Skip to main content

Parameterized Algorithms for Power-Efficient Connected Symmetric Wireless Sensor Networks

  • Conference paper
  • First Online:
Algorithms for Sensor Systems (ALGOSENSORS 2017)

Abstract

We study an NP-hard problem motivated by energy-efficiently maintaining the connectivity of a symmetric wireless sensor communication network. Given an edge-weighted \(n\)-vertex graph, find a connected spanning subgraph of minimum cost, where the cost is determined by letting each vertex pay the most expensive edge incident to it in the subgraph. We provide an algorithm that works in polynomial time if one can find a set of obligatory edges that yield a spanning subgraph with \(O(\log n)\) connected components. We also provide a linear-time algorithm that reduces any input graph that consists of a tree together with \(g\) additional edges to an equivalent graph with \(O(g)\) vertices. Based on this, we obtain a polynomial-time algorithm for \(g\in O(\log n)\). On the negative side, we show that \(o(\log n)\)-approximating the difference \(d\) between the optimal solution cost and a natural lower bound is NP-hard and that there are presumably no exact algorithms running in \(2^{o(n)}\) time or in \(f(d)\cdot n^{O(1)}\) time for any computable function \(f\).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://arxiv.org/abs/1706.03177.

  2. 2.

    To connect the \(c\) components of \(G_\ell \), one has to add \(c-1\) edges. These have at most \(2c-2\) end points. One can try all \(n^{2c-2}\) possibilities for choosing these end points and check each resulting graph for connectivity in \(O(n+m)\subseteq O(n^2)\) time.

  3. 3.

    At most \(d\) vertices can pay more than their vertex lower bound. We can try all possibilities for choosing \(i\le d\) vertices, all \({d\atopwithdelims ()i}\) possibilities to increase their total cost by at most \(d\), and check whether the graph of the “paid” edges is connected. The algorithm runs in \(\sum _{i=1}^d{n\atopwithdelims ()i}{d\atopwithdelims ()i}\cdot O(n+m)\subseteq O(2^d\cdot n^{d+2})\) time.

References

  1. Alon, N., Yuster, R., Zwick, U.: Color-coding. J. ACM 42(4), 844–856 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  2. Althaus, E., Călinescu, G., Mandoiu, I.I., Prasad, S.K., Tchervenski, N., Zelikovsky, A.: Power efficient range assignment for symmetric connectivity in static ad hoc wireless networks. Wirel. Netw. 12(3), 287–299 (2006)

    Article  Google Scholar 

  3. Bentert, M., Fluschnik, T., Nichterlein, A., Niedermeier, R.: Parameterized aspects of triangle enumeration. In: Klasing, R., Zeitoun, M. (eds.) FCT 2017. LNCS, vol. 10472, pp. 96–110. Springer, Heidelberg (2017). https://doi.org/10.1007/978-3-662-55751-8_9

    Chapter  Google Scholar 

  4. Betzler, N., van Bevern, R., Fellows, M.R., Komusiewicz, C., Niedermeier, R.: Parameterized algorithmics for finding connected motifs in biological networks. IEEE/ACM Trans. Comput. Biol. 8(5), 1296–1308 (2011)

    Google Scholar 

  5. Betzler, N., Guo, J., Komusiewicz, C., Niedermeier, R.: Average parameterization and partial kernelization for computing medians. J. Comput. Syst. Sci. 77(4), 774–789 (2011)

    Google Scholar 

  6. van Bevern, R., Komusiewicz, C., Sorge, M.: A parameterized approximation algorithm for the mixed and windy capacitated arc routing problem: theory and experiments. Networks (2017, in press)

    Google Scholar 

  7. Bruckner, S., Hüffner, F., Karp, R.M., Shamir, R., Sharan, R.: Topology-free querying of protein interaction networks. J. Comput. Biol. 17(3), 237–252 (2010)

    Article  MathSciNet  Google Scholar 

  8. Carmi, P., Katz, M.J.: Power assignment in radio networks with two power levels. Algorithmica 47(2), 183–201 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  9. Clementi, A.E., Penna, P., Silvestri, R.: On the power assignment problem in radio networks. Mob. Netw. Appl. 9(2), 125–140 (2004)

    Article  MATH  Google Scholar 

  10. Dost, B., Shlomi, T., Gupta, N., Ruppin, E., Bafna, V., Sharan, R.: Qnet: a tool for querying protein interaction networks. J. Comput. Biol. 15(7), 913–925 (2008)

    Article  MathSciNet  Google Scholar 

  11. Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity. Texts in Computer Science. Springer, Heidelberg (2013). https://doi.org/10.1007/978-1-4471-5559-1

  12. Erzin, A.I., Plotnikov, R.V., Shamardin, Y.V.: O nekotorykh polinomial’no razreshimykh sluchayakh i priblizhënnykh algoritmakh dlya zadachi postroyeniya optimal’nogo kommunikatsionnogo dereva. Diskretn. Anal. Issled. Oper. 20(1), 12–27 (2013)

