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Abstract. Contrary to many previous studies on population protocols
using the uniformly random scheduler, we consider a more general non-
uniform case. Here, pair-wise interactions between agents (moving and
communicating devices) are assumed to be drawn non-uniformly at ran-
dom. While such a scheduler is known to be relevant for modeling many
practical networks, it is also known to make the formal analysis more
difficult.
This study concerns data collection, a fundamental problem in mobile
sensor networks (one of the target networks of population protocols).
In this problem, pieces of information given to the agents (e.g., sensed
values) should be delivered eventually to a predefined sink node without
loss or duplication. Following an idea of the known deterministic proto-
col TTF solving this problem, we propose an adapted version of it and
perform a complete formal analysis of execution times in expectation and
with high probability (w.h.p.).
We further investigate the non-uniform model and address the impor-
tant issue of energy consumption. The goal is to improve TTF in terms
of energy complexity, while still keeping good time complexities (in ex-
pectation and w.h.p.). Namely, we propose a new parametrized protocol
for data collection, called lazy TTF, and present a study showing that a
good choice of the protocol parameters can improve energy performances
(compared to TTF), at a slight expense of time performance.

1 Introduction

Population protocols have been introduced in [7] as a model for passively mobile
sensor networks (cf. the journal version [8]). In this model, tiny indistinguishable
agents with bounded memory move unpredictably and interact in pairs. That is,
when two agents are sufficiently close to each other, they can communicate (i.e.,
interact). During an interaction, they exchange and update their respective states
according to a transition function (the protocol). Such successive interactions
contribute to the realization of some global task.

The fact that agent moves are unpredictable is usually modeled by assuming
the uniformly random scheduler ([8, 9, 6, 11]). That is, the interactions between



any two agents are drawn uniformly at random. However, for some practical sen-
sor networks, this assumption may be unrealistic. Consider, for instance, agents
moving at different speeds. In this case, an agent interacts more frequently with
a faster agent than with a slower one. In other networks, certain agents may be
frequently prevented from communicating with some others, because they move
in different limited areas, or disfunction from time to time, etc. In all these ex-
amples, the interactions are clearly not uniformly random. There are thus strong
arguments for enhancing the basic model.

This paper initiates the study of non-uniform schedulers in the context of
population protocols. Considering the scheduler as the generator of sequences of
pairwise interactions, non-uniform means that the next interacting pair (i, j) is
chosen with a non-uniform probability Pi,j , depending on i and j.

As a supplementary justification for studying a non-uniform scheduler, notice
that many experimental and analytical studies of different (finite boundary)
mobile sensor networks show and exploit (respectively) the assumption that
the inter-contact time of two agents (the time period between two successive
interactions of the same two mobile agents) is distributed exponentially (cf.
[32, 15, 38, 22]). Similarly, under a non-uniformly random scheduler, it appears
that the inter-contact time Ti,j , of any two agents i and j, follows a geometric
distribution (P [Ti,j = t] = (1 − Pi,j)t−1Pi,j), which is the discrete analogue of
the exponential case (observed in practical mobile networks).

The counterpart of considering a non-uniform scheduler is a more complex
analysis. Though, it remains feasible in certain cases, as it is shown in this
paper. To illustrate this point, consider a fundamental task for mobile sensors,
data collection (or data gathering). In this task, each agent has initially an input
value (for instance, a sensed value). Each value must be gathered exactly once (as
a multi-set) by a special agent which we call the base station. In the context of
population protocols (assuming non-random schedulers), several data collection
protocols have been proposed and their complexity in time has been studied [12].
Notice that the analysis there was only for the worst case. We are not aware of
any previous results concerning the average complexity of these protocols. The
current paper presents protocols that basically use the simple ideas of the TTF
(Transfer To the Faster) protocol of [12]. The new protocols are adapted to a
non-uniform scheduler and improve energy consumption, as explained further.

First, consider the original version of TTF. It uses a deterministic parameter
called cover time, which is an upper bound on the time, counted in the number
of global interactions, for an agent to interact with all the others. The data
transfer between the agents in TTF depends on the comparison of cover times
of two interacting agents. Here we follow this idea. However, as the scheduler
is probabilistic, we adapt the corresponding definition of the cover time to be
the expected (instead of the maximum) number of interactions for an agent to
interact with every other agent (see Sect. 2).

The complexity analysis starts with the proofs of two lower bounds on the
expected convergence time of any protocol solving data collection (Sect. 3). Then,
an analysis of execution times in expectation and with high probability (w.h.p.),



for the new version of TTF, is given (Sect. 4). The complexity in expectation
indicates how the protocol is good in average, while the complexity w.h.p. tells
how it is good almost all the time. We obtain explicit bounds, thus justifying
the relevance of the enhanced model in protocol analysis and its operability.

We further investigate the non-uniform model by addressing also energy com-
plexity, which is known to be a crucial issue for sensor networks. The goal is to
improve energy consumption of TTF, while keeping good time complexity. For
that, we propose a new parametrized protocol, called lazy TTF (Sect. 5). As
opposed to TTF, it does not execute necessarily the transition of TTF result-
ing from an interaction. Instead, during an interaction (i, j), TTF is executed
with probability pi (depending on agent i, playing the role of initiator in the
interaction). Analysis and the corresponding numerical study show that a good
choice of the parameters pi results in lower energy consumption. To find such
parameters, we formulate and solve a polynomial-time optimization program.
The resulting optimized lazy TTF is compared to TTF in respect with time
and energy complexity (Sect. 6). For this analysis, we adopt the energy scheme
proposed for population protocols in [37].

Due to the lack of space, most of the proofs and the survey on additional
related work have been moved to the appendix.

2 Model and Definitions

Population protocols. The system is represented by an interaction graph G =
(A,E), a table T of transition rules and a scheduler S(P ). All are defined below.

A set A consists of n anonymous agents and is also called a population. An
agent i ∈ A represents a finite state sensing and communicating mobile device,
which can be seen as a finite state machine. The size of the population n is
unknown to the agents. Among the agents, there is a distinguishable one called
the base station (BST), which can be as powerful as needed, in contrast with
the resource-limited agents. The non-BST agents are also called mobile. Each
agent has a state that is taken from a finite set of states which is the same for
all mobile agents, but possibly different for the base station.

A directed edge (i, j) ∈ E intuitively represents a possible interaction be-
tween two agents. That is, if such an edge exists, then the scheduler (see below)
is allowed to schedule an event, called interaction, between i, called then the
initiator, and j, called the responder for that event. In this work, we consider
only complete interaction graphs. What happens in the interaction event is now
described.

When two agents i, in state p, and j, in state q, interact (meet), they execute
a transition (p, q) → (p′, q′). As a result, i changes its state from p to p′ and
j from q to q′. The table T of all the transition rules defines the population
protocol. A protocol (respectively, its transition rules) are called deterministic,
if for every pair of states (p, q), there is exactly one (p′, q′) such that (p, q) →
(p′, q′). Otherwise, they are non-deterministic. Note that, as interactions are



supposed to be asymmetric (with one agent acting as the initiator and the other
as the responder), the transition rules for (p, q) and (q, p) may be different.

A configuration of the system is defined by the vector of agents’ states. If,
in a given configuration C, a configuration C ′ can be obtained by executing
one transition of the protocol (between two interacting agents), it is denoted by
C → C ′. An execution of a protocol is a sequence of configurations C0, C1, C2, . . .
such that C0 is the initial configuration and for each i ≥ 0, Ci → Ci+1. We
consider the number of interactions in an execution as the time reference, i.e.,
each interaction adds one time unit to the global time. This is similar to the
step complexity, a common measure in population protocols (cf. [8, 2]) and in
distributed computing in general [34].

The sequence of the corresponding interactions in an execution is provided
by an external entity called scheduler.

Non-uniformly random scheduler. Such a scheduler, denoted by S(P ), is
defined by a matrix of probabilities P ∈ Rn×n. During an execution, S(P )
chooses the next pair of agents (i, j) to interact (taking i as initiator and j as
responder) with the probability Pi,j . Notice that, in the case of the matrix with
entries Pi,j = 1/n(n− 1) for i 6= j, and Pi,i = 0, the scheduler chooses each pair
of agents uniformly at random for each next interaction (i.e., the scheduler is
uniformly random).

The matrix P satisfies
n∑
i=1

n∑
j=1

Pi,j = 1 and ∀i ∈ {1, ..., n}, Pi,i = 0, since inter-

actions are pairwise. Moreover, for any edge (i, j) in the interaction graph G,
Pi,j > 0. As the considered here G is complete, every pair of agents is chosen
infinitely often with probability 1.
For a given P , one can compute the expected (finite) time for a given agent i to
meet all the others. We call it cover time of agent i and denote it by cvi. By
resolving the coupon collector’s problem with a non-uniform distribution [21],
we obtain the cover time of each agent: cvi =

∫∞
0

(1−
∏
j 6=i(1−e−(Pi,j+Pj,i)t))dt.

Similarly to [12], for two agents i and j, if cvi < cvj , we say that i is faster than
j, and j is slower than i. If cvi = cvj , i and j are said to be in the same cate-
gory of cover times. We denote by m the number of different categories of cover
times. We emphasize that agents are not assumed to know their cvs (to conform
with the finite state population protocol model). Instead, we do assume that
two interacting agents can compare their respective cvs. For instance, this can
be implemented by comparing categories instead of cvs, in applications where
the overall number of categories is likely to be uniformly bounded.

Data Collection. Each agent, except the base station, owns initially a constant
input value. Eventually, every input value has to be delivered to the base station,
and exactly once (as a multi-set). When this happens, we say that a terminal
configuration or simply termination has been reached. A protocol is said to solve
data collection if termination is reached in every execution of the protocol.
In the sequel, when describing or analyzing a protocol, the term “transfer an



input value (or token) from agent i to j” means copy it to j’s memory and erase
it from the memory of i. In particular, this prevents loss or duplication of input
values. Moreover, in this preliminary study, we make the assumption that every
agent has enough memory to store n values. This assumption is common in the
literature [23, 6].

Time Complexity Measures. The convergence time of a data collection pro-
tocol P can be evaluated in two ways: first, in terms of expected time until
termination, denoted by TE(P), and second, in terms of time until termination
w.h.p.3, denoted by Twhp(P).

Remark 1. The notion of parallel time, which is common when considering the
uniformly random scheduler (cf. [9, 10]), is not used in this paper. When using
this measure of time, it is assumed that each agent participates in an expected
numberΘ(1) of interactions per time unit. With the uniformly random scheduler,
this time measure is asymptotically equal to the number of interactions divided
by n. However, with non-uniformly random scheduler, this is no more true.

3 Lower Bounds on the Expected Convergence Time

We now give two nontrivial lower bounds on the expected convergence time of
data collection protocols. The first one (Th. 1) only depends on the number of
agents. The second one (Th. 2) depends on the specific values of the probability
matrix P used by the scheduler. The bounds are incomparable in general. To
obtain the bounds, we observe that, for performing data collection, each agent
has to interact at least once (otherwise, its value simply won’t be delivered),
and we compute the expected time ensuring that. The proof of Th. 1 uses an
analogy with a generalization of the classical coupon collector’s problem, which
we introduce next.

Let k be a positive integer. Given a probability distribution (p1, . . . , pk) on
[k] = {1, . . . , k}, the corresponding k-coupon collector’s problem is defined by its
coupon sequence (X1, X2, . . . ) of independent and identically distributed (i.i.d.)
random variables with P(Xt = i) = pi for all i ∈ [k] and all t ≥ 0. The k-coupon
collector’s problem’s expected time is the expectation of the earliest time T such
that {X1, . . . , XT } = [k], i.e., all coupons were collected at least once.

