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Code-based Key Encapsulation

from McEliece’s Cryptosystem

Edoardo Persichetti

Florida Atlantic University

Abstract. In this paper we show that it is possible to extend the frame-
work of Persichetti’s Nierreiter-based KEM [11] and create a secure KEM
based on the McEliece protocol. This provides greater flexibility in the
application of coding theory as a basis for cryptographic purposes.

1 Introduction

A Hybrid Encryption scheme is a cryptographic protocol that uses public-key
encryption as means to securely exchange a key, while delegating the task of
encrypting the body of the message to a symmetric scheme. The public-key
component is known as Key Encapsulation Mechanism (KEM). The first code-
based KEM, utilizing the Niederreiter framework [9], was presented by Per-
sichetti in [11] and successively implemented in [3]. In this paper, we expand on
Persichetti’s work and prove that if we use the McEliece approach [7] we are
still able to obtain a secure KEM. This is a novel construction, with a great
potential impact, especially considering NIST’s recent call for papers for secure
post-quantum primitives [1].

2 Preliminaries

2.1 The McEliece Cryptosystem

We consider here a more “modern” version compared to R. J. McEliece’s original
cryptosystem [7]. In the description that we use (Table 2, Appendix A), we
consider families of codes to which is possible to associate an efficient decoding
algorithm; we denote this with Decode∆, where ∆ is a description of the selected
code that depends on the specific family considered. For instance, in the case of
binary Goppa codes, the associated algorithm is Patterson’s algorithm [10] and
∆ is given by a Goppa polynomial g(x) and its support (α1, . . . , αn). For MDPC
codes [8], decoding is given by Gallager’s bit-flipping algorithm [6] and ∆ is a
sparse parity-check matrix H for the code. Also, we denote with Wq,n,w the set
of words of Fn

q with Hamming weight w.

The security of the scheme follows from the two following computational
assumptions.

Assumption 1 (Indistinguishability) The k×n matrix G output by KeyGen

is computationally indistinguishable from a same-size uniformly chosen matrix.
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Assumption 2 (Decoding Hardness) Let G be a generator matrix for an
[n, k] linear code C over Fq and y a word of Fn

q . It is hard to find a codeword
c ∈ C with d(c, y) ≤ w.

Assumption 2 is also known as the General Decoding Problem (GDP), which
was proved to be NP-complete in [2], and it is believed to be hard on average,
and not just on the worst-case instances (see for example Sendrier [12]).

2.2 Encapsulation Mechanisms and the Hybrid Framework

A Key Encapsulation Mechanism (KEM) is essentially a Public-Key Encryption
scheme (PKE), with the exception that the encryption algorithm takes no input
apart from the public key, and returns a pair (K,ψ0). The string K has fixed
length ℓK , specified by the KEM, and ψ0 is an “encryption” of K in the sense
that Decsk(ψ0) = K. The key K produced by the KEM is then passed on to
a Data Encapsulation Mechanism (DEM), which is in charge of encrypting the
actual message. The formulation of a DEM, that normally comprises additional
tools for security such as Message Authentication Codes (MAC), is outside the
scope of this paper, and we refer the reader to [5] for more details.

A KEM is required to be sound for at least all but a negligible portion of
public key/private key pairs, that is, if Encpk( ) = (K,ψ0) then Decsk(ψ0) = K
with overwhelming probability.

The security notions for a KEM are similar to the corresponding ones for
PKE schemes. The one we are mainly interested in (representing the highest
level of security) is IND-CCA, which we describe below.

Definition 1. The adaptive Chosen-Ciphertext Attack game for a KEM pro-
ceeds as follows:

1. Query a key generation oracle to obtain a public key pk.

2. Make a sequence of calls to a decryption oracle, submitting any string ψ0 of
the proper length. The oracle will respond with DecKEMsk (ψ0).

3. Query an encryption oracle. The oracle runs EncKEMpk to generate a pair

(K̃, ψ̃0), then chooses a random b ∈ {0, 1} and replies with the “challenge”
ciphertext (K∗, ψ̃0) where K∗ = K̃ if b = 1 or K∗ is a random string of
length ℓK otherwise.

