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A Simple Streaming Bit-parallel Algorithm

for Swap Pattern Matching⋆

Václav Blažej⋆⋆, Ondřej Suchý⋆ ⋆ ⋆, and Tomáš Valla†

Faculty of Information Technology, Czech Technical University in Prague,
Prague, Czech Republic

Abstract. The pattern matching problem with swaps is to find all occur-
rences of a pattern in a text while allowing the pattern to swap adjacent
symbols. The goal is to design fast matching algorithm that takes advan-
tage of the bit parallelism of bitwise machine instructions and has only
streaming access to the input. We introduce a new approach to solve
this problem based on the graph theoretic model and compare its perfor-
mance to previously known algorithms. We also show that an approach
using deterministic finite automata cannot achieve similarly efficient al-
gorithms. Furthermore, we describe a fatal flaw in some of the previously
published algorithms based on the same model. Finally, we provide ex-
perimental evaluation of our algorithm on real-world data.

1 Introduction

In the Pattern Matching problem with Swaps (Swap Matching, for short), the
goal is to find all occurrences of any swapped version of a pattern P in a text T ,
where P and T are strings of length p and t over an alphabet Σ, respectively. By
the swapped version of a pattern P we mean a string of symbols created from P
by swapping adjacent symbols while ensuring that each symbol is swapped at
most once (see Section 2 for formal definitions). The solution of Swap Match-
ing is a set of indices which represent where occurrences swapped version of P
in T begin. Swap Matching is intensively studied due to its use in practical ap-
plications such as text and music retrieval, data mining, network security and
biological computing [7].

The swap of two consecutive symbols is one of the most typical typing errors.
It also represent a simpler version of swaps that appear in nature. In particular,
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the phenomenon of swaps occurs in gene mutations and duplications such as in
the region of human chromosome 5 that is implicated in the disease called spinal
muscular Atrophy, a common recessive form of muscular dystrophy [18]. While
the biological swaps occur at a gene level and have several additional constraints
and characteristics, which make the problemmuch more difficult, they do serve as
a convincing pointer to the theoretical study of swaps as a natural edit operation
for the approximation metric [2]. Indeed Lowrance and Wagner [21] suggested
to add the swap operation when considering the edit distance of two strings.

Swap Matching was introduced in 1995 as an open problem in non-standard
string matching [20]. The first result was reported by Amir et al. [2] in 1997,

who provided an O(tp
1
3 log p)-time solution for alphabets of size 2, while also

showing that alphabets of size exceeding 2 can be reduced to size 2 with a little
overhead. Amir et al. [5] came up with solution with O(t log2 p) time complexity
for some very restrictive cases. Several years later Amir et al. [3] showed that
Swap Matching can be solved by an algorithm for the overlap matching achieving
the running time of O(t log p log |Σ|). This algorithm as well as all the previous
ones is based on fast Fourier transformation (FFT).

In 2008 Iliopoulos and Rahman [17] introduced a new graph theoretic ap-
proach to model the Swap Matching problem and came up with the first efficient
solution to Swap Matching without using FFT (we show it to be incorrect). Their
algorithm based on bit parallelism runs in O((t + p) log p) time if the pattern
length is similar to the word-size of the target machine. One year later Cantone
and Faro [10] presented a dynamic programming algorithm named Cross Sam-
pling solving Swap Matching in O(t) time and O(|Σ|) space, assuming that the
pattern length is similar to the word-size in the target machine. In the same
year Campanelli et al. [9] enhanced the Cross Sampling algorithm using notions
from Backward directed acyclic word graph matching algorithm and named the
new algorithm Backward Cross Sampling. This algorithm also assumes short
pattern length. Although Backward Cross Sampling has O(|Σ|) space and O(tp)
time complexity, which is worse than that of Cross Sampling, it improves the
real-world performance.

In 2013 Faro [14] presented a new model to solve Swap Matching using re-
active automata and also presented a new algorithm with O(t) time complexity
assuming short patterns. The same year Chedid [12] reformulated the dynamic
programming solution by Cantone and Faro [10] which results in more intuitive
algorithms. In 2014 a minor improvement by Fredriksson and Giaquinta [15] ap-
peared, yielding slightly (at most factor |Σ|) better asymptotic time complexity
(and also slightly worse space complexity) for special cases of patterns. The same
year Ahmed et al. [1] took ideas of the algorithm by Iliopoulos and Rahman [17]
and devised two algorithms named Smalgo-I and Smalgo-II which both run
in O(t) for short patterns, but bear the same error as the original algorithm.

Another remarkable effort related to Swap Matching is to actually count the
number of swaps needed to match the pattern at the location [6]. This is more
often studied with an extra operation of character change allowed [4,13,19].
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Our Contribution. We design a simple algorithm which solves the Swap
Matching problem. The goal is to design a streaming algorithm, which is given
one symbol per each execution step until the end-of-input arrives, and thus does
not need access to the whole input. This algorithm has O(⌈ p

w
⌉(|Σ| + t) + p)

time and O(⌈ p
w
⌉|Σ|) space complexity where w is the word-size of the machine.

We would like to stress that our solution, as based on the graph theoretic ap-
proach, does not use FFT. Therefore, it yields a much simpler non-recursive
algorithm allowing bit parallelism and is not suffering from the disadvantages of
the convolution-based methods. While our algorithm matches the best asymp-
totic complexity bounds of the previous results [10,15] (up to a |Σ| factor), we
believe that its strength lies in the applications where the alphabet is small and
the pattern length is at most the word-size, as it can be implemented using only
7 + |Σ| CPU registers and few machine instructions. This makes it practical for
tasks like DNA sequences scanning. Also, as far as we know, our algorithm is
currently the only known streaming algorithm for the swap matching problem.

We continue by proving that any deterministic finite automaton that solves
Swap Matching has number of states exponential in the length of the pattern.

We also describe the Smalgo (swap matching algorithm) by Iliopoulos and
Rahman [17] in detail. Unfortunately, we have discovered that Smalgo and
derived algorithms contain a flaw which cause false positives to appear. We
have prepared implementations of Smalgo-I, Cross Sampling, Backward Cross
Sampling and our own algorithm, measured the running times and the rate of
false positives for the Smalgo-I algorithm. All of the sources are available for
download.1

This paper is organized as follows. First we introduce all the basic definitions,
and also recall the graph theoretic model introduced in [17] and its use for
matching in Section 2. In Section 3 we show our algorithm for Swap Matching
problem and follow it in Section 4 with the proof that Swap Matching cannot be
solved efficiently by deterministic finite automata. Then we describe the Smalgo
algorithms in detail in Section 5 and finish with the experimental evaluation of
the algorithms in Section 6.

2 Basic Definitions and the Graph Theoretic Model

In this section we state the basic definitions, present the graph theoretic model
and show a basic algorithm that solves Swap Matching using the model.

2.1 Notations and Basic Definitions

We use the word-RAM as our computational model. That means we have access
to memory cells of fixed capacity w (e.g., 64 bits). A standard set of arithmetic
and bitwise instructions include And (&), Or (|), Left bitwise-shift (LShift or
≪ 1) and Right bitwise-shift (RShift or≫ 1). Each of the standard operations on

1 http://users.fit.cvut.cz/blazeva1/gsm.html

http://users.fit.cvut.cz/blazeva1/gsm.html
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Fig. 1. P -graph PP for the pattern P = abcbbac

words takes single unit of time. In order to compare to other existing algorithms,
which are not streaming, we define the access to the input in a less restrictive
way – the input is read from a read-only part of memory and the output is
written to a write-only part of memory. However, it will be easy to observe that
our algorithm accesses the input sequentially. We do not include the input and
the output into the space complexity analysis.

A string S over an alphabet Σ is a finite sequence of symbols from Σ and |S|
is its length. By Si we mean the i-th symbol of S and we define a substring
S[i,j] = SiSi+1 . . . Sj for 1 ≤ i ≤ j ≤ |S|, and prefix S[1,i] for 1 ≤ i ≤ |S|.
String P prefix matches string T k symbols on position i if P[1,k] = T[i,i+k−1].

Next we formally introduce a swapped version of a string.

Definition 1 (Campanelli et al. [9]). A swap permutation for S is a permu-
tation π : {1, . . . , n} → {1, . . . , n}, where n = |S|, such that:

(i) if π(i) = j then π(j) = i (symbols at positions i and j are swapped),
(ii) for all i, π(i) ∈ {i− 1, i, i+ 1} (only adjacent symbols are swapped),
(iii) if π(i) 6= i then Sπ(i) 6= Si (identical symbols are not swapped).

For a string S a swapped version π(S) is a string π(S) = Sπ(1)Sπ(2) . . . Sπ(n)

where π is a swap permutation for S.

Now we formalize the version of matching we are interested in.

Definition 2. Given a text T = T1T2 . . . Tt and a pattern P = P1P2 . . . Pp,
the pattern P is said to swap match T at location i if there exists a swapped
version π(P ) of P that matches T at location i, i.e., π(P ) = T[i,i+p−1].

2.2 A Graph Theoretic Model

The algorithms in this paper are based on a model introduced by Iliopoulos and
Rahman [17]. In this section we briefly describe this model.

For a pattern P of length p we construct a labeled graph PP = (V,E, σ) with
vertices V , edges E, and a vertex labeling function σ : V → Σ (see Fig. 1 for
an example). Let V = V ′ \ {m−1,1,m1,p} where V ′ = {mr,c | r ∈ {−1, 0, 1}, c ∈
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Algorithm 1 The basic matching algorithm (BMA)

Input: Labeled directed acyclic graph G = (V,E, σ), set Q0 ⊆ V of starting
vertices, set F ⊆ V of accepting vertices, text T , and position k.

1: Let D′
1 := Q0.

2: for i = 1, 2, 3, . . . , p do

3: Let Di := {x | x ∈ D′
i, σ(x) = Tk+i−1}.

4: if Di = ∅ then finish.

5: if Di ∩ F 6= ∅ then we have found a match and finish.

6: Define the next iteration set D′
i+1 as vertices which are successors of Di, i.e.,

D′
i+1 := {d ∈ V (PP ) | (v, d) ∈ E(PP ) for some v ∈ Di}.

{1, 2, . . . , p}}. For mr,c ∈ V we set σ(mr,c) = Pr+c. Each vertex mr,c is identified
with an element of a 3 × p grid. We set E′ := E′

1 ∪ E′
2 ∪ · · · ∪ E′

p−1, where
E′

j := {(mk,j ,mi,j+1) | k ∈ {−1, 0}, i ∈ {0, 1}} ∪ {(m1,j,m−1,j+1)}, and let
E = E′ ∩ V × V . We call PP the P -graph. Note that PP is directed acyclic
graph, |V (PP )| = 3p− 2, and |E(PP )| = 5(p− 1)− 4.

The idea behind the construction of PP is as follows. We create vertices V ′

and edges E′ which represent every swap pattern without unnecessary restric-
tions (equal symbols can be swapped). We remove verticesm−1,1 and m1,p which
represent symbols from invalid indices 0 and p+ 1.

The P -graph now represents all possible swap permutations of the pattern P
in the following sense. Vertices m0,j represent ends of prefixes of swapped version
of the pattern which end by a non-swapped symbol. Possible swap of symbols Pj

and Pj+1 is represented by vertices m1,j and m−1,j+1. Edges represent symbols
which can be consecutive. Each path from column 1 to column p represents
a swap pattern and each swap pattern is represented this way.

Definition 3. For a given Σ-labeled directed acyclic graph G = (V,E, σ) ver-
tices s, e ∈ V and a directed path f = v1, v2, . . . , vk from v1 = s to vk = e, we
call S = σ(f) = σ(v1)σ(v2) . . . σ(vk) ∈ Σ∗ a path string of f .

2.3 Using Graph Theoretic Model for Matching

In this section we describe an algorithm called Basic Matching Algorithm (BMA)
which can determine whether there is a match of pattern P in text T on a
position k using any graph model which satisfies the following conditions.

– It is a directed acyclic graph,
– V = V1 ⊎ V2 ⊎ · · · ⊎ Vp (we can divide vertices to columns),
– E ⊆ {(u,w) | u ∈ Vi, w ∈ Vi+1, 1 ≤ i < p} (edges lead to next column).

Let Q0 = V1 be the starting vertices and F = Vp be the accepting vertices.
BMA is designed to run on any graph which satisfies these conditions. Since
P -graph satisfies these assumptions we can use BMA for PP .

The algorithm runs as follows (see also Algorithm 1). We initialize the algo-
rithm by setting D′

1 := Q0 (Step 1). D′
1 now holds information about vertices
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Algorithm 2 BMA in terms of prefix match signals

1: Let I0(v) := 1 for each v ∈ Q0 and I0(v) := 0 for each v /∈ Q0.
2: for i = 0, 1, 2, 3, . . . , p− 1 do

3: Filter signals by a symbol Tk+i.
4: if Ii(v) = 0 for every v ∈ PP then finish.

5: if Ii(v) = 1 for any v ∈ F then we have found a match and finish.

6: Propagate signals along the edges.

which are the end of some path f starting in Q0 for which σ(f) possibly prefix
matches 1 symbol of T[k,k+p−1]. To make sure that the path f represents a pre-
fix match we need to check whether the label of the last vertex of the path f
matches the symbol Tk (Step 3). If no prefix match is left we did not find a
match (Step 4). If some prefix match is left we need to check whether we already
have a complete match (Step 5). If the algorithm did not stop it means that we
have some prefix match but it is not a complete match yet. Therefore we can
try to extend this prefix match by one symbol (Step 6) and check whether it is
a valid prefix match (Step 3). Since we extend the matched prefix in each step,
we repeat these steps until the prefix match is as long as the pattern (Step 2).

Having vertices in sets is not handy for computing so we present another way
to describe this algorithm. We use their characteristic vectors instead.

Definition 4. A Boolean labeling function I : V → {0, 1} of vertices of PP is
called a prefix match signal.

The algorithm can be easily divided into iterations according to the value
of i in Step 2. We denote the value of the prefix match signal in j-th iteration
as Ij and we define the following operations:

– propagate signal along the edges, is an operation which sets Ij(v) := 1 if and
only if there exists an edge (u, v) ∈ E with Ij−1(u) = 1,

– filter signal by a symbol x ∈ Σ, is an operation which sets I (v) := 0 for
each v where σ(v) 6= x,

– match check, is an operation which checks whether there exists v ∈ F such
that I(v) = 1 and if so reports a match.

With these definitions in hand we can describe BMA in terms of prefix match
signals as Algorithm 2. See Fig. 2 for an example of use of BMA to figure out
whether P = acbab swap matches T = babcabc at a position 2.

2.4 Shift-And Algorithm

The following description is based on [11, Chapter 5] describing the Shift-Or
algorithm.

For a pattern P and a text T of length p and t, respectively, let R be a
bit array of size p and Rj its value after text symbol Tj has been processed. It
contains information about all matches of prefixes of P that end at the position j
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a1 c b a4 b5

a c3 b a

c b2 a b

Fig. 2. BMA of T[2,6] = abcab on a P -graph of the pattern P = acbab. The prefix
match signal propagates along the dashed edges. Index j above a vertex v represent
that Ij(v) = 1, otherwise Ij(v) = 0.

in the text. For 1 ≤ i ≤ p, Rj
i = 1 if P[1,i] = T[j−i+1,j] and 0 otherwise. The

vector Rj+1 can be computed from Rj as follows. For each positive i we have
Rj+1

i+1 = 1 if Rj
i = 1 and Pi+1 = Tj+1, and Rj+1

i+1 = 0 otherwise. Furthermore,

Rj+1
1 = 1 if P1 = Tj+1 and 0 otherwise. If Rj+1

p = 1 then a complete match can
be reported.

The transition fromRj toRj+1 can be computed very fast as follows. For each
x ∈ Σ let Dx be a bit array of size p such that for 1 ≤ i ≤ p,Dx

i = 1 if and only
if Pi = x. The array Dx denotes the positions of the symbol x in the pattern P .
EachDx can be preprocessed before the search. The computation of Rj+1 is then
reduced to three bitwise operations, namely Rj+1 = (LShift(Rj) | 1) & DTj+1 .
When Rj

p = 1, the algorithm reports a match on a position j − p+ 1.

3 Our Algorithm

In this section we will show an algorithm which solves Swap Matching. We call
the algorithm GSM (Graph Swap Matching). GSM uses the graph theoretic
model presented in Section 2.2 and is based on the Shift-And algorithm from
Section 2.4.

The basic idea of the GSM algorithm is to represent prefix match signals
(see Definition 4) from the basic matching algorithm (Section 2.3) over PP in bit
vectors. The GSM algorithm represents all signals I in the bitmaps RX formed
by three vectors, one for each row. Each time GSM processes a symbol of T ,
it first propagates the signal along the edges, then filters the signal and finally
checks for matches. All these operations can be done very quickly thanks to
bitwise parallelism.

First, we make the concept of GSM more familiar by presenting a way to
interpret the Shift-And algorithm by means of the basic matching algorithm
(BMA) from Section 2.3 to solve the (ordinary) Pattern Matching problem. Then
we expand this idea to Swap Matching by using the graph theoretic model.

3.1 Graph Theoretic View of the Shift-And Algorithm

Let T and P be a text and a pattern of lengths t and p, respectively. We create
the T -graph TP = (V,E, σ) of the pattern P .
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Definition 5. Let S be a string. The T -graph of S is a graph TS = (V,E, σ)
where V = {vi | 1 ≤ i ≤ |S|}, E = {(vi, vi+1) | 1 ≤ i ≤ |S − 1|} and σ : V → Σ
such that σ(vi) = Si.

Note that the T -graph is directed acyclic graph which can be divided into
columns Vi, 1 ≤ i ≤ p (each of them containing one vertex vi) such that the
edges lead from Vj to Vj+1. This means that the T -graph satisfies all assump-
tions of BMA. We apply BMA to TP to figure out whether P matches T at
a position j. We get a correct result because for each i ∈ {1, . . . , p} we check
whether Tj+i−1 = σ(vi) = Pi.

To find every occurrence of P in T we would have to run BMA for each
position separately. This is basically the naive approach to solve the pattern
matching. We can improve the algorithm significantly when we parallelize the
computations of p runs of BMA in the following way.

The algorithm processes one symbol at a time starting from T1. We say that
the algorithm is in the j-th step when a symbol Tj has been processed. BMA
represents a prefix match as a prefix match signal I : V → {0, 1}. Its value in
the j-th step is denoted Ij . Since one run of the BMA uses only one column of
the T -graph at any time we can use other vertices to represent different runs of
the BMA. We represent all prefix match indicators in one vector so that we can
manipulate them easily. To do that we prepare a bit vector R. Its value in j-th
step is denoted Rj and defined as Rj

i = Ij(vi).

First operation which is used in BMA (propagate signal along the edges) can
be done easily by setting the signal of vi to value of the signal of its predeces-
sor vi−1 in the previous step. I.e., for i ∈ {1, . . . , p} we set Ij(vi) = 1 if i = 1 and
Ij(vi) = Ij−1(vi−1) otherwise. In terms of Rj this means just Rj = LSO(Rj−1),
where LSO is defined as LSO(x) = LShift(x) | 1.

We also need a way to set I (vi) := 0 for each vi for which σ(vi) 6= Tj+i which
is another basic BMA operation (filter signal by a symbol). We can do this
using the bit vector Dx from Section 2.4 and taking R &Dx. I.e., the algorithm
computes Rj as Rj = LSO(Rj−1) &DTj+1 .

The last BMA operation we have to define is the match detection. We do
this by checking whether Rj

p = 1 and if this is the case then a match starting at
position j − p+ 1 occurred.

3.2 Our Algorithm for Swap Matching Using the Graph Theoretic
Model

Now we are ready to describe the GSM algorithm.

We again let PP = (V,E, σ) be the P -graph of the pattern P , apply BMA
to PP to figure out whether P matches T at a position j, and parallelize p runs
of BMA on PP .

Again, the algorithm processes one symbol at a time and it is in the j-th
step when symbol Tj is being processed. We again denote the value of the prefix
match signal I : V → {0, 1} of BMA in the j-th step by Ij . I.e., the semantic
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Algorithm 3 The graph swap matching (GSM)

Input: Pattern P of length p and text T of length t over alphabet Σ.
Output: Positions of all swap matches.

1: Let RU0 := RM0 := RD0 := 0p.
2: Let Dx := 0p, for all x ∈ Σ.
3: for i = 1, 2, 3, . . . , p do

4: DPi
i := 1

5: for j = 1, 2, 3, . . . , t do
6: RU ′j := LSO(RDj−1).
7: RM ′j := LSO(RMj−1 | RU j−1).
8: RD′j := LSO(RM j−1 | RUj−1).
9: RU j := RU ′j & LShift(DTj ).
10: RM j := RM ′j &DTj .
11: RDj := RD′j &RShift(DTj ).
12: if RU j

p = 1 or RM j
p = 1 then

13: report a match on position j − p+ 1.

meaning of Ij(mr,c) is that Ij(mr,c) = 1 if there exists a swap permutation π
such that π(c) = c+ r and π(P )[1,c] = T[j−c+1,j]. Otherwise Ij(mr,c) is 0.

We want to represent all prefix match indicators in vectors so that we can
manipulate them easily. We can do this by mapping the values of I for rows
r ∈ {−1, 0, 1} of the P -graph to vectors RU,RM , and RD, respectively. We
denote value of the vector RX ∈ {RU,RM,RD} in j-th step as RXj . We define
values of the vectors as RU j

i = Ij(m−1,i), RM j
i = Ij(m0,i), and RDj

i = Ij(m1,i),
where the value of Ij(v) = 0 for every v /∈ V .

We define BMA propagate signal along the edges operation as setting the sig-
nal of mr,c to 1 if at least one of its predecessors have signal set to 1. I.e., we set
Ij+1(m−1,i) := Ij(m1,i−1), I

j+1(m0,i) := Ij(m−1,i−1) | I
j(m0,i−1), I

j+1(m0,1) :=
1, Ij+1(m1,i) := Ij(m−1,i−1) | I

j(m0,i−1), and Ij+1(m1,1) := 1. We can perform
the above operation using the LSO(R) operation. We obtain the propagate sig-

nal along the edges operation in the form RU ′j+1
:= LSO(RDj), RM ′j+1

:=

LSO(RM j | RU j), and RD′j+1
:= LSO(RM j | RU j).

The operation filter signal by a symbol can be done by first constructing a bit
vectorDx for each x ∈ Σ asDx

i = 1 if x = Pi andDx
i = 0 otherwise. Then we use

these vectors to filter signal by a symbol x by taking RU j := RU ′j&LShift(DTj ),

RM j := RM ′j &DTj , and RDj := RD′j &RShift(DTj ).
The last operation we define is the match detection. We do this by checking

whether RU j
p = 1 or RM j

p = 1 and if this is the case, then a match starting at
a position j − p+ 1 occurred.

The final GSM algorithm (Algorithm 3) first prepares the D-masks Dx for
every x ∈ Σ and initializes RU0 := RM0 := RD0 := 0 (Steps 1–4). Then the
algorithm computes the value of vectors RU j , RM j , and RDj for j ∈ {1, . . . , t}
by first using the above formula for signal propagation (Steps 6–8) and then the
formula for signal filtering (Steps 9–11) and checks whetherRU j

p = 1 orRM j
p = 1

and if this is the case the algorithm reports a match (Steps 12 and 13).
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Observe that Algorithm 3 accesses the input sequentially and thus it is a
streaming algorithm. We now prove correctness of our algorithm. To ease the
notation let us define Rj(mr,c) to be RU j

c if r = −1, RM j
c if r = 0, and RDj

c

if r = 1. We define R′j(mr,c) analogously. Similarly, we define Dx(mr,c) as
(LShift(Dx))c = Dx

c−1 if r = −1, Dx
c if r = 0, and (RShift(Dx))c = Dx

c+1 if
r = 1. By the way the masks Dx are computed on lines 2–4 of Algorithm 3, we
get the following observation.

Observation 1 For every mr,i ∈ V and every j ∈ {i, . . . t} we have DTj (mr,i) =
1 if and only if Tj = Pr+i.

The following lemma constitutes the crucial part of the correctness proof.

Lemma 1. For every mr,i ∈ V and every j ∈ {i, . . . t} we have Rj(mr,i) = 1
if and only if there exists a swap permutation π such that π(P )[1,i] = T[j−i+1,j]

and π(i) = i+ r.

Proof. Let us start with the “if” part. We prove the claim by induction on i. If
i = 1 and there is a swap permutation π such that π(1) = 1 + r and P1+r = Tj,
then the algorithm sets R′j(mr,1) to 1 on line 6, 7, or 8 (recall the definition of
LSO). As P1+r = Tj , we have DTj (mr,1) = 1 by Observation 1 and, therefore,
by lines 9–11, also Rj(mr,1).

Now assume that i > 1 and that the claim is true for every smaller i. Assume
that there exists a swap permutation π such that π(P )[1,i] = T[j−i+1,j] and

π(i) = i + r. By induction hypothesis we have that Rj−1(mr′,i−1) = 1, where
r′ = i−1−π(i−1). Since r equals−1 if and only if r′ equals +1 by Definition 1, we
have (r, r′) ∈ {(−1, 1), (0,−1), (0, 0), (1,−1), (1, 0)}. Therefore the algorithm sets
R′j(mr,i) to 1 on line 6, 7, or 8. Moreover, since Pi+r = Tj, we haveD

Tj (mr,i) = 1
by Observation 1 and the algorithm sets Rj(mr,i) to 1 on one of the lines 9–11.

Now we prove the “only if” part again by induction on i. If i = 1 and
Rj(mr,i) = 1, then we must have DTj (mr,1) = 1 and, by Observation 1, also
P1+r = Tj . We obtain π by setting π(1) = 1 + r, π(2) = 2− r and π(i′) = i′ for
every i′ ∈ {2, . . . , p}. It is easy to verify that this is a swap permutation for P
and has the desired properties.

Now assume that i > 1 and that the claim is true for every smaller i. Assume
that Rj(mr,i) = 1. Then, due to lines 9–11 we must have DTj (mr,i) = 1 and,
hence, by Observation 1, also Pi+r = Tj . Moreover, we must have R′j(mr,i) = 1
and, hence, by lines 6–8 of the algorithm also Rj−1(mr′,i−1) = 1 for some r′ with
(r, r′) ∈ {(−1, 1), (0,−1), (0, 0), (1,−1), (1, 0)}. By induction hypothesis there
exists a swap permutation π′ for P such that π′(P )[1,i−1] = T[j−i+1,j−1] and

π′(i − 1) = i − 1 + r′. If π′(i) = i + r, then setting π = π′ finishes the proof.
Otherwise we have either r = 0 or r = 1 and i < p. In the former case we let
π(i′) = i′ for every i′ ∈ {i, . . . , p} and in the later case we let π(i) = i + 1,
π(i + 1) = i and π(i′) = i′ for every i′ ∈ {i + 2, . . . , p}. In both cases we let
π(i′) = π′(i′) for every i′ ∈ {1, . . . , i − 1}. It is again easy to verify that π is a
swap permutation for P with the desired properties. ⊓⊔
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Theorem 2. The GSM algorithm is correct.

Proof. Our GSM algorithm reports a match on position j − p+ 1 if and only if
Rj(mp,−1) = 1 or Rj(mp,0) = 1. However, by Lemma 1, this happens if and only
if there is a swap match of P on position j − p+ 1 in T . Hence, the algorithm
is correct.

Theorem 3. The GSM algorithm runs in O(⌈ p

w
⌉(|Σ| + t) + p) time and uses

O(⌈ p

w
⌉|Σ|) memory cells (not counting the input and output cells), where t is

the length of the input text, p length of the input pattern, w is the word-size of
the machine, and |Σ| size of the alphabet.2

Proof. The initialization of RX and Dx masks (lines 1 and 2) takes O(⌈ p

w
⌉|Σ|)

time. The bits in Dx masks are set according to the pattern in O(p) time (lines 3
and 4). The main cycle of the algorithm (lines 5–13) makes t iterations. Each
iteration consists of computing values of RX in 13 bitwise operations, i.e., in
O(⌈ p

w
⌉) machine operations, and checking for the result in O(1) time. This gives

O(⌈ p

w
⌉(|Σ| + t) + p) time in total. The algorithm saves 3 RX masks (using

the same space for all j and also for RX ′ masks), |Σ| Dx masks, and constant
number of variables for other uses (iteration counters, temporary variable, etc.).
Thus, in total the GSM algorithm needs O(⌈ p

w
⌉|Σ|) memory cells. ⊓⊔

Corollary 1. If p = cw for some constant c, then the GSM algorithm runs in
O(|Σ| + p+ t) time and has O(|Σ|) space complexity. Moreover, if p ≤ w, then
the GSM algorithm can be implemented using only 7 + |Σ| memory cells.

Proof. The first part follows directly from Theorem 3. Let us show the second
part. We need |Σ| cells for all D-masks, 3 cells for R vectors (reusing the space
also for R′ vectors), one pointer to the text, one iteration counter, one constant
for the match check and one temporary variable for the computation of the more
complex parts of the algorithm. Alltogether, we need only 7 + |Σ| memory cells
to run the GSM algorithm. ⊓⊔

From the space complexity analysis we see that for some sufficiently small
alphabets (e.g. DNA sequences) the GSM algorithm can be implemented in
practice using solely CPU registers with the exception of text which has to be
loaded from the RAM.

4 Limitations of the Finite Deterministic Automata

Approach

Many of the string matching problems can be solved by finite automata. The
construction of a non-deterministic finite automaton that solves Swap Matching
can be done by a simple modification of the P -graph. An alternative approach

2 To simplify the analysis, we assume that log t < w, i.e., the iteration counter fits
into one memory cell.
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Table 1. An example of the construction from proof of Theorem 4 for k = 3.

P = T0 acabcabcabc
T1 acabcabcbac
T2 acabcbacabc
T3 acabcbacbac
T4 acbacabcabc
T5 acbacabcbac
T6 acbacbacabc
T7 acbacbacbac

to solve the Swap Matching would thus be to determinize and execute this
automaton. The drawback is that the determinization process may lead to an
exponential number of states. We show that in some cases it actually does, con-
tradicting the conjecture of Holub [16], stating that the number of states of this
determinized automaton is O(p).

Theorem 4. There is an infinite family F of patterns such that any deter-
ministic finite automaton AP accepting the language LS(P ) = {uπ(P ) | u ∈
Σ∗, π is a swap permutation for P} for P ∈ F has 2Ω(|P |) states.

Proof. For any integer k we define the pattern Pk := ac(abc)k. Note that the
length of Pk is Θ(k). Suppose that the automaton AP recognizing language L(P )
has s states such that s < 2k. We consider a set of strings T0, . . . , T2k−1 where Ti

is defined as follows. Let bik−1, b
i
k−2 . . . b

i
0 be the binary representation of the

number i. Let Bi
j = abc if bij = 0 and let Bi

j = bac if bij = 1. Then, let

Ti := acBi
k−1B

i
k−2 . . . B

i
0. See Table 1 for an example. Note that each Ti, i ∈

{0, . . . , 2k − 1} is a swapped version of P = T0. Since s < 2k, there exist
0 ≤ i < j ≤ 2k − 1 such that both Ti and Tj are accepted by the same
accepting state q of the automaton A. Let m be the minimum number such
that bik−1−m 6= bjk−1−m. Note that bim = 0 and bjm = 1. Now we define T ′

i =

Ti(abc)
(m+1) and T ′

j = Tj(abc)
(m+1). Let X = (T ′

i )[3(m+1)+1,3(m+1+k)+2] and
Y = (T ′

j)[3(m+1)+1,3(m+1+k)+2] be the suffices of the strings T ′
i and T ′

j both of
length 3k+2. Note that X begins with bc . . . and Y begins with ac . . . and that
block abc or bac repeats for k times in both. Therefore pattern P swap matches Y
and does not swap match X . Since for the last symbol of both Ti and Tj the
automaton is in the same state q, the computation for T ′

i and T ′
j must end in the

same state q′. However as X should not be accepted and Y should be accepted
we obtain contradiction with the correctness of the automaton A. Hence, we may
define the family F as F = {P1, P2, . . . }, concluding the proof. ⊓⊔

This proof shows the necessity for specially designed algorithms which solve the
Swap Matching. We presented one in the previous section and now we reiterate
on the existing algorithms.
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5 Smalgo Algorithm

In this section we discuss how Smalgo by Iliopoulos and Rahman [17] and
Smalgo-I and Smalgo-II by Ahmed et al. [1] work. Since Smalgo-I is bitwise
inverse of Smalgo, we will introduce them both in terms of operations used in
Smalgo-I. After that we will describe and analyze Smalgo-II.

Before we show how these algorithms work, we need one more definition.

Definition 6. A degenerate symbol w over an alphabet Σ is a nonempty set of
symbols from alphabet Σ. A degenerate string S is a string built over an alphabet
of degenerate symbols. We say that a degenerate string P̃ matches a text T at a
position j if Tj+i−1 ∈ P̃i for every 1 ≤ i ≤ p.

5.1 Smalgo-I

The Smalgo-I [1] algorithm is a modification of the Shift-And algorithm from
Section 2.4 for Swap Matching. The algorithm uses the graph theoretic model
introduced in Section 2.2.

First let P̃ = {P1, P2} . . . {Px−1, Px, Px+1} . . . {Pp−1, Pp} be a a degenerate

version of pattern P . The symbol on position i in P̃ represents the set of symbols
of P which can swap to that position. To accommodate the Shift-And algorithm
to match degenerate patterns we need to change the way the Dx masks are

defined. For each x ∈ Σ let D̃x
i be the bit array of size p such that for 1 ≤ i ≤

p, D̃x = 1 if and only if x ∈ P̃i.
While a match of the degenerate pattern P̃ is a necessary condition for a swap

match of P , it is clearly not sufficient. The way the Smalgo algorithms try to fix
this is by introducing P-mask P (x1, x2, x3) which is defined as P (x1, x2, x3)i = 1
if i = 1 or if there exist vertices u1, u2, and u3 and edges (u1, u2), (u2, u3) in PP

for which u2 = mr,i for some r ∈ {−1, 0, 1} and σ(un) = xn for 1 ≤ n ≤ 3, and
P (x1, x2, x3)i = 0 otherwise. One P -mask called P (x, x, x) is used to represent
the P -masks for triples (x1, x2, x3) which only contain 1 in the first column.

Now, whenever checking whether P prefix swap matches T k + 1 symbols
at position j we check for a match of P̃ in T and we also check whether
P (Tj+k−1, Tj+k, Tj+k+1)k+1 = 1. This ensures that the symbols are able to swap
to respective positions and that those three symbols of the text T are present in
some π(P ).

With the P-masks completed we initialize R1 = 1&D̃T1 . Then for every j = 1

to t we repeat the following. We compute Rj+1 as Rj+1 = LSO(Rj) & D̃Tj+1 &

RShift(D̃Tj+2 ) & P (Tj , Tj+1, Tj+2). To check whether or not a swap match oc-

curred we check whether Rj
p−1 = 1. This is claimed to be sufficient because

during the processing we are in fact considering not only the next symbol Tj+1

but also the symbol Tj+2.

5.2 The Flaw in the Smalgo, Smalgo-I and Smalgo-II

We shall see that for a pattern P = abab and a text T = aaba all Smalgo
versions give false positives.
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a b a b

a b a

b a b

Fig. 3. Smalgo flaw represented in the P -graph for P = abab

The concept of Smalgo is based on the assumption that we can find a path
in PP by searching for consecutive paths of length 3 (triplets), where each two
consecutive share two columns and can partially overlap. However, this only
works if the consecutive triplets actually share the two vertices in the common
columns. If the assumption is not true then the found substring of the text might
not match any swapped version of P .

The above input gives such a configuration (see Fig. 3) and therefore the
assumption is false. The Smalgo-I algorithm actually reports match of pattern
P = abab on a position 1 of text T = aaba. This is obviously a false positive, as
the pattern has two b symbols while the text has only one.

The reason behind the false positive match is as follows. The algorithm checks
whether the first triplet of symbols (a, a, b) matches. It can match the swap
pattern aabb. Next it checks the second triplet of symbols (a, b, a), which can
match baba. We know that baba is not possible since it did not appear in the
previous check, but the algorithm cannot distinguish them since it only checks
for triplets existence. Since each step gave us a positive match the algorithm
reports a swap match of the pattern in the text.

In the Fig. 3 we see the two triplets which Smalgo assumes have two vertices
in common. The Smalgo-II algorithm saves space by maintaining less informa-
tion, however it simulates how Smalgo-I works and so it contains the same
flaw.

5.3 The Run of Smalgo-I Resulting in the False Positive

In Tables 2 and 3 we can see the step by step execution of Smalgo-I algorithm
on pattern P = abab and text T = aaba. In Table 3 we see that R3 has 1
in the 3-rd row which means that the algorithm reports a pattern match on a
position 1. This is a false positive, because it is not possible to swap match the
pattern with two b symbols in the text with only one b symbol.

5.4 Description of Smalgo-II

To explain the Smalgo-II algorithm in more detail, we first introduce a notion
of change. An upward change corresponds to (the BMA) going to vertex m−1,i

for some i, a downward change corresponds to going to vertex m+1,i, and a
middle-ward change corresponds to going to vertex m0,i.
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Table 2. D̃-masks and P-masks for P = abab. A column xyz contains values P (x, y, z)i.

i P̃i D̃a
i D̃b

i aaa aab aba baa abb bab bba bbb

1 [ab] 1 1 1 1 1 1 1 1 1 1
2 [ba] 1 1 0 1 1 1 1 1 0 0
3 [ab] 1 1 0 1 1 0 1 1 1 0
4 [ba] 1 1 0 0 0 0 0 0 0 0

Table 3. Smalgo-I algorithm execution for P = abab and T = aaba. The column RDx

denotes the values of RShift(D̃x).

i R1 LSO(R1) D̃a RDb P (a, a, b) R2 LSO(R2) D̃b RDa P (a, b, a) R3

1 1 1 1 1 1 1 1 1 1 1 1
2 0 1 1 1 1 1 1 1 1 1 1
3 0 0 1 1 1 0 1 1 1 1 1
4 0 0 1 0 0 0 0 1 0 0 0

If a downward change has occurred, then we have to check whether an upward
change occurs at the next position. If an upward change has occurred, then we
have to check whether a downward or middle-ward change occurs at the next
position. The main problem here is how to tell whether the changes actually
occur.

To this end, the authors of the algorithm introduce three new types of masks,
namely up-masks up(x,y), down-masks down(x,y), and middle-masks middle(x,y),
which express whether an upward, a downward, and a middle-ward change can
occur at the particular position, respectively, with the endpoints of the edge
having labels x and y.

The authors of the algorithm now claim that to perform the above checks, it
is enough to save the previous down-mask and match its value with current up-
mask and Rj , or to save the previous up-mask and match its value with current
down-mask, middle-mask, and Rj , respectively. However, this way in both cases
we only check whether the change can occur, not whether it actually occurred.
This would lead not only to false positives (as shown in Section 5), but also to
false negatives.

Unfortunately, no more details are available about the algorithm in the orig-
inal paper. The pseudocode of Smalgo-II (which contains numerous errors)
performs something different and we include its analysis in the next section for
completeness. Nevertheless, the example presented in the Section 5 and in the
previous section still makes the pseudocode (with the small errors corrected)
report a false positive.

5.5 Analysis of the Pseudocode of Smalgo-II

In this section we analyze the pseudocode of the Smalgo-II algorithm as given
by Ahmed et al. in [1], we will perform equivalent transformation on the pseu-
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docode in order to understand the meaning of the checks the pseudocode actually
performs.

The original pseudocode is as follows.

Algorithm 4 Smalgo-II

Require: Text T, up-mask up, down-mask down, middle-mask middle,
P-mask pmask, D-mask D for given pattern p

1: R0 ← 2patternLength−1

2: checkUp← checkDown← 0
3: R0 ← R0 & DT0

4: R1 ← R0 ≫ 1
5: for j = 0 to (n− 2) do
6: Rj ← Rj & pmask(Tj,Tj+1) & DTj+1

7: temp← prevCheckUp≫ 1
8: checkUp← checkUp | up(Tj ,Tj+1)

9: checkUp← checkUp & ∼down(Tj ,Tj+1) & ∼middle(Tj ,Tj+1)

10: prevCheckUp← checkUp
11: Rj ← ∼ (temp & checkUp) & Rj

12: temp← prevCheckDown≫ 1
13: checkDown← checkDown | down(Tj ,Tj+1)

14: checkDown← checkDown & ∼up(Tj ,Tj+1)

15: prevCheckDown← checkDown
16: Rj ← ∼ (temp & checkDown) & Rj

17: if (Rj & 1) = 1 then

18: Match found ending at position (j − 1)

19: Rj+1 ← Rj ≫ 1
20: checkUp← checkUp≫ 1
21: checkDown← checkDown≫ 1

The pseudocode has several problems. First, in the first iteration of the cy-
cle, the algorithm uses the value of the variable prevCheckUp which was never
initialized. Second, the algorithm never adds new ones to the variable R and,
hence, can never report a match after position patternLength of the text. Third,
if the text is of the same length as the pattern, the algorithm only applies
the shift patternLength− 2 times to the original value of 2patternLength−1 (note
that in the first iteration it uses R0 and overwrites the value of R1) before the
last match check. Therefore, at the last check, the value could only drop to
2patternLength−1−patternLength+2 = 21 = 2 and the match check cannot be success-
ful. Also the reported position of the match does not make much sense.

Let us first correct all these easy problems.
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Algorithm 5 Smalgo-II

1: R0 ← 2patternLength−1

2: prevCheckUp← prevCheckDown← checkUp← checkDown← 0
3: R0 ← R0 & DT0

4: R1 ← R0 ≫ 1
5: for j = 0 to (n− 2) do
6: Rj+1 ← Rj+1 & pmask(Tj ,Tj+1) & DTj+1

7: temp← prevCheckUp≫ 1
8: checkUp← checkUp | up(Tj ,Tj+1)

9: checkUp← checkUp & ∼down(Tj ,Tj+1) & ∼middle(Tj ,Tj+1)

10: prevCheckUp← checkUp
11: Rj+1 ← ∼ (temp & checkUp) & Rj+1

12: temp← prevCheckDown≫ 1
13: checkDown← checkDown | down(Tj ,Tj+1)

14: checkDown← checkDown & ∼up(Tj ,Tj+1)

15: prevCheckDown← checkDown
16: Rj+1 ← ∼ (temp & checkDown) & Rj+1

17: if (Rj+1 & 1) = 1 then

18: Match found ending at position (j + 1)

19: Rj+2 ← (Rj+1 ≫ 1) | 2patternLength−1

20: checkUp← checkUp≫ 1
21: checkDown← checkDown≫ 1

If we now move the line setting prevCheckUp to checkUp after the line where
the check with the temp variable is performed and similarly with prevCheckDown,
we do not need the temp variable anymore. We also move the shifts of checkUp
and checkDown closer to where this variables are used. We only show the impor-
tant part of the algorithm.

Algorithm 6 Smalgo-II
. . .

5: for j = 0 to (n− 2) do
6: Rj+1 ← Rj+1 & pmask(Tj ,Tj+1) & DTj+1

7: checkUp← checkUp | up(Tj ,Tj+1)

8: checkUp← checkUp & ∼down(Tj ,Tj+1) & ∼middle(Tj ,Tj+1)

9: Rj+1 ← ∼ (prevCheckUp≫ 1 & checkUp) & Rj+1

10: prevCheckUp← checkUp
11: checkUp← checkUp≫ 1
12: checkDown← checkDown | down(Tj ,Tj+1)

13: checkDown← checkDown & ∼up(Tj ,Tj+1)

14: Rj+1 ← ∼ (prevCheckDown≫ 1 & checkDown) & Rj+1

15: prevCheckDown← checkDown
16: checkDown← checkDown≫ 1
17: if (Rj+1 & 1) = 1 then

18: Match found ending at position (j + 1)

19: Rj+2 ← (Rj+1 ≫ 1) | 2patternLength−1
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Now we swap the order of setting prevCheckUp to checkUp and the shift of
checkUp. As this makes prevCheckUp shifted by one, we remove the additional
shift in the check. Similarly for checkDown.

Algorithm 7 Smalgo-II
. . .

7: checkUp← checkUp | up(Tj ,Tj+1)

8: checkUp← checkUp & ∼down(Tj ,Tj+1) & ∼middle(Tj ,Tj+1)

9: Rj+1 ← ∼ (prevCheckUp & checkUp) & Rj+1

10: checkUp← checkUp≫ 1
11: prevCheckUp← checkUp
12: checkDown← checkDown | down(Tj ,Tj+1)

13: checkDown← checkDown & ∼up(Tj ,Tj+1)

14: Rj+1 ← ∼ (prevCheckDown & checkDown) & Rj+1

15: checkDown← checkDown≫ 1
16: prevCheckDown← checkDown

. . .

Now we institute checkUp into the check and move its computation after the
check.

Algorithm 8 Smalgo-II
. . .

6: Rj+1 ← Rj+1 & pmask(Tj,Tj+1) & DTj+1

7: Rj+1 ← ∼ (prevCheckUp & (checkUp | up(Tj ,Tj+1)
) & ∼ down(Tj ,Tj+1) & ∼

middle(Tj ,Tj+1)) & Rj+1

8: checkUp← (checkUp | up(Tj ,Tj+1)
) & ∼down(Tj ,Tj+1) & ∼middle(Tj ,Tj+1)

9: checkUp← checkUp≫ 1
10: prevCheckUp← checkUp
11: Rj+1 ← ∼ (prevCheckDown & (checkDown | down(Tj ,Tj+1)) & ∼ up(Tj ,Tj+1)

) &
Rj+1

12: checkDown← (checkDown | down(Tj ,Tj+1)) & ∼up(Tj ,Tj+1)

13: checkDown← checkDown≫ 1
14: prevCheckDown← checkDown

. . .

Now note that during the check, the content of prevCheckUp is exactly the
same as the content of checkUp, so we can remove prevCheckUp completely.
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Algorithm 9 Smalgo-II

1: R0 ← 2patternLength−1

2: checkUp← checkDown← 0
3: R0 ← R0 & DT0

4: R1 ← R0 ≫ 1
5: for j = 0 to (n− 2) do
6: Rj+1 ← Rj+1 & pmask(Tj ,Tj+1) & DTj+1

7: Rj+1 ← ∼ (checkUp & (checkUp | up(Tj ,Tj+1)
) & ∼ down(Tj ,Tj+1) & ∼

middle(Tj ,Tj+1)) & Rj+1

8: checkUp← (checkUp | up(Tj ,Tj+1)
) & ∼down(Tj ,Tj+1) & ∼middle(Tj ,Tj+1)

9: checkUp← checkUp≫ 1
10: Rj+1 ← ∼ (checkDown & (checkDown | down(Tj ,Tj+1)) & ∼ up(Tj ,Tj+1)

) &
Rj+1

11: checkDown← (checkDown | down(Tj ,Tj+1)) & ∼up(Tj ,Tj+1)

12: checkDown← checkDown≫ 1
13: if (Rj+1 & 1) = 1 then

14: Match found ending at position (j + 1)

15: Rj+2 ← (Rj+1 ≫ 1) | 2patternLength−1

Now we modify the expressions by laws of logic to arrive at the following
formulation.

Algorithm 10 Smalgo-II
. . .

7: Rj+1 ← Rj+1 & ( ∼checkUp | down(Tj ,Tj+1) | middle(Tj ,Tj+1))
8: checkUp ← (checkUp & ∼ down(Tj ,Tj+1) & ∼middle(Tj ,Tj+1)) | (up(Tj ,Tj+1)

&

∼down(Tj ,Tj+1) & ∼middle(Tj ,Tj+1))
9: checkUp← checkUp≫ 1
10: Rj+1 ← Rj+1 & ( ∼checkDown | up(Tj ,Tj+1)

)

11: checkDown← (checkDown & ∼up(Tj ,Tj+1)
) | (down(Tj ,Tj+1) & ∼up(Tj ,Tj+1)

)
12: checkDown← checkDown≫ 1

. . .

Now, if the first subexpression in the logical OR setting the new value of
checkUp is true, then the appropriate bit of Rj+1 was just set to 0 on the
previous line and filtrating this bit again in future is useless. Hence, we can omit
this part of the expression. We arrive at the following resulting pseudocode.
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Algorithm 11 Smalgo-II

1: R0 ← 2patternLength−1

2: checkUp← checkDown← 0
3: R0 ← R0 & DT0

4: R1 ← R0 ≫ 1
5: for j = 0 to (n− 2) do
6: Rj+1 ← Rj+1 & pmask(Tj ,Tj+1) & DTj+1

7: Rj+1 ← Rj+1 & ( ∼checkUp | down(Tj ,Tj+1) | middle(Tj ,Tj+1))
8: checkUp← up(Tj ,Tj+1)

& ∼down(Tj ,Tj+1) & ∼middle(Tj ,Tj+1)

9: checkUp← checkUp≫ 1
10: Rj+1 ← Rj+1 & ( ∼checkDown | up(Tj ,Tj+1)

)
11: checkDown← down(Tj ,Tj+1) & ∼up(Tj ,Tj+1)

12: checkDown← checkDown≫ 1
13: if (Rj+1 & 1) = 1 then

14: Match found ending at position (j + 1)

15: Rj+2 ← (Rj+1 ≫ 1) | 2patternLength−1

Now it is easy to see, that checkUp stores the information on whether an
upward-change must have occurred in the previous step (provided that there was
a prefix match) and this is compared with the information whether downward-
change or middle-change can occur. Similarly for the downward-change. This is
not sufficient to avoid false positives since sometimes both upward-change and
downward-change can occur (e.g, as in our counterexample), in which case no
filtration is performed at all.

5.6 Why the Flaw is Not Easily Repairable

Consider the following attempt to fix the Smalgo-I or Smalgo-II. After each
reported match we check for the validity of the result using a single linear-time
algorithm. This approach would rule out false positives but it ruins the time
complexity of the algorithms, since there are texts of arbitrary length t with
Θ(t) of reported occurrences.

Namely consider the text T = aa(baa)n for some positive n, pattern P = abab,
and let t = |T |. Note that n = (t − 2)/3 = Θ(t). Text T contains string aaba
on positions 1, 4, 7, . . . , 3(n− 1) + 1 (n occurrences in total) and string baab on
positions 3, 6, . . . , 3(n − 1) (n − 1 occurrences in total). Thus there are 2n − 1
occurrences which need to be checked since the n occurrences of aaba are reported
by the algorithms although they are not valid matches. Even if the checking for
correctness was done in linear time O(p), the algorithms will report up to Θ(t)
occurrences which means we have to run the checking algorithm Θ(t) times.
Therefore the time complexity of a version of the Smalgo algorithm corrected
this way is O(tp) even for a pattern length similar to the word-size of the target
machine.

Also, the flaw cannot be resolved by checking for subpaths of length 4 or any
larger constant, due to the following. Consider a pattern P = (ab)n and a text
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T = aa(ba)n−1 for any positive n. Obviously P does not swap match T , as they
are of the same length 2n, but T contains more a’s than P . However, there is a
swap permutation π for P such that (π(P ))[1...(2n−1)] = T[1...(2n−1)] and also a
swap permutation π′ for P such that (π′(P ))[2...(2n)] = T[2...(2n)]. For example if
we have P = abab and a text T = aabaabaabaa both Smalgo algorithms report
swap matches on positions {1, 3, 4, 6, 7} while the correct output would be {3, 6}.

6 Experiments

We implemented our Algorithm 3 (GSM), described in Section 3.2, the Bitwise
Parallel Cross Sampling (BPCS) algorithm by Cantone and Faro [10], the Bitwise
Parallel Backward Cross Sampling (BPBCS) algorithm by Campanelli et al. [9],
and the faulty SMALGO algorithm by Iliopoulos and Rahman [17]. All these
implementations are available online.3

We tested the implementations on three real-world datasets. The first dataset
(CH) is the 7th chromosome of the human genome4 which consists of 159M char-
acters from the standard ACTG nucleobases and N as for non-determined. Second
dataset (HS) is a partial genome of Homo sapiens from the Protein Corpus5 with
3.3M characters representing proteins encoded in 19 different symbols. The last
dataset (BIB) is the Bible text of the Cantenbury Corpus6 with 4.0M characters
containing 62 different symbols. For each length from 3, 4, 5, 6, 8, 9, 10, 12, 16, and
32 we randomly selected 10,000 patterns from each text and processed each of
them with each implemented algorithm.

All measured algorithms were implemented in C++ and compiled with -O3 in
gcc 6.3.0. Measurements were carried on an Intel Core i7-4700HQ processor
with 2.4GHz base frequency and 3.4GHz turbo with 8GiB of DDR3 memory at
1.6GHz. Time was measured using std::chrono::high resolution clock::now()

from the C++ chrono library. The resulting running times, shown in Table 4, were
averaged over the 10,000 patterns of the given length.

The results show, that the GSM algorithm runs approximately 23% faster
than Smalgo (ignoring the fact that Smalgo is faulty by design). Also, the
performance of GSM and BPCS is almost indistinguishable and according to
our experiments, it varies in the span of units of percents depending on the
exact CPU, cache, RAM and compiler setting. The seemingly superior average
performance of BPBCS is caused by the heuristics BPBCS uses; however, while
the worst-case performance of GSM is guaranteed, the performance of BPBCS for
certain patterns is worse than that of GSM. Also note that GSM is a streaming
algorithm while the others are not.

Table 5 visualizes the accurateness of Smalgo-I with respect to its flaw by
comparing the number of occurrences found by the respective algorithms. The

3 http://users.fit.cvut.cz/blazeva1/gsm.html
4 ftp://ftp.ensembl.org/pub/release-90/fasta/homo_sapiens/dna/
5 http://www.data-compression.info/Corpora/ProteinCorpus/
6 http://corpus.canterbury.ac.nz/descriptions/large/bible.html

http://users.fit.cvut.cz/blazeva1/gsm.html
ftp://ftp.ensembl.org/pub/release-90/fasta/homo_sapiens/dna/
http://www.data-compression.info/Corpora/ProteinCorpus/
http://corpus.canterbury.ac.nz/descriptions/large/bible.html
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Table 4. Comparison of the running times in milliseconds. Each value is the average
over 10,000 patterns randomly selected from the text.

Data
(|Σ|)

Algor.
Pattern Length

3 4 5 6 8 9 10 12 16 32

CH
(5)

SMALGO 426 376 355 350 347 347 344 347 345 345

BPCS 398 353 335 332 329 329 326 328 329 327

BPBCS 824 675 555 472 366 328 297 257 199 112

GSM 394 354 338 333 332 331 329 333 331 333

HS
(19)

SMALGO 4.80 4.73 4.72 4.74 4.70 4.71 4.71 4.71 4.72 4.70

BPCS 4.43 4.36 4.36 4.36 4.34 4.33 4.34 4.34 4.35 4.34

BPBCS 7.16 5.80 4.79 4.05 3.03 2.70 2.44 2.06 1.62 0.95

GSM 4.42 4.38 4.41 4.46 4.45 4.45 4.45 4.44 4.53 4.48

BIB
(62)

SMALGO 8.60 8.38 8.29 8.34 8.32 8.33 8.30 8.35 8.35 8.33

BPCS 7.53 7.36 7.28 7.29 7.26 7.27 7.26 7.28 7.29 7.25

BPBCS 12.43 10.03 8.26 7.03 5.44 4.93 4.52 3.93 3.19 1.88

GSM 7.52 7.37 7.31 7.35 7.38 7.40 7.38 7.42 7.44 7.40

Table 5. Found occurrences across datasets: The value is simply the sum of occurrences
over all the patterns.

Algorithm
Dataset

CH HS BIB

SMALGO 86243500784 51136419 315612770

rest 84411799892 51034766 315606151

ratio of false positives to true positives for the Smalgo-I was: CH 2.17%, HS
0.20% and BIB 0.002%.
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