More generally, given a set A of subsets of [k] such that
⋃
A∈AA = [k],

and a probability distribution (pA) on A, the corresponding A-group k-coupon
collector’s problem is defined by its coupon group sequence (X1, X2, . . . ) of i.i.d.
random variables with P(Xt = A) = pA for all A ∈ A and all t ≥ 0. Its expected

time is the expectation of the earliest time T such that
⋃T
t=1Xt = [k], i.e., all

coupons were collected in at least one coupon group.
Given an integer 1 ≤ g ≤ k, the g-group k-coupon collector’s problem is the

A-group k-coupon collector’s problem where A =
{
A ⊆ [k] | |A| = g

}
. This gen-

eralization of the classical coupon collector’s problem has been studied, among
others, by Stadje [33], Adler and Ross [1], and Ferrante and Saltalamacchia [20].

3 An event Ξ is said to occur w.h.p., if P(Ξ) ≥ 1− 1
nc

, where c ≥ 1.



The following lemma characterizes the probability distributions that lead to
a minimal expected time for the group coupon collector’s problem. To the best
of our knowledge, this is a new result which generalizes the characterization in
the classical coupon collector’s problem [21, 27], for which it is known that the
uniform distribution leads to the minimal expected time.

Lemma 1. The expected time of any A-group k-coupon collector’s problem is
greater than or equal to the B-group k-coupon collectors problem with uniform
probabilities where B ⊆ A is of minimal cardinality such that

⋃
B = [k].

In particular, the expected time of any g-group k-coupon collector’s problem
is Ω(k log k) for every constant g ≥ 1.

Theorem 1. The expected convergence time of any protocol solving data collec-
tion with non-uniformly random scheduler is Ω(n log n).

Theorem 2. The expected convergence time of any protocol solving data collec-
tion with random scheduler S(P ), is Ω(max

i

1∑n
j=1(Pi,j+Pj,i)

).

The next corollary considers a very simple protocol solving the data collection
problem. In this protocol, agents transfer their values only when they interact
with the base station. We consider it as a reference, to compare with other
proposed protocols. The corollary follows from Th. 2.

Corollary 1. With random scheduler S(P ), the expected convergence time of
the protocol solving data collection and where each agent transfers its value only
to the base station is Ω(max

i
1/(Pi,BST + PBST,i)).

4 Protocol “Transfer To the Faster” (TTF)

Corollary 1 formalizes the straightforward observation that, if the only transfers
performed by the agents are towards the base station, the convergence time de-
pends on the slowest agent i. It can be very large, e.g. if Pi,BST +PBST,i � 1/n2.
Therefore, to obtain better time performances, we propose to study another data
collection protocol based on the idea of the TTF protocol of [12]. In the sequel,
the studied protocol is called TTF too, since its strategy is the same and there
is no risk of ambiguity. The only difference is on the definition of the cover time
parameter (Sect. 2) used by this strategy (as explained in the introduction).

The strategy of TTF is easy. When agent i meets a faster agent j, i transfers
to j all the values it has in its memory (recall that transfer means to copy to
the memory of the other and erase from its own). The intuition behind is that
the faster agent j is more likely to meet the base station before i. Of course,
whenever any agent i meets the base station, it transfers all the values it (still)
has in its memory at that time to the base station. As a matter of fact, no
transition depends on the actual value held by the agents. It depends only on
the comparison between cover times, which are constants. Thus, the input values
can be seen as tokens and the states of every agent can be represented by the



number of tokens it currently holds. Recall, that in this study, it is assumed that
each agent has enough memory for storing the tokens (i.e., an O(n) memory),
and each pair of agents interacts infinitely often (i.e., the interaction graph is
complete).

The sequel concerns analytical results on the time performance of TTF.
Firstly, we associate to each configuration a vector of non-negative integers rep-
resenting the number of tokens held by each agent. Then, it is shown that the
evolution of such vectors during executions can be expressed by a stochastic
linear system. Next, Twhp(TTF) is expressed in terms of distances between the
configuration vectors (Th. 3) and, by applying stochastic matrix theory ([35,
25, 30]) an upper bound on Twhp(TTF) is obtained (Th. 4). Finally, using this
result, we obtain also an upper bound on the convergence time in expectation,
TE(TTF) (Th. 5).

Formally, we represent a configuration by a non-negative integer vector x ∈
Nn that satisfies

∑n
i=1 xi = n − 1. By abusing the terminology, we sometimes

call such a vector a configuration. We denote the configuration vectors’ space
by V. By convention, the first element of x is the number of tokens held by the
base station. Since, at the beginning of an execution, every mobile agent owns
exactly one token and no token is held by the base station, the initial configura-

tion is xinit = 1− e1, where ei =
(
0, . . . , 0, 1, 0, . . . , 0

)T
is the n× 1 unit vector

with the ith component equal to 1. The terminal configuration is xend = (n−1)e1.

Let x(t) ∈ V be the discrete random integer vector that represents the con-
figuration just after tth interaction in executions of TTF. We can see that
P(x(0) = xinit) = 1, and since the base station never transfers tokens to others,
P(x(t + 1) = xend) ≥ P(x(t) = xend). Moreover, since at any moment there
is a positive probability for delivering any of the tokens to the base station,
limt→∞ P(x(t) = xend) = 1. Furthermore, the time complexities of TTF can be
formalized using x(t) by TE(TTF) =

∑∞
t=1 t · (P(x(t) = xend ∧ x(t− 1) 6= xend))

and Twhp(TTF) = inf
{
t | P(x(t) = xend) ≥ 1− 1

n

}
.

To evaluate these time complexities, we study the evolution of x(t) during ex-
ecutions of TTF. Given time t, consider a transition rule applicable from a
configuration represented by a vector vt and resulting in a configuration with
vector vt+1. Suppose that at time t, the interaction (i, j) is chosen by the sched-
uler. If neither i nor j are the base station and i is faster than j (cvi < cvj),

agent j transfers all its tokens to i. Thus, vt+1
i = vti + vtj and vt+1

j = 0. The rela-

tion between vt and vt+1, in this case, can be expressed by the linear equation
vt+1 = W (t+ 1)vt, where W (t+ 1) = I+eie

T
j −eje

T
j ∈ {0, 1}n×n. If cvi = cvj ,

no token is transferred and vt+1 = vt. We still have vt+1 = W (t + 1)vt, but
with W (t + 1) = I. On the other hand, if j is the base station, W (t + 1) =
I + eie

T
j − eje

T
j , as agent i transfers all of its tokens to the base station.

As the pair of agents is chosen independently with respect to P , W (t + 1) can
be seen as a random matrix such that with probability Pi,j + Pj,i:

W (t+ 1) =

{
I + eie

T
j − eje

T
j if cvi < cvj or i = 1 or j = 1

I if cvi = cvj
(1)



By comparing the resulting probability distributions, we readily verify that the
relation between x(t) and x(t+ 1), i.e., x(t+ 1) = W (t+ 1)x(t), is a stochastic
linear system with the matrices specified in (1).

Distance. Consider a function dγ(x) : V → R. It associates any x in V to
a real number representing a “weighted” Euclidian norm distance between the
configuration vector x and the vector representing a terminal configuration. That
is, dγ(x) = ||(x − xend) ◦ γ||2, where γ ∈ Rn is a real vector, ◦ the entry-
wise product, and || · ||2 the Euclidean norm. The vector γ can be viewed as a
weight vector. We choose γ in such a way that, if there is a transfer of tokens in
interaction t+1, configuration vt, then dγ(vt+1) is smaller than dγ(vt). Intuitively
this means that, when a transfer is performed, the resulting configuration is closer
to termination.

Lemma 2. Let i and j be two agents with cvi < cvj. Consider an interaction
between i and j in a configuration represented by vt and resulting in vt+1. If
γj/γi ≥

√
2n− 3, then dγ(vt+1) ≤ dγ(vt).

Theorem 3. The convergence time with high probability of TTF, Twhp(TTF), is

equal to inf
{
t | P

(
dγ(x(t))
dγ(xinit)

< (2n)
−(m−1)

2

)
≥ 1− 1/n

}
if γBST = 0 and γj/γi ≥√

2n whenever cvi < cvj. Recall that m ≤ n denotes the number of cover time
categories (Sect. 2).

We are now ready to state and prove our main upper bound on the conver-
gence time of TTF, Twhp(TTF) (Th. 4). To prove it, we apply stochastic matrix
theory to the stochastic linear system defined above for x(t).

Without loss of generality, we assume that cv2 ≤ cv3 ≤ · · · ≤ cvn. We
choose γ ∈ Rn by setting γ1 = 0, γ2 = 1, and γi+1 = γi, if cvi+1 = cvi, and
γi+1 = γi

√
2n, if cvi+1 > cvi. In particular, γn = (2n)(m−1)/2.

Theorem 4. With a non-uniformly random scheduler S(P ), the convergence
time of TTF is at most m log 2n

log λ2(W̃ )−1
with high probability, where γ is defined

above. Γi,j = γi/γj, W̃ =
∑

i<j∧cvi<cvj

(Pi,j +Pj,i)W
Γ 2

ij +
∑

i<j∧cvi=cvj

(Pi,j +Pj,i)I,

WΓ 2

ij = I + Γi,j(eie
T
j + eje

T
i ) + (Γ 2

i,j − 1)eje
T
j , and λ2(A) denotes the modulus

of the second largest eigenvalue of matrix A.

Now, we study the performance of TTF with respect to the convergence time
in expectation, i.e. TE(TTF).

Theorem 5. The expected convergence time of the TTF protocol is O
(

m logn

log λ2(W̃ )−1

)
where W̃ is the matrix defined in Theorem 4.



5 Lazy TTF

The strategy of TTF may result in a long execution when an input value is
transferred many times before being finally delivered to the base station. These
transfers are certainly energy consuming. Then a natural issue is to transform
TTF in order to save energy, while keeping the time complexity as low as possi-
ble. The idea is to prevent certain data transfers, for example, when it is more
likely to meet soon a faster agent and thus possibly make fewer transfers in over-
all. We propose a simple protocol based on TTF, called lazy TTF. In contrast
with TTF, lazy TTF does not necessarily execute the transition resulting from
an interaction. It chooses randomly to execute it or not. Formally, during an in-
teraction (i, j), with agent i acting as initiator, TTF is executed with probability
pi, where p ∈ Rn is a vector of probabilities.

Notice that the choice of executing TTF depends uniquely on the initiator i.
In practical terms, an initiator represents an agent that, by sensing the environ-
ment, has detected another agent j. At this moment i takes the random decision
(with probability pi) whether a TTF transition should be executed and the in-
teraction itself should take place, or not. In the latter case, not only the energy
for the eventual data transfer is saved, but also the energy for establishing the
interaction.

Observe that when p is the vector of all ones, lazy TTF behaves as TTF and
its energy consumption is the same as for TTF. However, when p is the vector of
all zeros, lazy TTF does not solve the problem of data collection as no value is
ever transferred to the base station, but no energy is consumed for transferring
of data or establishing interactions. Depending on p, time complexities of lazy
TTF can be worse than of TTF, given the same scheduler. At the same time,
longer executions of lazy TTF may be more energy efficient. Thus, there is a
trade-off between time and energy performance depending on the values of p.
We now investigate the choice of p for obtaining good time/energy trade-off.
Firstly, we give upper bounds on the time complexities of lazy TTF. Then, we
introduce an optimization problem that takes p as a variable. Finally, numerical
results in Sect. 6 demonstrate energy efficiency of lazy TTF, given the optimal
p.