    Google Scholar 

  13. Erzin, A.I., Mladenovic, N., Plotnikov, R.V.: Variable neighborhood search variants for min-power symmetric connectivity problem. Comput. Oper. Res. 78, 557–563 (2017)

    Article  MathSciNet  Google Scholar 

  14. Giacometti, A.: River networks. In: Complex Networks, Encyclopedia of Life Support Systems (EOLSS), pp. 155–180. EOLSS Publishers/UNESCO (2010)

    Google Scholar 

  15. Gutin, G., Wahlström, M., Yeo, A.: Rural postman parameterized by the number of components of required edges. J. Comput. Syst. Sci. 83(1), 121–131 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  16. Hartung, S., Komusiewicz, C., Nichterlein, A.: Parameterized algorithmics and computational experiments for finding 2-clubs. J. Graph Algorithms Appl. 19(1), 155–190 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  17. Hoffmann, S., Wanke, E.: Minimum power range assignment for symmetric connectivity in sensor networks with two power levels (2016). arXiv:1605.01752

  18. Impagliazzo, R., Paturi, R.: On the complexity of \(k\)-SAT. J. Comput. Syst. Sci. 62(2), 367–375 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  19. Impagliazzo, R., Paturi, R., Zane, F.: Which problems have strongly exponential complexity? J. Comput. Syst. Sci. 63(4), 512–530 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  20. Mertzios, G.B., Nichterlein, A., Niedermeier, R.: Linear-time algorithm for maximum-cardinality matching on cocomparability graphs. In: MFCS 2017. LIPIcs, vol. 83, pp. 46:1–46:14, Schloss Dagstuhl – Leibniz-Zentrum fuer Informatik (2017)

    Google Scholar 

  21. Montemanni, R., Gambardella, L.: Exact algorithms for the minimum power symmetric connectivity problem in wireless networks. Comput. Oper. Res. 32(11), 2891–2904 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  22. Panigrahi, D.: Survivable network design problems in wireless networks. In: Proceedings of 22nd SODA, pp. 1014–1027. SIAM (2011)

    Google Scholar 

  23. Raz, R., Safra, S.: A sub-constant error-probability low-degree test, and a sub-constant error-probability PCP characterization of NP. In: Proceedings of 29th STOC, pp. 475–484. ACM (1997)

    Google Scholar 

  24. Scott, J., Ideker, T., Karp, R.M., Sharan, R.: Efficient algorithms for detecting signaling pathways in protein interaction networks. J. Comput. Biol. 13(2), 133–144 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  25. Sorge, M., van Bevern, R., Niedermeier, R., Weller, M.: From few components to an Eulerian graph by adding arcs. In: Kolman, P., Kratochvíl, J. (eds.) WG 2011. LNCS, vol. 6986, pp. 307–318. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-25870-1_28

    Chapter  Google Scholar 

  26. Sorge, M., van Bevern, R., Niedermeier, R., Weller, M.: A new view on rural postman based on Eulerian extension and matching. J. Discrete Alg. 16, 12–33 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  27. Uhlmann, J., Weller, M.: Two-layer planarization parameterized by feedback edge set. Theoret. Comput. Sci. 494, 99–111 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  28. Zalyubovskiy, V.V., Erzin, A.I., Astrakov, S.N., Choo, H.: Energy-efficient area coverage by sensors with adjustable ranges. Sensors 9(4), 2446–2460 (2009)

    Article  Google Scholar 

  29. Zhang, H., Hou, J.C.: Maintaining sensing coverage and connectivity in large sensor networks. Ad Hoc Sens. Wirel. Netw. 1(1–2), 89–124 (2005)

    Google Scholar 

Download references

Acknowledgments

RvB was supported by the Russian Science Foundation, grant 16-11-10041, while working on Sect. 2. The results in Sects. 3 and 4 were obtained during a research stay of RvB at TU Berlin, jointly supported by TU Berlin, by the Russian Foundation for Basic Research under grant 16-31-60007 mol\(\_\)a\(\_\)dk, and by the Ministry of Science and Education of the Russian Federation under the 5-100 Excellence Programme.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthias Bentert .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bentert, M., van Bevern, R., Nichterlein, A., Niedermeier, R. (2017). Parameterized Algorithms for Power-Efficient Connected Symmetric Wireless Sensor Networks. In: Fernández Anta, A., Jurdzinski, T., Mosteiro, M., Zhang, Y. (eds) Algorithms for Sensor Systems. ALGOSENSORS 2017. Lecture Notes in Computer Science(), vol 10718. Springer, Cham. https://doi.org/10.1007/978-3-319-72751-6_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-72751-6_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-72750-9

  • Online ISBN: 978-3-319-72751-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics