Skip to main content

Epidemic Intelligence Statistical Modelling for Biosurveillance

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10693))

Abstract

The last two decades, the emergence of new infectious diseases and the occasional rapid increase of their cases worldwide, the intense concern about bioterrorism, pandemic influenza or/and other Public Health threats, and the increasing volumes of epidemiological data, are all key factors that made necessary the development of advanced biosurveillance systems. Additionally, these factors have resulted in the awakening of the scientific community for introducing new and more efficient epidemic outbreak detection methods. As seen from above, the biosurveillance is a dynamic scientific activity which progresses and requires systematic monitoring of developments in the field of health sciences and biostatistics. This paper deals with the development of statistical regression modelling techniques in order to provide guidelines for the selection of the optimal periodic regression model for early and accurate outbreak detection in an epidemiological surveillance system, as well as for its proper use and implementation.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Brillman, J.C., Burr, T., Forslund, D., Joyce, E., Picard, R., Umland, E.: Modeling emergency department visit patterns for infectious disease complaints: results and application to disease surveillance. BMC Med. Inform. Decis. Mak. 5(1), 4 (2005)

    Article  Google Scholar 

  2. Buckeridge, D.L., Burkom, H.S., Campell, M., Hogan, W.R., Moore, A.: Algorithms for rapid outbreak detection: a research synthesis. J. Biomed. Inform. 38, 99–113 (2005)

    Article  Google Scholar 

  3. Chai, T., Draxler, R.R.: Root mean square error (RMSE) or mean absolute error (MAE)?-Arguments against avoiding RMSE in the literature. Geosci. Model Dev. 7, 1247–1250 (2014)

    Article  Google Scholar 

  4. Costagliola, D., Flahault, A., Galinec, D., Garnerin, P., Menares, J., Valleron, A.-J.: When is the epidemic warning cut-off point exceeded? Eur. J. Epidemiol. 10, 475–476 (1994)

    Article  Google Scholar 

  5. Costagliola, D., Flahault, A., Galinec, D., Garnerin, P., Menares, J., Valleron, A.-J.: A routine tool for detection and assessment of epidemics of influenza-like syndromes in France. Am. J. Public Health 81, 97–99 (1991)

    Article  Google Scholar 

  6. Farrington, C.P., Andrews, N.: Outbreak detection: Application to infectious disease surveillance. In: Brookmeyer, R., Stroup, D.F. (eds.) Monitoring the Health of Populations: Statistical Principles & Methods for Public Health Surveillance, pp. 203–231. Oxford University Press, Oxford (2004)

    Google Scholar 

  7. Fleming, D.M., Rotar-Pavlic, D.: Information from primary care: its importance and value. A comparison of information from Slovenia and England and Wales, viewed from the “Health 21” perspective. Eur. J. Public Health 12, 249–253 (2002)

    Article  Google Scholar 

  8. Heath, I., Smeeth, L.: Tackling health inequalities in primary care [Editorial]. Br. Med. J. 318, 1020–1021 (1999)

    Article  Google Scholar 

  9. Housworth, J., Langmuir, A.D.: Excess mortality from epidemic influenza, 1957–1966. Am. J. Epidemiol. 100, 40–48 (1974)

    Article  Google Scholar 

  10. Hulth, A., Andrews, N., Ethelberg, S., Dreesman, J., Faensen, D., van Pelt, W., Schnitzler, J.: Practical usage of computer-supported outbreak detection in five European countries. Eurosuveillance 15(36), 1–6 (2010). pii=19658

    Google Scholar 

  11. Langmuir, A.D.: The surveillance of communicable diseases of national importance. In: Buck, C., Liopis, A., Najera, E., Terris, M., (eds.) The Challenge of Epidemiology. Issues and Selected Readings, 3rd edn., pp. 855–867. Pan American Health Organisation, Washington, DC (1995)

    Google Scholar 

  12. Last, J.M.: A Dictionary of Epidemiology. Oxford University Press, Oxford (1995)

    Google Scholar 

  13. Lui, K.J., Kendal, A.P.: Impact of influenza epidemics on mortality in the United States from October 1972 to May 1985. Am. J. Public Health 77, 712–716 (1987)

    Article  Google Scholar 

  14. Macmahon, B., Trichopoulos, D.: Epidemiology: Principles and Methods. Little, Brown and Co., Boston (1996)

    Google Scholar 

  15. Norbury, M., Mercer, S.W., Gillies, J., Furler, J., Watt, G.C.M.: Time to care: tackling health inequalities through primary care. Fam. Pract. 28, 1–3 (2011)

    Article  Google Scholar 

  16. Olson, D.R., Simonsen, L., Edelson, P.J., Morse, S.S.: Epidemiological evidence of an early wave of the 1918 influenza pandemic in New York City. Proc. Natl. Acad. Sci. USA 102, 11059–11063 (2005)