5.1 Convergence Time of Lazy TTF

To obtain an upper bound on the convergence time of lazy TTF, we show a par-
ticular equivalence of lazy TTF under scheduler S(P ) with TTF under scheduler
S(P ◦ (p · 1T )), where 1 is the vector of all ones and ◦ presents the entry-wise
product. This equivalence is on the level of distribution of configurations of the
two protocols. Precisely, as we show below, the random vector x(t) for these two
protocols is exactly the same, allowing to use Th. 4 to obtain a time complexity
upper bound for lazy TTF.

Let us express x(t) in case of lazy TTF in a similar way as we did before
for TTF in Sect. 4. First, P(x(0) = xinit) = 1 is the same as for TTF. Then,
x(t+1) = W (t+1)x(t) and W (t+1) can be seen as a random matrix such that,



with probability Pi,j × pi + Pj,i × pj , W (t + 1) is as in Eq. 1. Notice that x(t)
in case of TTF under S(P ◦ (p ·1T )) is expressed exactly in the same way (Sect.
4). Thus, by applying Th. 4 for TTF under S(P ◦ (p · 1T )), we obtain the upper
bound on Twhp(lazy TTF(p)).

Theorem 6. With a non-uniformly random scheduler S(P ), the convergence

time with high probability of lazy TTF is at most m log 2n

log λ2(W̃ )−1
,

where W̃ =
∑

cvi<cvj

(Pi,jpi + Pj,ipj)W
Γ2

ij +
∑

cvi<cvj

(Pi,j(1− pi) + Pj,i(1− pj)I

+
∑

cvi=cvj

(Pi,j + Pji)I, and WΓ2

ij = I + Γi,j(eie
T
j + eje

T
i ) + (Γ 2

i,j − 1)eje
T
j .

(2)

Then, the upper bound on TE(lazy TTF(p)) can be obtained in the same way as
in Th. 5.

To summarize, note that, as executions of lazy TTF are equivalent to those
of TTF under S(P ◦ (p · 1T )) in the sense explained above, one can imagine
that lazy TTF transforms the matrix of interaction probabilities ”on the fly”
(during executions). It can be also seen as if it transforms the interaction graph
itself. Indeed, certain vectors p may make some pairs of agents to interact with
extremely small probability (or not interact at all), thus effectively remove these
pairs from the graph. This is illustrated in the appendix. Next, we are looking for
vectors p, optimizing an upper bound on the time performance of lazy TTF(p) to
ensure a good time energy trade-off. Equivalently, we are looking for schedulers
(matrices P ) for which the original TTF is efficient in this sense.
Thus, the goal is to find a vector pminimizing the upper bound on Twhp(lazy TTF(p))
(Th. 6). To that end, an optimization program OP1, taking p as a variable, is
proposed as follows:
OP1 : min

p∈Rn
λ2(W̃ ) s.t Eq. 2, 0 ≤ pi ≤ 1.

By Th. 6, minimizing the upper bound of Twhp(lazy TTF(p)) is equivalent to

minimizing the second largest eigenvalue of W̃ . Then, we reformulate OP1 as a
semi-definite program [36, 24] OP2 which is convex and can be solved in polyno-
mial time.
OP2 : min

p∈Rn,s
s s.t sI − W̃ � 0, Eq. 2, 0 ≤ pi ≤ 1.

Let p̂ be the optimal solution of OP2. We can see that if p̂ is all ones vector,
lazy TTF(p̂) performs as TTF. Otherwise, lazy TTF(p̂) outperforms TTF in
terms of the upper bounds on time. This optimized upper bound ensures that
lazy TTF(p̂) converges in a reasonable time. In the next section, by the numerical
results obtained for different small examples, we demonstrate the efficiency of
lazy TTF(p̂), in terms of energy consumption.

6 Numerical Results

6.1 The Relation between Twhp(TTF) and its Upper Bound

The goal of this section is to justify the relevance of the method used here to
obtain the optimal probability vector p for lazy TTF. To justify this, we show



by simulations that the time upper bound value for TTF is well correlated with
the exact value of its time complexity (calculated by Markov chains, for small
systems). This implies the same correlation for lazy TTF, because the bounds
in Th. 4 and Th. 6 are obviously well correlated too (one is obtained from the
other; see Sect. 5). That is why the optimal probability vector p for the upper
bound of lazy TTF is close to the optimal vector for the real (tight) convergence
time.
From Th. 4, we have an upper bound on time w.h.p. for TTF, denoted here
by Tupp(TTF). In this section, we show the relation between Tupp(TTF) and
Twhp(TTF). In our experiment, two systems of size 4 and 5 are considered and
100 schedulers are generated randomly for each system. Since the system is of
small size, for each scheduler s, the exact value of T swhp(TTF) can be obtained by
constructing the corresponding Markov Chain. The upper bound, T supp(TTF),
can be calculated by Th. 4. Then, for every generated s, we plot T swhp(TTF) and
T supp(TTF) on the figure with x-axis for Twhp(TTF) and y-axis for Tupp(TTF).

Fig. 1. Relation between Twhp(TTF) and Tupp(TTF).

From Fig. 1, we can see that Tupp(TTF) has a nearly linear relation with
Twhp(TTF). It means that Tupp(TTF) in Th. 4 captures well the relation of
the scheduler’s behavior to the time performance of TTF in most of the cases.
Moreover, it demonstrates that, for lazy TTF, minimizing Twhp(lazy TTF(p)) in
Sect. 5, is reasonable for improving the energy performance.

