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Preface

Only four decades after the first manned flight to the moon, a common device
such as a smartphone consists of more complex technology than the “high-end”
computers that controlled the Apollo 11 space mission. The same holds for software
which became more complex at an even higher rate. Consequently, the design of
such systems became a tremendously hard, difficult, and expensive problem. To
cope with this, modeling languages such as UML and SysML were introduced as
description means to describe quasi-blueprints in early stages of the design flow.
These modeling languages hide implementation details while providing a formal
base for the first system analysis.

However, in order to benefit from this abstraction, it has to be ensured that
the resulting models are applicable (motivating validation) and correct (motivating
verification). But even at this high level of abstraction, this remains a complex
problem. Accordingly, researchers heavily investigated the validation and verifi-
cation of UML/OCL models as well as models described in similar languages.
Solutions which are based on so-called satisfiability solvers find particular interests
due to their capability to completely cover large search spaces in a—considering the
usually exponential complexity—rather efficient fashion.

This book provides a comprehensive description of such methods and their
application—including a general flow that utilizes a formalization of UML/OCL.
While the presented flow focuses on using satisfiability solvers, how the provided
descriptions can additionally be used for any other automatic reasoning engine is
also described. Furthermore, for a broad variety of validation and verification tasks,
the application of the proposed flow is described. Additionally, the book also briefly
covers how nonfunctional properties such as timing constraints can be handled
within the described flow.

A case study demonstrates the possibilities and applicability of the presented
approaches and shows that there is still a gap between the UML/OCL models and
the following design steps. In order to address this problem, finally, an approach
is presented which verifies an implementation against its model. This enables
the designer to transfer validation and verification results to the following lower
abstraction levels.
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Nomenclature

a» [-

B = {true, false}

N={0,1,2,...}

Z=1{..,—-101,2,..}

Symbol for null in OCL

Symbol for invalid in OCL

Variable for the attribute a of the object v in the symbolic representation
A variable indicating if objects of a class c exist or not

Variable for the operation to be executed during the transition from the
system state o to o”.

Definedness of an attribute a of the object v in the symbolic representation
A transformed OCL expression i or a set of OCL expressions /

A set of links

A single link, i.e., an instance of an association r

Variable for possible links of role., of the object v in the symbolic
representation

The set of all enumerations

The set of all variables of all types

The set of all variables with the type ¢

An operation call w = (v, 0)

The set of all operation calls

Inheritance relation between two classes

The Greek letter p is used for a transformed value of a literal or the
result a transformed subexpression—in both cases combined a §-variable
to ensure the pair notation (p, §)

A single system state of a model m

The set of all possible system states of a model m

The underbracket is used in SMT-LIB listing to show that term above must
be replaced by a precise value or number

Attributes of a class

The finite set of classes of a model m
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Nomenclature

A single class ¢ = (A, O, 1)

A finite set of frame conditions of an operation o

Invariants of a class

A (UML/OCL) model m = (C,R)

Operations of a class

A single operation of class 0o = (P, r, <1,>)

A maybe empty set of parameters of an operation o

The finite set of associations between the classes of a model m
A single association » = (role,, : c1, role., : ¢a, (11, u1), (I2, u2))
Return value of an operation o

A variable with identifier v and type t € ¥

A may empty set of preconditions of an operation o

The (infinite) set of all classes

The (infinite) set of all associations also called relations

Type system

A may empty set of postconditions of an operation o

An object instance of a class ¢

A set of object instances
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