
Distributed Simulation Platform for Autonomous
Driving

Jie Tang1, Shaoshan Liu2, Chao Wang3, Quan Wang3,

1 South China University of Technology, China
2 PerceptIn

3 Baidu USA
{cstangjie@scut.edu.cn, shaoshan.liu@perceptin.io, wangchao30@baidu.com,

wangquan02@baidu.com}

Abstract. Autonomous vehicle safety and reliability are the paramount
requirements when developing autonomous vehicles. These requirements are
guaranteed by massive functional and performance tests. Conducting these
tests on real vehicles is extremely expensive and time consuming, and thus it is
imperative to develop a simulation platform to perform these tasks. For
simulation, we can utilize the Robot Operating System (ROS) for data playback
to test newly developed algorithms. However, due to the massive amount of
simulation data, performing simulation on single machines is not practical.
Hence, a high-performance distributed simulation platform is a critical piece in
autonomous driving development. In this paper we present our experiences of
building a production distributed autonomous driving simulation platform. This
platform is built upon Spark distributed framework, for distributed computing
management, and ROS, for data playback simulations.

1 Introduction

 Autonomous driving systems usually consist of sensing, perception, decision
making, control and other functional modules, and each module has its own intricate
structures and algorithms [1]. In most cases, it is difficult for system or algorithm
developers in the testing process to evaluate the massive design space. To test any
algorithm change, developers need to test a functional module alone, and later on
setting up a whole physical testing environment that consists of a number of other
modules, leading to enormous testing costs. Fortunately, many of the testing tasks can
be accomplished by utilizing simulator. The key to the success of a simulation is
how accurately the simulator can simulate the physical reality.

 There are two main kinds of simulation technologies: the first one simulates the
environment based on synthetic data, this kind of simulators are mainly used for
control and planning, especially at the initial development stage of the algorithms.
The second type is based on real data playback to test the function and performance of
the different components, which is used mainly in the iterative process of algorithm
development. In this article, we mainly discuss the simulators based on data playback.

 In order to simulate the environment as realistic as possible, our simulator is built
upon the Robot Operating System (ROS), which is used in physical autonomous
driving systems [2, 17]. ROS is a distributed computing framework based on
message delivery, which makes it easier for developers to make modular
programming. Its modular design is critical for the design of simulators since we
usually test modules independently. In autonomous driving systems, each functional
module in the ROS is deployed in a node, and the communication between the nodes
relies on the messages with well-defined formats, e.g. messages that contain images.
Therefore, developers only need to use the same communication format, and develop
simulation module for each functional module, and finally match real functional
modules and the simulated modules based on test requirements. For example, if we
want to coordinate the functions of the decision module and the control module, we
need to install the decision module, control module and other simulated modules into
the simulator for testing. If the decision-making module needs to test the new
decision-making algorithm separately, we can only install the latest decision module
with the other simulated modules on the simulator. The result of this test is only for
the decision-making module.

1.1 Anatomy of Autonomous Driving Simulators

 Firstly, the autonomous vehicle simulator contains a dynamic model of the car,
which is used to load the test of autonomous driving system and simulates the
behavior of the autonomous vehicle itself. Secondly, the simulation of the external
environment is needed, which includes static and dynamic scenes. Static scenes
include a variety of stationary traffic signs, such as stop lines, traffic signs, etc.
Dynamic scenes mainly refer to the dynamic traffic flow models around the car, such
as vehicles, pedestrians, traffic lights and so on. All of these elements construct an
analog world corresponds to the real world.

1.2 Applications of Autonomous Driving Simulators

 In the real world, autonomous vehicles face complex and varied external
environments. A good simulator decomposes external environment into the basic
elements, and then rearranges the combination to generate a variety of test cases, each
simulating a specific scenario. Take a simple set of test cases. Figure 1 shows a
simple simulation scene, in which we need to test the response of an autonomous
vehicle to a car in front of it, or the barrier car. The initial position of the barrier car
is a simulation variable, such that in this case, it may appear from the left front, left,
left rear, front, rear, right front, right, right rear relative to the autonomous vehicle,
eight directions in total. Next, the speed of the the barrier car is another simulation
variable, which can be divided into three categories, faster than the autonomous
vehicle, equal to the speed of the autonomous vehicle, and slower than the
autonomous vehicle. The next motion step of the barrier car is yet another
simulation variable, which can be divided into going straight, turning to the left, and

turning to the right. By multiplying all these simulation variables and removing all the
unwanted cases, we get a set of test cases.

Fig 1. A simulation scene

1.3 Challenges of Autonomous Driving Simulators

 The core problem of the simulator lies in how realistic we can simulate the actual
driving environment. No matter how good the simulator is, the artificial simulation
of the scene and the real scene still have some differences. There are still many
unexpected events in the real scene that cannot be simulated in a simulator.
Therefore, if you can use the real traffic data to reproduce the real scene, you will get
better test results compared to the artificial simulation of the scene. However, the
major problem of replaying real-world data is the computing power required to
process the massive amount of real world data. If we want to reproduce the scene of
every section of the real world on the simulator, we need to let the autonomous
vehicles collect the information of each section of the road. This amount of
information cannot be processed on single machines. Furthermore, in each scene,
we can further break it down into basic fragments and to rearrange the combinations
of these fragments to generate more test cases. However, this would only generate
even more data and add more burden to the already stressed simulation platform. In
this paper, we present the first generic distributed simulation platform for autonomous
driving simulation.

2 A ROS-based Autonomous Driving Simulator

 ROS is a robot operating system based on messaging communication. Its
communication mode can be abstracted as a message pool architecture, the message
sending node transfers the advertise method to send ROS message to the specified
Topic, and the message receiving node transfers the subscribe method to receive the
ROS message from the specified Topic.

2.1 ROSBAG

 Rosbag is a tool that uses this architecture to record from Topic and replay the ROS
message to Topic, which is used in the data collection process for unmanned vehicle.
Its function is divided into two categories: Record and Play. The Record function is to
create a recording node in the ROS, and call the subscribe method to receive ROS
message to all the Topics or the specified ones, and then write the message to the Bag
file. While the Play function is to establish a play node in ROS, and call the advertise
method to send the message in bag to the specified Topic according to timeline.

Fig 2. ROSBag design

 The data format that produced by Rosbag is Bag, which is a file format with two-
tier logical structure. As shown in Figure 2, the upper class of the Bag class provides
a method for user to operate the file on the abstraction, the down class packages
operation methods to the ChunkedFile. ChunkedFile class mainly stores the data
separately, and the stored data is a section The latter mainly contains of images or 3D
point cloud scan file data collected by autonomous vehicle sensors. Therefore, with
ROS, we can easily process, understand and persist multimedia data. However, this
presents a challenge to the distributed computing framework, which by default only
processes text-based data. We will discuss this issue in detail in the next section.

2.2 Simulation Dataset

 As we have mentioned before, we mainly focus on the simulators based on real
data playback. The first question is the scale of the real-world data. To understand
this we can start with the KITTI dataset [12]. In this dataset, KITTI researchers
recorded real data for 6 hours with a data volume of 720GB. However, the 6-hour of
data is only enough to perform some simple verification tests on algorithms, and it is
far from enough to perform full production simulations. To perform full scale
production simulation, for example, Google's autonomous driving project collects
more than 40,000 hours of real data in the past few years, the total amount of data is

estimated to exceed 5 PB. Performing simulations on single machines can not
handle data at such scale, and therefore we must design an efficient distributed
computing platform based on the real data playback simulators

2.3 The Demand on Computing Power

 The huge amount of data processing imposes enormous pressure on the computing
platform. For instance, the original data for the KITTI data set for 6 hours includes
more than 100 million 140-megapixel color charts, and we use a single-machine
simulation system to perform deep-learning based segmentation tasks, processing
each image takes about 0.3 seconds. In this way, it takes more than 100 hours to
analyze the KITTI dataset alone, and if we analyze the whole image dataset for
Google's autonomous driving project for example, it will take more than 600,000
hours on to process one full round of simulation on a single machine.

3 A Spark-based Distributed Simulation Platform

 We have decided to use distributed computing to process simulation in parallel, and
we choose Spark as our distributed computing platform. Spark is a universal parallel
computing framework opening source by UC Berkeley AMPLab [3]. Spark’s
distributed computing is based on RAM, which provides significant performance
advantages over Hadoop, which persists intermediate data on disks [13]. Unlike
Hadoop, the Spark Job's intermediate output and results can be stored in memory, so
there is no need to read and write HDFS [14], as a result Spark can be better applied
to Map-Reduce algorithm which requires intensive iterative computing.

Fig 3. Architecture of distributed simulation platform

 As Figure 3 has shown, we design and implement a distributed simulation platform
framework which is based on Spark to perform autonomous vehicle playback
simulation efficiently. We use Spark to manage resource allocation, data input
output, and management of ROS nodes. On the Spark driver, we can launch
different simulation applications, such as localization algorithms that consume
LiDAR raw data, object recognition algorithms that consume image data, vehicle
decision-making and control algorithms etc. The Spark Driver allocates resource from
the Spark worker based on the requested amount of data and computation. Each Spark
worker first reads the Rosbag data into memory and then launches a ROS node
process the incoming data.

 The interface between Spark and ROS is one design decision we need to make.
The first approach is to use JNI [15] to connect Spark worker and ROS Node, but this
involves the modification of ROS, making the whole system difficult to maintain and
evolve. The second approach is to use Linux pipes [16], which create a
unidirectional data channel that can be used for inter-process communication. Data
written to the write end of the pipe is buffered by the kernel until it is read from the
read end of the pipe. We choose to use the second approach since this is easier to
maintain. In the design of the pipe, there are two issues that need to be solved: first,
Spark only supports consuming text-based data by default, and it does not support
multimedia data consumption. We need to design an efficient method for it to
consume binary file. Second, we need a way to read from the memory of the cache
data through ROSBag play function, and also a way to cache data into memory
through ROSBag record function.

3.1 Binary Data Streaming

 The core of Spark's data structure is Resilient Distributed Datasets (RDD), which
allows programmers to perform memory calculations on a large cluster in a fault-
tolerant manner. To solve the problem of having Spark consuming multimedia data,
we develop a new RDD, the BinPipedRDD, which is shown in Figure 4 below.

Fig 4. BinPiped RDD Design

 First, the partitions of binary files go through encoding and serialization stages to
form a binary byte stream. The encoding stage will encode all supported inputs format
including strings (e.g., file name) and integers (e.g., binary content size) into our
uniform format, which is based on byte array. Afterward, the serialization stage will
combine all bytes arrays (each may correspond to one input binary file) into one
single binary stream. Then, the user program, upon receiving that binary stream,
would de-serialize and decode it according to interpret the byte stream into an
understandable format. Next, the user program would perform the target computation
(User Logic), which ranges from simple tasks such as rotate the jpg file by 90 degrees
if needed, to relatively complex tasks such as detecting pedestrians given the binary
sensor readings from LiDAR scanners. The output would then be encoded and
serialized before being passed in the form of RDD[Bytes] partitions. In the last stage,
the partitions can be returned to the Spark driver through a collect operation or be
stored in HDFS as binary files. With this process, we can now process and transform
binary data into a user-defined format and transform the output of the Spark
computation into a byte stream for collect operations or take it one step further to
convert the byte stream into text or generic binary files in HDFS according to the
needs and logic of applications.

3.2 Data Retrieval through ROSBag Cache

 In this subsection, we present our design of reading from the memory of the cache
data through ROSBag play function, and of caching data into memory through
ROSBag record function. As shown in Figure 5, in our current design, ROSPlay
takes ROSBag data as input, which is passed to ROS through BinPipeRDD. Once

done with simulation, ROSRecord can persist the output through BinPipeRDD to
some form of customized data format.

Fig 5. Simulation workflow

But the missing links still exist in this process, including how ROSBag play

function reads the cached data from memory, and how the ROSBag record function
caches the data into memory. In order to realize these functions, we add a branch
logic layer for the original two-layer logical structure of Bag and ChunkedFile (see
Figure 2 for more details). As shown in Figure 6, the MemoryChunkedFile class
inherits from the ChunkedFile class and overrides all the methods of ChunkedFile.
MemoryChunkedFile reads and writes files to the lower layer’s memory, but not reads
and writes data to the hard disk as the ChunkedFile class does. A major benefit of this
design is that the worker can read data passed to simulators through standard input
stream directly instead of reading and writing through Disk I/O. Instead of passing
data through disk I/O, with this design, we can pass data through memory directly.
Therefore, due to acceleration from the I/O side, this read/write model greatly reduces
the time of data processions.

Fig 6. MemoryChunkedFile Design

With the addition of this logic layer, we can now deploy the simulator to every
worker machine in the Spark cluster. By running different configuration files we can
make each machine runs a different module. Or we can deploy the same modules and
models under different conditions to run the same data to compare the differences
between these models. In addition, we can also deploy the same modules and
models under the conditions of running different data to compare different data. Thus,
the use of distributed systems greatly enhances the performance and the flexibility of
the simulation platform design.

4 Performance Evaluation

 In this section we delve into the performance of our simulation platform. Since
the platform is mainly for accelerating simulation workloads on the cloud, we study
the I/O performance of our platform, as well as its scalability.

4.1 ROSBag Cache Performance

 As shown in Figure 6, to test the performance of ROSBag cache, we compare the
performance of ROS play (read) and ROS record (write) with and without using in
memory cache. We perform two test cases, the Small File Test, which repeatedly
read and write 1 million files with 1 KB in size, and the Large File Test, which
repeatedly read and write 100 thousand files with 1 MB in size. The no cache case
uses the original ChunkedFile whereas the with cache case uses the
MemoryChunkedFile. We perform this test on a 12-core server machine with 65 GB
of main memory. The results show that with in-memory cache, the write
performance gets improved by about 3X and the read performance gets improved by
5X in the large file test, by about 10X in the small file test. This result confirms that
the MemoryChunkedFile is an effective way to improve I/O performance in our
simulation tests.

Fig 6. System Scalability

4.2 Scalability

 As shown in Figure 7, we conduct a scalability evaluation of the system. With the
increase of computing resources, the calculation time is also linearly reduced. The
system shows a strong scalability. In an internal image recognition test set, it takes 3
hours to process images using stand-alone processing, and only 25 minutes after using
eight Spark workers. We don’t have the Google autonomous driving dataset, but let
us extrapolate this study and apply on Google dataset. Suppose that if we use 10000
Spark workers to test large-scale image recognition simulation on Google's unmanned
cars data, the entire experiment can be done in 100 hours, whereas on a single
machine, this it will take more than 600,000 hours to complete.

Fig 7. System Scalability

5 Related Work

In this paper, we present a general distributed simulation framework based on
Spark distributed computing system and ROS. Note that our platform is general in
the way that the simulator, in this case ROS, can be replaced by any other simulators.
Previously there are several autonomous vehicle simulators developed. The
simulators used by car makers include IPG Automotive GmbH and VEDYNA, [4]
and [5], which provide numerical simulations of full car dynamics with interfaces to
MATLAB/Simulink. Both of these simulators try to ease the development and
integration of vehicle controllers. Similarly, the ADTF can be used to model a
directed graph reflecting the data flow through a set of processing modules [6]. The

communication is realized using so-called channels, which themselves are typed but
which can carry arbitrary typed data in principle contrary to the approach realized in
the software framework Hesperia which relies solely on typed messages instead.
Additional to the aforementioned ADTF, the toolkit Virtual Test Drive is developed
to manage previously recorded raw sensor data or to synthetically generate required
input data to perform simulations [7]. TNO PreScan can be used to support the
development of so-called pre-collision driver assistance systems [8]. Another
approach is provided by a tool from IAV [9]. This tool generates synthetic raw data
for arbitrary sensors. Therefore, the user models in a 2D manner the characteristics of
a specific active sensor like a field of view (FOV), a maximum distance, and some
error noise. Then, the software computes preprocessed sensor data which would be
provided by the ECUs of a specific sensors. FastSim is an open-source lightweight
simulation environment designed to facilitate motion planning algorithm development
for urban autonomous driving [10], which can be used to simulate the decision
algorithms of autonomous vehicles.

6 Conclusions

 Traditionally, autonomous vehicle algorithm simulations run on single machines,
which takes enormous amount of time to finish. In addition, it takes increasingly
more time to perform simulations as the system becomes more complex. Therefore,
to accelerate the simulation process, we utilize a distributed computing framework.
In this paper we present a production distributed simulation framework based on
Spark, which is used for distributed computing, and ROS, which is used for playback
simulations. To enable such a distributed simulation platform, we need to seamlessly
integrate Spark and ROS, as well as have Spark consuming multimedia data. We
also demonstrate that the system exhibits very good scalability, such that as we
provide more computing resources, the simulation time drops almost linearly. Note in
this paper we only demonstrate the ROS-based playback simulator. However, the
proposed simulation platform is generic, such that we can plug in any other simulator
to perform distributed simulation. We believe that this platform will become a
standard service of the autonomous driving cloud [11].

References

[1] Liu, S., Peng, J. and Gaudiot, J.L., 2017. Computer, Drive My Car!. Computer, 50(1),
pp.8-8.

[2] Quigley, M., Conley, K., Gerkey, B., Faust, J., Foote, T., Leibs, J., Wheeler, R. and Ng,
A.Y., 2009, May. ROS: an open-source Robot Operating System. In ICRA workshop on
open source software (Vol. 3, No. 3.2, p. 5).

[3] Zaharia, M., Chowdhury, M., Franklin, M.J., Shenker, S. and Stoica, I., 2010. Spark:
Cluster Computing with Working Sets. HotCloud, 10(10-10), p.95.

[4] IPG Automotive GmbH: IPG CarMaker. http://www.ipg.de/carmaker.html (2009)

[5] TESIS Gesellschaft f¨ur Technische Simulation und Software mbH: TESIS DYNAware.
http://www.tesis.de/en/index.php?page=1004 (2009)

[6] Schabenberger, R.: ADTF: Framework for Driver Assistance and Safety Systems. In: VDI
Wissensforum IWB GmbH (ed.) Integrierte Sicherheit und Fahrerassistenzsysteme, 2000,
pp. 701–710. VDI-Gesellschaft Fahrzeug- und Verkehrstechnik (2007)

[7] von Neumann-Cosel, K., Dupuis, M., Weiss, C.: Virtual Test Drive - Provision of a
Consistent Tool-Set for [D,H,S,V]-in-the-Loop. In: Proceedings on Driving Simulation
Conference (2009)

[8] Gietelink, O., Ploeg, J., Schutter, B.D., Verhaegen, M.: Testing Advanced Driver
Assistance Systems for Fault Management with the VEHIL Test Facility. In: Proceedings
of the 7th International Symposium on Advanced Vehicle Control, pp. 579–584 (2004)

[9] Schonlau, B.: Test und Absicherung von Funktionen mit synthetischen Umfeld- und
Fahrzeugeigendaten. In: Gesamtzentrum f¨ur Verkehr Braunschweig e.V. (ed.) AAET
2009 – Automatisierungssysteme, Assistenzsysteme und eingebettete Systeme f¨ur
Transportmittel, vol. 10, pp. 109–121 (2009)

[10] Gu, Tianyu, and John M. Dolan. "A Lightweight Simulator for Autonomous Driving
Motion Planning Development." (2015): 94.

[11] Liu, S., Tang, J., Wang, C., Wang, Q. and Gaudiot, J.L., Implementing a Cloud Platform
for Autonomous Driving. arXiv preprint arXiv:1704.02696.

[12] Geiger, A., Lenz, P., Stiller, C. and Urtasun, R.,. Vision meets robotics: The KITTI
dataset. The International Journal of Robotics Research, 32(11), pp.1231-1237.

[13] White, T., 2012. Hadoop: The definitive guide. " O'Reilly Media, Inc.".

[14] Shvachko, K., Kuang, H., Radia, S. and Chansler, R., , May. The hadoop distributed file
system. In Mass storage systems and technologies (MSST), 2010 IEEE 26th symposium
on (pp. 1-10). IEEE.

[15] Liang, S.. The Java Native Interface: Programmer's Guide and Specification. Addison-
Wesley Professional.

[16] Bovet, D.P. and Cesati, M., 2005. Understanding the Linux Kernel: from I/O ports to
process management. " O'Reilly Media, Inc.".

[17] Liu, S., Tang, J., Zhang, Z. and Gaudiot, J.L., 2017. CAAD: Computer Architecture for
Autonomous Driving. arXiv preprint arXiv:1702.01894.