6.2 Gaps on Time and Energy between TTF and Lazy TTF(p̂)

For energy consumption analysis, we consider the energy model of [37] proposed
for population protocols. In this model, an agent senses its vicinity by proximity



sensor, consuming a negligible amount of energy [29]. Once the interaction is
established, each participant consumes a fixed amount of energy Ewkp (mainly
for switching on its radio, which is known to be very energy consuming; cf.[28]).
Now, recall that, with lazy TTF, the choice of executing TTF depends on the
probability pi of the initiator i. If TTF should not be executed, the initiator
does not proceed to establish the interaction neither (i.e., Ewkp is not spent), as
explained in Sect. 5.

We study the expectation of the total energy consumption of a protocol P,
denoted E(P). According to the energy scheme explained above, E(P) is eval-
uated by the expected total energy spent for establishing all the interactions
till convergence. It is proportional to the time expectation TE(P). In partic-
ular, E(TTF) = 2TE(TTF) · Ewkp and E(lazyTTF(p)) = 2TE(lazy TTF(p)) ×∑
i

∑
j(Pi,jpi + Pj,ipj)× Ewkp.

For the systems of small size with a scheduler s, the exact values of T sE(TTF)
and T sE(lazy TTF(p̂s)) can be calculated by constructing the corresponding Markov
Chain. In the experiments, systems of size 4,5,6,7 and 8 are considered and
for each size n, 10000 different schedulers are generated randomly. Denote by
S(n) the set of these schedulers. For each scheduler s ∈ S(n), T sE(TTF), p̂s,
T sE(lazy TTF(p̂s)), Es(TTF) and Es(lazy TTF(p̂s)) are evaluated. Then, the gaps
on time and on energy between lazy TTF(p̂s) and TTFs are denoted byGap(TE, n)
and Gap(E , n), respectively, and are computed as follows.

Gap(TE, n) =
(∑

s∈S(n)
T sE(lazy TTF(p̂s))−T sE(TTF)

T sE(TTF)

)
/10000 and

Gap(E , n) =
(∑

s∈S(n)
Es(lazy TTF(p̂s))−Es(TTF)

Es(TTF)

)
/10000.

Results appear in Table. 1.

Size n Gap(TE, n) Gap(E , n)

4 11.60% -15.32%
5 17.10% -23.60%
6 22.04% -30.79%
7 26.31% -36.99%
8 27.41% -39.07%

Table 1. Gaps on time and energy.

In column 3, it can be seen that lazy TTF con-
sumes less energy than TTF for all systems.
Lazy TTF saves at least 15% of energy. The
counterpart is (a slight) increase in the execu-
tion time, as shown in column 2.
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A Additional Related Work

The uniformly random scheduler has been introduced and studied in the con-
text of population protocols in the seminal paper [7]. Later, leader election pro-
tocols (cf. [5, 19]) and exact majority protocols (cf. [6]) have been proposed in
this uniform model. Their performances are evaluated by the parallel expected
convergence time and by the number of states available at each agent (space
complexity). In several papers (cf. [3]), trade-offs between time and space com-
plexities of protocols solving these problems are studied. Any leader election or
majority protocol converges in Ω(n/polylog n) expected time using O(log log n)
states. A recent work [4] shows that, by employing “phase clocks”, both problems
can be solved in O(log2 n) expected time, using O(log n) states. Other complex
problems, such as counting [11], community detection [13] and proportion com-
putation [26], have been also studied under similar uniform scheduler model.
Besides the uniformly random scheduling independent of the agents states, there
are works assuming scheduling dependent on the states of agents, like the transi-
tion function scheduler in [16] or the scheduling of reactions in CRN (Chemical
Reaction Network model) according to the model of stochastic chemical kinetics
(cf. [17]).
We should mention also the randomized gossip algorithm in [14] designed for the
problem of averaging in an arbitrarily connected network. Each node runs an
independent Poisson clock (asynchronous time model), and at each clock tick,
the node randomly selects a neighbor, with the probability given by the algo-
rithm. Then, it averages its value with the chosen neighbor. Observe that this
algorithm can be seen as a population protocol under non-uniformly random
scheduler, in which two meeting agents average their values. For more details on
gossip algorithms, refer to the surveys [31] and [18].
For the discussion and related work on the energy consumption scheme for pop-
ulation protocols that we adopt here refer to [37]. Additional related references
on data collection population protocols can be found in [37] too.

B Proof of Lemma 1

We say that a set B ⊆ A of coupon groups is covering if
⋃
B = [k].

For every B ⊆ A, denote by TB the time until all coupon groups in B appear
at least once in the coupon group sequence. Denoting by T the time until all
coupons appear at least once in the coupon group sequence, we have

T = min
{
TB | B is covering

}
. (3)

For every covering B, let FB be the event that B is the first covering coupon
group set to completely appear in the coupon group sequence. The law of total
expectation gives

E(T ) =
∑

B covering

E
(
T | FB

)
· P(FB) ≥ min

B covering
E
(
T | FB

)
. (4)



By definition of FB, we have E
(
T | FB

)
= E

(
TB | FB

)
. The latter is greater

than or equal to the expected time of a |B|-collector’s problem, which can be
seen by shifting probabilities of non-B coupon groups into B. By [27, Theorem 1],
this time is then at most that of the B-coupon collector’s problem with uniform
probabilities, i.e., |B|H(|B|) where H(m) =

∑m
`=1 1/` denotes the mth harmonic

number. This proves the first part of the lemma.
To show the second part, we note that dk/ge coupon groups of size g are

needed to cover the set [k], i.e., |B| ≥ dk/ge, which means

E(T ) ≥
⌈
k

g

⌉
·H
(⌈

k

g

⌉)
∼ k

g
· log

k

g
= Ω(k log k) (5)

as k →∞ if g is a constant.

C Proof of Theorem 1

For data collection, each agent has to transfer its value at least once, and the
base station has to receive values at least once. Therefore, in any execution, each
agent has to interact at least once. The expected time of every agent interacting
at least once is that of a 2-group n-coupon collector’s problem, i.e., is Ω(n log n)
by Lemma 1.

D Proof of Theorem 2

For any agent i, it is required at least
∑n
j=1 1/(Pi,j+Pj,i) time in expectation to

establish one interaction. Thus, to complete one data collection, for which it is re-
quired that each agent interacts at least once, it takes at least max

i

1∑n
j=1(Pi,j+Pj,i)

expected time.

E Proof of Lemma 2

During an interaction (i, j) where i is faster than j, j transfers its tokens to i.
Suppose that agent i holds a tokens in vt. To ensure dγ(vt+1) ≤ dγ(vt), it suffices
to have ((a+ 1)2 − a2)γ2i ≤ γ2j , which is equivalent to γj/γi ≥

√
2a+ 1. If agent

j has tokens, agent i cannot have more than n− 2 tokens in vt, thus a ≤ n− 2.
Therefore, if γj/γi ≥

√
2n− 3, the lemma is satisfied.

F Proof of Theorem 3

Given a configuration vector vt at time t, if vt 6= xend, we have dγ(vt) ≥ γmin

where γmin = min{γi | i 6= BST}. Further, using the relation γj/γi ≥
√

2n, we

have dγ(xinit) = ||γ||2 ≤
√∑m−2

i=0 (2n)i + (n−m+ 1)(2n)m−1 ≤
√

(2n)(m−1)/2.

Therefore, if vt 6= xend, we have
dγ(v

t)
dγ(xinit)

≥ 1
||γ||2 ≥ (2n)−(m−1)/2.



Thus, if vt satisfies
dγ(v

t)
dγ(xinit)

< (2n)−(m−1)/2, it is necessarily the terminal con-

figuration. Since Twhp(TTF) = inf{t | P(x(t) = xend) ≥ 1− 1/n}, we obtain the
result of Th. 3.

G Proof of Theorem 4

Firstly, we study the evolution of the vectors y(t) =
(
x(t) − xend

)
◦ γ, which

appear in the formulation of Twhp(TTF) (Th. 3). As xend = (n − 1)e1 and
γ1 = 0, y(t) reduces to x(t) ◦ γ. Since x(t+ 1) = W (t)x(t), we obtain

y(t+ 1) = x(t+ 1) ◦ γ =
(
W (t)x(t)

)
◦ γ = WΓ (t)y(t) (6)

where WΓ (t) = W (t) ◦ Γ is the entry-wise product and matrix Γ ∈ Rn×n has
entries Γi,j = γi/γj when j 6= 1 and Γi,1 = 0 for all i ∈ {1, . . . , n}. Hence we get:

E
(
y(t+ 1)T y(t+ 1) | y(t)

)
= y(t)T E

(
WΓ (t)T ·WΓ (t)

)
y(t) (7)

From (1), we know that with probability Pi,j + Pj,i, matrix WΓ (t)T ·WΓ (t) is
equal to{

I + Γi,j(eie
T
j + eje

T
i ) + (Γ 2

i,j − 1)eje
T
j if cvi < cvj or i = 1 or j = 1

I if cvi = cvj
(8)

Then, setting WΓ 2

ij = I + Γi,j(eie
T
j + eje

T
i ) + (Γ 2

i,j − 1)eje
T
j , we have:

W̃ = E
(
WΓ (t)T ·WΓ (t)

)
=

∑
i<j∧cvi<cvj

(Pi,j + Pj,i)W
Γ 2

ij +
∑

i<j∧cvi=cvj

(Pi,j + Pj,i)I
(9)

In particular:

W̃1,1 = 1 and W̃i,1 = W̃1,i = 0 for all i ∈ {1, . . . , n} (10)

Since WΓ (t)T ·WΓ (t) is symmetric and positive semi-definite, so is its expecta-
tion W̃ . Now, we turn to study the properties of the eigenvalues in W̃ . By (10),
matrix W̃ is of the form

W̃ =


1 0 · · · 0
0
... W ′

0

 (11)

for some W ′ ∈ R(n−1)×(n−1). Denoting the kth largest eigenvalue of matrix A by
λk(A), we have λ1(W ′) ≤ ‖W ′‖∞ = max1≤i≤n

∑n
j=1W

′
i,j where ‖·‖∞ denotes



the operator norm with respect to the supremum norm on Rn−1, i.e., the largest
1-norm of rows of the matrix. According to (9), the ith row sum of W̃ is

n∑
j=1

W̃i,j =
∑
w 6=i

∑
v 6=w

Pw,v +
∑

j:cvj=cvi

(Pi,j + Pj,i) (12)

+
∑

j:cvj<cvi

Γ 2
j,i(Pi,j + Pi,j) +

∑
j:cvj>cvi

Γi,j(Pi,j + Pi,j) (13)

for all i ∈ {2, . . . , n}. As Γi,j = γi
γj
< 1 whenever cvi < cvj , we obtain

∑
jW

′
i,j <

1 for all i. By the block decomposition (11), we thus have λ1(W̃ ) = 1 and

λ2(W̃ ) = λ1(W ′) ≤ ‖W ′‖∞ = max
i

∑
j

W ′i,j < 1 . (14)

Now, using the Rayleigh quotient, we have:

E
(
y(t+ 1)T y(t+ 1) | y(t)

)
≤ λ2(W̃ ) · ‖y(t)‖22 (15)

Repeatedly using (15), we obtain the bound

E‖y(t)‖22 = E
(
y(t)T y(t)

)
≤ λ2(W̃ )t‖y(0)‖22 . (16)

Applying Markov’s inequality, we obtain

P

(
dγ(x(t))

dγ(xinit)
≥ (2n)

−(m−1)
2

)
= P

(
‖y(t)‖22
‖y(0)‖22

≥ (2n)−(m−1)
)

≤ (2n)m−1
‖y(t)‖22
‖y(0)‖22

≤ (2n)m−1λ2(W̃ )t (17)

Thus, if (2n)m−1λ2(W̃ )t ≤ 1/n, i.e., t ≥ m log 2n

log λ2(W̃ )−1
, then P

(
dγ(x(t))
dγ(xinit)

≥ (2n)
−(m−1)

2

)
≤

1/n. So, we obtain Twhp(TTF) ≤ m log 2n

log λ2(W̃ )−1
.