    Article  Google Scholar 

  17. Pelat, C., Boëlle, P.-Y., Cowling, B.J., Carrat, F., Flahault, A., Ansart, S., Valleron, A.-J.: Online detection and quantification of epidemics. BMC Med. Inform. Decis. Mak. 7, 29 (2007). https://doi.org/10.1186/1472-6947-7-29

  18. Sebastiani, P., Mandl, K.: Biosurveillance and outbreak detection. In: Data Mining: Next Generation Challenges and Future Directions, pp. 185–198 (2004)

    Google Scholar 

  19. Serfling, R.: Methods for current statistical analysis of excess pneumonia-influenza deaths. Public Health Rep. 78, 494–506 (1963)

    Article  Google Scholar 

  20. Shmueli, G., Burkom, H.: Statistical challenges facing early outbreak detection in biosurveillance. Technometrics 52, 39–51 (2010)

    Article  MathSciNet  Google Scholar 

  21. Simonsen, L., Reichert, T.A., Viboud, C., Blackwelder, W.C., Taylor, R.J., Miller, M.A.: Impact of influenza vaccination on seasonal mortality in the US elderly population. Arch. Intern. Med. 165, 265–272 (2005)

    Article  Google Scholar 

  22. Sonesson, C., Bock, D.: A review and discussion of prospective statistical surveillance in public health. J. Royal Stat. Soc. Ser. A 166, 5–21 (2003)

    Article  MathSciNet  Google Scholar 

  23. Starfield, B., Shi, L., Mackinko, J.: Contribution of primary care to health systems and health. Milbank Q. 83, 457–502 (2005)

    Article  Google Scholar 

  24. Stroup, D.F., Williamson, G.D., Herndon, J.L., Karon, J.M.: Detection of aberrations in the occurence of notifiable diseases surveillance data. Stat. Med. 8, 323–329 (1989)

    Article  Google Scholar 

  25. Teutsch, S.M., Thacker, S.B.: Planning a public health surveillance system. Epidemiol. Bull. 16, 1–6 (1995)

    Google Scholar 

  26. Thompson, W.W., Shay, D.K., Weintraub, E., Brammer, L., Cox, N., Anderson, L.J., Fukuda, K.: Mortality associated with influenza and respiratory syncytial virus in the United States. JAMA 289, 179–186 (2003)

    Article  Google Scholar 

  27. Unkel, S., Farrington, C.P., Garthwaite, P.H., Robertson, C., Andrews, N.: Statistical methods for the prospective detection of infectious disease outbreaks: a review. J. Royal Stat. Soc. Ser. A 175, 49–82 (2012)

    Article  MathSciNet  Google Scholar 

  28. Vellinga, A., Van Loock, F.: The dioxin crisis as experiment to determine poultry-related campylobacter enteritis. Emerg. Infect. Dis. 8, 19–22 (2002)

    Article  Google Scholar 

  29. Vergu, E., Grais, R.F., Sarter, H., Fagot, J.P., Lambert, B., Valleron, A.J., Flahault, A.: Medication sales and syndromic surveillance, France. Emerg. Infect. Dis. 12, 416–421 (2006)

    Article  Google Scholar 

  30. Viboud, C., Boelle, P.Y., Pakdaman, K., Carrat, F., Valleron, A.J., Flahault, A.: Influenza epidemics in the United States, France, and Australia, 1972–1997. Emerg. Infect. Dis. 10, 32–39 (2004)

    Article  Google Scholar 

  31. World Health Organization (2017). http://www.who.int/topics/public_health_surveillance/en/

Download references

Acknowledgments

The postdoctoral research of the first author is financially supported by a postdoc scholarship awarded by “IKY FELLOWSHIPS OF EXCELLENCE FOR POSTGRADUATE STUDIES IN GREECE-SIEMENS PROGRAM”. The supervision of the postdoctoral research work is carried out by the second author. The work was carried out at the Lab of Statistics and Data Analysis of the University of the Aegean. The authors would like to thank the Department of Epidemiological Surveillance and Intervention of the Hellenic Center for Disease Control and Prevention for providing the influenza-like illness (ILI) rate data, collected weekly through the sentinel surveillance system.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christina Parpoula .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Parpoula, C., Karagrigoriou, A., Lambrou, A. (2017). Epidemic Intelligence Statistical Modelling for Biosurveillance. In: Blömer, J., Kotsireas, I., Kutsia, T., Simos, D. (eds) Mathematical Aspects of Computer and Information Sciences. MACIS 2017. Lecture Notes in Computer Science(), vol 10693. Springer, Cham. https://doi.org/10.1007/978-3-319-72453-9_29

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-72453-9_29

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-72452-2

  • Online ISBN: 978-3-319-72453-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics