:

Require: H: Hash target, nsteps: number of hash steps
Ensure: W : 512-bit preimage of H
9: function FindPreimage(H,nsteps)

10: InstanceSteps ← AbsInstGen(nsteps) . Abstracted set of step functions
11: InstanceW ← MsgInstGen(nsteps) . All of input and expanded message words
12: while true do
13: W [0..15] ← SATSolver(InstanceSteps, InstanceW, CCDB)
14: if Check(W, H, nsteps) = true then
15: return W
16: InstanceSteps ← Refine(InstanceSteps, W, nsteps)

attack instance, we can not know a priori which of the 4 restart policy will perform the best.
To compensate for this, we use multi-armed bandits (MAB) [50], a special case of reinforcement
learning, to switch between the 4 policies dynamically during the run of the solver. We chose to
use discounted UCB algorithm [24] from MAB literature, as it accounts for the nonstationary
environment of the CDCL solver, in particular changes in the learnt clause database over time.
Discounted UCB has 4 actions to choose from corresponding to the uniform, linear, luby, and
geometric restart policies. Once the action is selected, the solver will proceed to perform the
CDCL backtracking search until the chosen restart policy decides to restart. The algorithm
computes the average LBD (Literals Block Distance [3]) of the learnt clauses generated since
the action was selected, and the reciprocal of the average is the reward given to the selected
action. Intuitively, a restart policy which generates small LBDs will receive larger rewards and
UCB will increase the probability of selecting that restart policy in the future. Over time, this
will bias UCB towards restart policies that generate small LBDs.

4 Experimental Results

4.1 Experimental Setup

Our baseline benchmark consists of instances of preimage of step-reduced SHA-1, from 21 to
23 steps. Instances for less than 21 steps were trivial for every solver we tried. For each step
we generated 25 random targets and encoded them as fixed value for the hash output. All
jobs were run on AMD opteron CPUs at 2.2 GHz and 8GB RAM. The timeout for solving a
single instance was 72 hours, with 4GB of memory allocated for each process. We used 5 SAT
solvers, CryptoMiniSat-4.5.3 [47], Minisat BLBD [12], Lingeling-ayv [8], Minisat-2.2 [18] and
MapleSAT [33]. We also tried 4 SMT solvers to take advantage of their BitVector theory solvers.
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Figure 1: The performance of various SAT solvers against MapleSAT with adaptive MAB-
restart and CEGAR.

We used, STP-2.0/CryptoMinisat4, Boolector-2.0.7/Lingeling, CVC4-1.5, Z3-4.4. However, all
of these SMT solvers performed surprisingly poorly. Hence, we did not include them in our
comparisons.

4.2 CEGAR and MABR

State-of-the-art results for automated and practical preimage of SHA-1 that construct a result
rather than presenting an upper bound for attack complexity, propose a SAT encoding of
the preimage attack and solve it using modern SAT solvers. Therefore we picked the best
existing encoding method for SHA-1 [44] and applied our solving techniques on them. We are
comparing our runtimes with other SAT solvers, given the same instances. Figure 1 shows the
cactus plot of solving times where each data point shows how many instances could be solved
in the corresponding time. Curves more toward bottom are faster and more toward right are
solving more instances. It can be seen that MapleSAT with MAB restart dominates in terms
of runtime and number of instances solved, and after employing the CEGAR technique, we
are able to solve faster and more instances. MapleCrypt is the CEGAR architecture that uses
MapleSAT+MABR as backend solver.

4.3 Partial Preimage

This is the kind of attack where the attacker knows some bits of the input message and wants
to find out the rest. Our experiments on SHA-1 show that knowing parts of the message does
not necessarily make the problem easier, as it might force the solver to find a specific input that
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matches those bits and reduces the possibilities. Our results mostly confirm the observations
on hardness of partial preimage of SHA-1 in [45]. We could invert up to 27 steps of SHA-1
when having 40 bits of the input message unknown, which matches the best results known in
this setting for SHA-1 [42].

5 Related Work

We review the related work on inversion attacks, and touch upon collision attacks as appropriate.
Note that for inversion attacks, every additional round of a hash function inverted is considered
significant improvement over previous work.

SAT-based Constructive Methods. Since 2005, several hash functions have been shown
to be prone to collision attacks [52, 53]. In 2006, Mironov et.al [41] automated parts of collision
attack of Wang et al. [52] using SAT solvers. Not many of the collision attack methods use SAT
solvers, as the collision finding problem is studied very well and most cryptanalysts use direct
implementation of mathematical analyses (e.g., differential cryptanalysis) for this problem.

Given that the focus of our paper is on inversion attacks, we provide a thorough overview of
the related work for the same. In 2007, De et al. [14] used a SAT solver for an inversion attack
on MD4 and enhanced number of steps inverted, up to 2 rounds and 7 steps, by encoding
Dobbertin’s attack model [17] into SAT constraints. In 2008, Srebrny et al. [48] formulated
inversion of SHA-1 as a SAT instance and could solve for restricted message size up to 22
steps. Several later works could solve up to 23 rounds of SHA-1 [44, 32, 31]. Lafitte et al. [29]
presented a generic way to encode basic cryptographic operations which was an improvement
over operator overloading model in [26] and used it in a preimage test on MD4 and finding weak
keys in IDEA and MESH ciphers, although other than finding weak keys, preimage results were
not better than the best previously published attack. In 2013, Morawiecki et al. [42] used the
idea of minimization of SAT instances generated via analysis of cryptographic primitives. They
applied their tool CryptLogVer on some hash functions like SHA-1 and Keccak to analyze their
preimage resistance. Although they did not increase the number of inverted steps, they showed
improvement in solving time. Nossum [45], also presents an encoding for preimage attack of
SHA-1 which targets the 5-operand addition operation that is performed in each step of SHA-
1 and the generated instances have fewer variables than the work of Srebrny et al. [48] and
Morwiecki et al. [42], and in general are easier to solve by modern SAT solvers. It is used
to generate SHA-1 instances of SAT competition [45]. The work presented in this paper is
using Nossum’s instance generator with small tweaks. All of the mentioned techniques use SAT
solvers as a black box tool. By contrast our design leverages CEGAR and modifies the restart
policies of SAT solvers. Additionally, our method is faster for finding preimages than previous
work.

Non SAT Solver based Constructive Attacks. These methods are almost exclusively
aimed at collision attacks. In 2006, De Cannière et al. [15] built a non SAT solver based tool
for SHA-1 collision attack leveraging the breakthrough of Wang et al. [53]. In 2011, Mendel
et al. [38] extended it for SHA-256 which was further improved in their work in 2013 [39].
Eichlseder et al. [19] improved upon the branching heuristics of this tool and applied it to SHA-
512. Recently Stevens et al. [49] presented a parallelized search implementation and found
free-start collision on full SHA-1.

Non-constructive Theoretical Bounds. Here we review known theoretical bounds on
preimage attack on various hash functions. One of the first preimage results on SHA-1 was
achieved by using techniques like reversing the inversion problem and mathematical structures
like P 3 graphs [16], which could invert 34 and 44 steps with complexity of 280 and 2157 respec-
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tively. Aoki and Sasaki [1] used meet-in-the-middle to attack SHA-1 (and also MD4 and MD5)
and improved the number of steps to 48 with the solving complexity of 2159.3. Knellwolf et
al. [28] improved it in 2012 by providing a differential formulation of MITM model and raised
the bar up to 57 steps. Espiatu et al. [20] extended this work further to higher order differentials
for preimage attack on SHA-1 and BLAKE2 and went up to 62 steps for SHA-1. Mathematical
structure like Biclique [27], allowed extending coverage of MITM over larger number of steps.

Adaptive Restarts. Armin Biere proposed monitoring variable assignment flips in Pi-
coSAT, and delayed restarts when the weighted average of flips is below a predetermined
threshold [5]. Audemard and Simon proposed monitoring the LBD of learnt clauses, and a
restart is triggered if the short term LBDs exceeds the long term LBDs by a constant factor [4].
Haim and Walsh used machine learning to train a classifier to select from a portfolio of restart
policies [25]. Gagliolo and Schmidhuber used bandits to select between luby and uniform restart
heuristic [23].

6 Conclusion and Future Work

We presented a tool called MapleCrypt for preimage attack on SHA-1 hash functions, which uses
CEGAR and adaptive restart techniques. Our tool is faster than other automated search tools in
the literature for the constructive preimage attack. Our results show that SAT solvers and SAT-
based techniques are a promising approach for handling the laborious parts of cryptanalysis,
and identifying weaknesses in hash function designs. This design can be extended to work on
other hash functions like SHA-2 family.
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Problem. In Tools with Artificial Intelligence (ICTAI), 2012 IEEE 24th International Conference
on, volume 1, pages 916–921. IEEE, 2012.
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Through a Minefield of Contradictions. Advances in Cryptology–ASIACRYPT 2011, pages 288–
307, 2011.

[39] Florian Mendel, Tomislav Nad, and Martin Schläffer. Improving Local Collisions: New Attacks
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