H Proof of Theorem 5

Let T be the convergence time and Tθ = inf
{
t | P(x(t) = xend) > 1 − θ

}
=

inf
{
t | P(T ≥ t) ≤ θ

}
. Analogously to (17) in Th. 4, we know that

Tθ ≤
log 2n(m−1)θ−1

log λ(W̃ )−1
=

(m− 1) log 2n

log λ(W̃ )−1
+

log(1/θ)

log λ(W̃ )−1
= A+B log(1/θ) . (18)



Since T is a non-negative random number, we have

TE(TTF) =

∞∑
t=1

P(T ≥ t)

= P(T ≥ 1) + P(T ≥ 2) + ...+ P(T ≥ Tθ) +

∞∑
t=1+Tθ

P(T ≥ t)

≤ Tθ +

Tθ/2∑
t=1+Tθ

P(T ≥ t) +

Tθ/4∑
t=1+Tθ/2

P(T ≥ t) + ...

≤ Tθ + Tθ/2 · θ + Tθ/4 · θ/2 + ... = Tθ +

∞∑
i=1

Tθ/2i ·
θ

2i−1

≤ Tθ +

∞∑
i=1

(A+B log
2i

θ
) · θ

2i−1

= Tθ +Aθ ·
∞∑
i=1

1

2i−1
+Bθ · (log 2 ·

∞∑
i=1

i

2i−1
+ log θ−1

∞∑
i=1

1

2i−1
)

= Tθ + (Aθ +Bθ log θ−1) ·
∞∑
i=1

1

2i−1
+ 2Bθ log 2 ·

∞∑
i=1

i

2i

≤ (1 + 2θ) ·A+B log(1/θ) + 4Bθ log 2

Choosing θ = 1/n leads to

TE(TTF) ≤ (m− 1)[(1 + 2/n) log 2n] + [(1 + 2/n) log n+ log 16/n]

log λ2(W̃ )−1
.

I TTF vs. Lazy TTF(p̂) in Terms of Time Complexity
Bounds

The comparison is made considering the upper bounds given in Th. 4 and Th.
6. The justification (by numerical experiments) that such a comparison makes
sense appears in Sect. 6.1. The main goal of this section is to illustrate the effect
of the application of the optimal vector p̂ on TTF and its scheduler, in the sense
explained in Sect. 5.

The numerical experiments, in this section, are performed as follows. First,
we generate randomly the probability matrix P to simulate a non-uniformly
random scheduler S(P ). Here, due to the lack of space, we present results for
only 3 representative schedulers. Second, by solving OP2 (Sect. 5), we get the
best p̂ for lazy TTF(p) and we compare the upper bounds on convergence time
w.h.p. of TTF and of lazy TTF(p̂) (Th. 4 and Th. 6, see Tab. 2). At last, we
interpret the values of p̂ for a better understanding of lazy TTF (Fig. 3).

The systems under consideration are composed of four agents, the base sta-
tion (BST), the fastest agent f , the slowest agent nf2, and an intermediate



non-fastest agent (nf1). Thus, cvf < cvnf1 < cvnf2 .
The matrix P , for each considered S(P ) of the three, is encoded by edge labels
in a complete interaction graph corresponding to the considered population. The
three schedulers are depicted in Fig. 2. In the graph (a), take for instance the
label 0.021 between f and BST. It means that the probability that the next
interaction concerns the fastest agent (as initiator) and BST, is 0.021. Table 2

(a) (b) (c)

Fig. 2. Graph illustrations for three random schedulers.

below presents the numerical results for each scheduler given in Fig. 2. Second
column gives the vector p̂ in the order [BST, f, nf1, nf2]. The third and forth
columns present the upper bounds on the time w.h.p. for TTF and lazy TTF(p̂),
computed using Th. 4 and Th. 6 respectively and rounded down to integers.

Lines a and b in Table 2 show that the tentative to save energy by inhibiting
some interactions, e.g., p̂nf2(a) = 0 and p̂nf2(b) = 0, is not really significant for
the execution time bounds (80 vs. 67, 23 vs. 22). In line c (in case of scheduler
(c), Fig. 2) lazy TTF behaves as TTF.

S p̂ TTF lazy

a [1, 1, 0, 0] 80 67
b [1, 0.35, 1, 0] 23 22
c [1, 1, 1, 1] 13 13

Table 2. Time complexity of TTF vs. lazy TTF(p̂).

As explained in Sect. 5, lazy TTF(p̂) under S(P ) is equivalent to TTF under
S(P ′), where P ′i,j = Pi,j × p̂i,∀(i, j) ∈ E. Fig. 3 presents the interaction graphs
encoding P ′ for schedulers (a) and (b).

Observe that according to graph (a) in Fig. 2, for both nf1 and nf2, the
probability to meet BST is about the same (0.092 + 0.122 = 0.214 vs. 0.065 +
0.156 = 0.221). Moreover, the probability for a token to be transferred to BST
from nf1 or nf2 through f is very small. Thus, when meeting nf1, a better
heuristic for nf2 is to wait for meeting BST, rather than to transfer tokens to



nf1. The value obtained for p̂ confirms this heuristic, since p̂nf1 = p̂nf2 = 0 (line
a, Table 2).
According to graph (b), Fig. 2, nf1 and nf2 have a better probability to meet
BST than f . Thus, when nf1 or nf2 meets f , transferring tokens to f does not
seem to be a good choice. This intuition is confirmed by the computed value for
p̂, since f executes TTF with a small probability 0.35 (line b, Table 2).

(a’) (b’)

Fig. 3. Resulting schedulers with p̂.