4. Keep performing decryption queries. If the submitted ciphertext is ψ∗

0
, the

oracle will return ⊥.

5. Output b∗ ∈ {0, 1}.

The adversary succeeds if b∗ = b. More precisely, we define the advantage of A
against KEM as

AdvKEM(A, λ) =
∣

∣

∣
Pr[b∗ = b]−

1

2

∣

∣

∣
. (1)

We say that a KEM is secure if the advantage AdvKEM of any polynomial-time
adversary A in the above CCA attack model is negligible.
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It has then been proved that, given a CCA adversaryA for the hybrid scheme
(HY), there exist an adversary A1 for KEM and an adversary A2 for DEM
running in roughly the same time as A, such that for any choice of the security
parameter λ we have AdvHY(A, λ) ≤ Adv′KEM(A1, λ)+AdvDEM(A2, λ). See Cramer
and Shoup [5, Th. 5] for a complete proof.

3 The New KEM Construction

The KEM we present here follows closely the McEliece framework, and is thus
based on the hardness of GDP. Note that, compared to the original PKE, a
slight modification is introduced in the decryption process. As we will see later,
this is necessary for the proof of security. The ephemeral key K is obtained via
a Key Derivation Function KDF (see Appendix B).

Table 1: The McEliece KEM.

Setup Fix public system parameters q, n, k, w ∈ N, then choose a family F of w-
error-correcting [n, k] linear codes over Fq.

KeyGen Choose a code C ∈ F with code description ∆ and compute a generator matrix

G. Generate a random s
$
←− F

k
q . Public key is G and private key is (∆, s).

Enc On input a public key G choose random words x ∈ F
k
q and e ∈ Wq,n,w, then

compute K = KDF(x||e, ℓK), ψ0 = xG+ e and return the key/ciphertext pair
(K,ψ0).

Dec On input a private key ∆ and a ciphertext ψ0, compute Decode∆(ψ0). If the
decoding succeeds, use its output (x, e) to compute K = KDF(x||e, ℓK). Oth-
erwise, set K = KDF(s||ψ0, ℓK). Return K.

If the ciphertext is correctly formed, decoding will always succeed, hence the
KEM is perfectly sound. Furthermore, it is possible to show that, even if with this
formulation DecKEM never fails, there is no integrity loss in the hybrid encryption
scheme thanks to the check given by the MAC.
We prove the security of the KEM in the following theorem.

Theorem 1. Let A be an adversary in the random oracle model for the Nieder-
reiter KEM as in Definition 1. Let θ be the running time of A, nKDF and nDec be
two bounds on, respectively, the total number of random oracle queries and the to-
tal number of decryption queries performed by A, and set N = qk ·|Wq,n,w|. Then
there exists an adversary A′ for GDP such that AdvKEM(A, λ) ≤ AdvGDP(A

′, λ)+
nDec/N . The running time of A′ will be approximately equal to θ plus the cost
of nKDF matrix-vector multiplications and some table lookups.

Proof. We replace KDF with a random oracle H mapping elements of the form
(x, e) ∈ F

k
q×Wq,n,w to bit strings of length ℓK . To prove our claim, we proceed as
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follows. Let’s call G0 the original attack game played by A, and S0 the event that
A succeeds in game G0. We define a new game G1 which is identical to G0 except
that the game is halted if the challenge ciphertext ψ∗

0
= x∗G+e∗ obtained when

querying the encryption oracle had been previously submitted to the decryption
oracle: we call this event F1. Since the number of valid ciphertexts is N , we have

Pr[F1] ≤ nDec/N . It follows that
∣

∣

∣
Pr[S0] − Pr[S1]

∣

∣

∣
≤ nDec/N , where S1 is the

event that A succeeds in game G1. Next, we define game G2 which is identical
to G1 except that we generate the challenge ciphertext ψ∗

0
at the beginning of

the game, and we halt if A ever queries H at (x∗||e∗): we call this event F2.
By construction, since H(x∗||e∗) is undefined, it is not possible to tell whether
K∗ = K, thus we have Pr[S2] = 1/2, where S2 is the event that A succeeds in

game G2. We obtain that
∣

∣

∣
Pr[S1] − Pr[S2]

∣

∣

∣
≤ Pr[F2] and we just need to bound

Pr[F2].
We now construct an adversary A′ against GDP. A′ interacts with A and is able
to simulate the random oracle and the decryption oracle with the help of two
tables T1 and T2, initially empty, as described below.

Key Generation: On input the instance (G, y∗, w) of GDP, return the public
key pk = G.

Challenge queries: When A asks for the challenge ciphertext:

1. Generate a random string K∗ of length ℓK .

2. Set ψ∗

0
= y∗.

3. Return the pair (K∗, ψ∗

0
).

Random oracle queries: Upon A’s random oracle query (x, e) ∈ F
k
q ×Wq,n,w:

1. Look up (x, e) in T1. If (x, e, y,K) is in T1 for some y and K, return K.

2. Compute y = xG+ e.

3. If y = y∗ then A′ outputs c = xG and the game ends.

4. Look up y in T2. If (y,K) is in T2 for some K (i.e. the decryption oracle has
been evaluated at y), return K.

5. Set K to be a random string of length ℓK and place (x, e, y,K) in table T1.

6. Return K.

Decryption queries: Upon A’s decryption query y ∈ F
n
q :

1. Look up y in T2. If (y,K) is in T2 for some K, return K.

2. Look up y in T1. If (x, e, y,K) is in T1 for some x, e and K (i.e. the random
oracle has been evaluated at (x, e) such that y = xG+ e), return K.

3. Generate a random string K of length ℓK and place the pair (y,K) in T2.

4. Return K.
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Note that, in both random oracle and decryption queries, we added the initial
steps to guarantee the integrity of the simulation, that is, if the same value is
queried more than once, the same output is returned. A fundamental issue is
that it is impossible for the simulator to determine if a word is decodable or not.
If the decryption algorithm returned ⊥ if and only if a word was not decodable,
then it would be impossible to simulate decryption properly. We have resolved
this problem by insisting that the KEM decryption algorithm always outputs a
hash value. With this formulation, the simulation is flawless and A′ outputs a
solution to the GDP instance with probability equal to Pr[F2]. ⊓⊔

4 Conclusions

In this paper, we have introduced a key encapsulation method based on the
McEliece cryptosystem. This novel approach enjoys a simple construction and a
tight security proof as for the case of the Niederreiter KEM presented in [11].
We believe that our new construction will offer an important alternative while
designing quantum-secure cryptographic primitives.
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A The McEliece Cryptosystem

Table 2: The McEliece cryptosystem.

Setup Fix public system parameters q, n, k, w ∈ N, then choose a family F of w-
error-correcting [n, k] linear codes over Fq.

K
Kpubl the set of k × n matrices over Fq.

Kpriv the set of code descriptions for F .

P The vector space F
k
q .

C The vector space F
n
q .

KeyGen Generate at random a code C ∈ F given by its code description ∆ and compute
a public1 generator matrix G. Publish the public key G ∈ Kpubl and store the
private key ∆ ∈ Kpriv.

Enc On input a public key G ∈ Kpubl and a plaintext φ = x ∈ P, choose a random
error vector e ∈ Wq,n,w, then compute y = xG + e and return the ciphertext
ψ = y ∈ C.

Dec On input the private key ∆ ∈ Kpriv and a ciphertext ψ ∈ C, compute
Decode∆(ψ). If the decoding succeeds, return its output φ = x. Otherwise,
output ⊥.

B Other Cryptographic Tools

In this section we introduce another cryptographic tool that we need for our
construction.

Definition 2. A Key Derivation Function (KDF) is a function that takes as
input a string x of arbitrary length and an integer ℓ ≥ 0 and outputs a bit string
of length ℓ.

A KDF is modelled as a random oracle, and it satisfies the entropy smoothing
property, that is, if x is chosen at random from a high entropy distribution,
the output of KDF should be computationally indistinguishable from a random
length-ℓ bit string.

Intuitively, a good choice for a KDF could be a hash function with a variable
(arbitrary) length output, such as the new SHA-3, Keccak [4].

1 While the original version proposes to use scrambling matrices S and P (see [9] for
details), this is not necessary and alternative methods can be used, depending on
the chosen code family.
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