Automated Validation & Verification of UML/OCL
Models Using Satisfiability Solvers

Nils Przigoda ¢ Robert Wille
Judith Przigoda ¢ Rolf Drechsler

Automated Validation &
Verification of UML/OCL
Models Using Satisfiability
Solvers

@ Springer

Nils Przigoda Robert Wille

Mobility Division Johannes Kepler University Linz
Siemens AG Linz, Austria
Braunschweig, Germany

Rolf Drechsler
Judith Przigoda AG Rechnerarchitektur
University of Bremen University of Bremen
Bremen, Germany Bremen, Germany

Cyber-Physical Systems
DFKI GmbH, Bremen, Germany

ISBN 978-3-319-72813-1 ISBN 978-3-319-72814-8 (eBook)
https://doi.org/10.1007/978-3-319-72814-8

Library of Congress Control Number: 2017961733

© Springer International Publishing AG 2018

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.

The publisher, the authors and the editors are safe to assume that the advice and information in this book
are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or
the editors give a warranty, express or implied, with respect to the material contained herein or for any
errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional
claims in published maps and institutional affiliations.

Printed on acid-free paper
This Springer imprint is published by Springer Nature

The registered company is Springer International Publishing AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://doi.org/10.1007/978-3-319-72814-8

Preface

Only four decades after the first manned flight to the moon, a common device
such as a smartphone consists of more complex technology than the “high-end”
computers that controlled the Apollo 11 space mission. The same holds for software
which became more complex at an even higher rate. Consequently, the design of
such systems became a tremendously hard, difficult, and expensive problem. To
cope with this, modeling languages such as UML and SysML were introduced as
description means to describe quasi-blueprints in early stages of the design flow.
These modeling languages hide implementation details while providing a formal
base for the first system analysis.

However, in order to benefit from this abstraction, it has to be ensured that
the resulting models are applicable (motivating validation) and correct (motivating
verification). But even at this high level of abstraction, this remains a complex
problem. Accordingly, researchers heavily investigated the validation and verifi-
cation of UML/OCL models as well as models described in similar languages.
Solutions which are based on so-called satisfiability solvers find particular interests
due to their capability to completely cover large search spaces in a—considering the
usually exponential complexity—rather efficient fashion.

This book provides a comprehensive description of such methods and their
application—including a general flow that utilizes a formalization of UML/OCL.
While the presented flow focuses on using satisfiability solvers, how the provided
descriptions can additionally be used for any other automatic reasoning engine is
also described. Furthermore, for a broad variety of validation and verification tasks,
the application of the proposed flow is described. Additionally, the book also briefly
covers how nonfunctional properties such as timing constraints can be handled
within the described flow.

A case study demonstrates the possibilities and applicability of the presented
approaches and shows that there is still a gap between the UML/OCL models and
the following design steps. In order to address this problem, finally, an approach
is presented which verifies an implementation against its model. This enables
the designer to transfer validation and verification results to the following lower
abstraction levels.

vi Preface

This book is the result of several years of intensive research at the University of
Bremen, Germany; DFKI GmbH Bremen, Germany; the Johannes Kepler Univer-
sity Linz, Austria; and, recently, Siemens AG in Braunschweig, Germany. During
this time, we experienced broad support from many people for which we would like
to thank them very much. Most importantly, we are thankful to the respective groups
in Bremen, Linz, and Braunschweig for providing a comfortable and inspirational
environment from which some authors benefit until today. Particular thanks go to
(in alphabetical order) Christoph Hilken, Frank Hilken, Jannis Stoppe, Jan Peleska,
Jonas Gomes Filho, Julia Seiter, Martin Gogolla, Mathias Soeken, Pablo Gonzélez
de Aledo, Pablo Sanchez Espeso, Philipp Niemann, and Ulrich Kiihne for the
very productive collaboration that resulted in research papers which are partially
covered in this book. With respect to funding, we are indebted to thank the German
Research Foundation (DFG) which supported the research summarized in this book
through the Reinhart Koselleck project under grant no. DR 287/23-1, the Graduate
School SyDe funded by the German Excellence Initiative within the University of
Bremen’s institutional strategy, and the German Ministry of Education and Research
(BMBF) for their support through the projects SPECifIC under grant no. 01IW1300
and SELFIE under grant no. 01IW16001. Besides that, the Siemens AG Mobility
Division sponsored a scholarship for Nils Przigoda’s PhD thesis leading to several
results which formed the basis for this book. Finally, we would like to thank
Springer and, in particular, Charles “Chuck” Glaser, for making this book possible.

Braunschweig, Germany Nils Przigoda
Linz, Austria Robert Wille
Bremen, Germany Judith Przigoda
Bremen, Germany Rolf Drechsler

October 2017

Contents

1 Introduction 1
2 A Formal Interpretation of UML/OCL 7
2 B § TN) Y 155 1 B 8

2.2 Classesand Modelsoouiiiiiiiiiiiiii i 10

2.3 Objects and System States.........oovvviiiiiiiiiiiiiiiiiiiinineeennn... 14
2.4 Invariants, Pre-, and Postconditionscooviiiiiiiiiiniiniinn, 16
2.5 Decision Problems ... 19
2.5.1 Boolean Satisfiabilityoooi 19

2.5.2 Satisfiability Modulo Theoriesooeeeent. 22

3 A Symbolic Formulation for Models..........................ooviiinl 25
3.1 A General Flow for Automatic Verification and Validation........... 27

3.2 Transforming a Model into a Symbolic Formulation.................. 30
3.2.1 Transforming Attributesoovvviveiiiiinnnnnnnnnn... 31

3.2.2 Transforming AssOCIationSoovvvvvvviieenenennnnn... 40

3.2.3 Handling a Fixed and Variable Number of Objects 44

3.2.4 Handling Nulland Invalideeea L, 49

3.2.5 Transforming OCL Constraintsoovvveeeeenn.... 53

3.3 Adding Verification Tasksccooiiiiiiiiiiiiiiiiiiiiiiiiiiian, 83
3.3.1 Structural Verification Taskseeieiiienn.. 83

3.3.2 Behavioral Verification Tasksooeell. 85

3.4 Other Approaches for Model Validation and Verification............. 92

4 Structural ASPectsc.oiiiiiii e 95
4.1 Debugging Inconsistent ModelS.........ccoevviiiiiiiiiiiiiiiiiinnn. 96
4.1.1 Problem Formulationccooeiiiiiiiiiiiiiiiinnnns 97

4.1.2 Previously Proposed Solutionscccoovvviiiiiinan.... 98

4.1.3 Proposed Approachcccoiiiiiiiiiiiiiiiiiiiiiiiiiiins 100

4.1.4 TImplementation and Evaluationcooeviiiiinnn 103

vii

viii

Contents

4.1.5 Comparison with Other Approaches, Also from
Different Fieldscoooiiiiiiiiiiii s 108
4.1.6 Example of Useccooiiiiiiiiiiiiiiiiiiiiiiiiiiiie e, 109
4.2 Analyzing Invariant Independenceccoooiiiiiiiiiiii 110
4.2.1 Independence in Formal Modelsooeiaa. 111
4.2.2 Analysis for Invariant Independence........................... 113
4.2.3 Proposed SOIUtiONcoovuuiiiieiiiiiiiiieiiiiiiiieean. 115
4.2.4 Experimental Evaluationoooooiiiiiiiiii. 118
4.3 Relation to Similar Approaches Used in SAT/SMT Solving 121
Behavioral Aspects................iiiii i 125
5.1 Restricting State Transitions Using Frame Conditions................ 126
5.1.1 Related WOrk.....oovviiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiees 127
5.1.2 Integrating Frame Conditions in the Symbolic Formulation.. 128
5.1.3 Deriving Frame Conditions from the AST 138
5.2 Moving on to Concurrent Behavior in the Symbolic Formulation.... 144
5.2.1 Problem Formulation and Related Work 144
5.2.2 Handling Contradictory Conditions.................ccceeenn. 151
5.2.3 Implementation and Application............ccovvvvvvviviennnnns 154
TIMING ASPECES ... 159
6.1 Preliminaries About Clocks and Tickso.eLL 161
6.2 A Generic Representation of CCSL Constraints 163
6.2.1 Determining the Generic Representation 164
6.2.2 Discussion and Application of the Generic Representation .. 168
6.3 Validation of Clock Constraints Against Instant Relations 172
6.3.1 Motivation and Proposed Idea 173
6.3.2 Implementationoovvviiiiiiiiiiinnniiiennennenennn.. 175
6.3.3 Application and EvaluationL 180
Reducing Instance Sizes with Ground Setting Properties 183
7.1 Considered Running Example.........................ooooL L, 184
7.1.1 Considered SCENArio..........cvvviiiiiiiiiiiiiiiiiiieeeeeeeenns 184
7.1.2 Corresponding UML/OCL Modelcccevvviinin 185
7.2 Transformation of OCL Invariants and Resulting Problem 187
7.2.1 Transformation of OCL InvariantS..............cooevvvvvnnnn 187
7.2.2 Consequences and Resulting Problem......................... 190
7.3 Ground Setting Properties for Efficient Transformation of OCL 191
7.3.1 Ground Setting Propertiesccooeviiiiiiiiiinnnns 191
7.3.2 Efficient Transformation of OCLccooviiiiinnin 193
7.4 Discussion and Related Work ... 194
7.5 Implementation and EvaluationooeeL L, 196
7.5.1 Implementationceeviiiiiiiiiiiiiiiiiiiieeeeeeieeenenns 196

752 Evaluationcocoouiiiiiiiiiiie i 197

Contents ix

8 Re-utilizing Verification Results of UML/OCL Models.................. 201
8.1 What Can Be Verified Where?—A Case Study 202
8.1.1 Considered Access Control System..............cceevvinnn... 202

8.1.2 Resulting Modelooouiiiiiiiiiiiiiiiiiiiiiiii 203

8.1.3 Verification of the Modeloin, 205

8.1.4 TImplementation of the Modelooooiiiii. 210

8.1.5 Comparison to the Formal Model.............................. 213

8.1.6 OPen ISSULSuuviteiiii i 217

8.2 Verifying Implementations Against Their Formal Specification...... 217
8.2.1 Envisioned Design Flow................ooooiiiiiiiiiiii, 218

822 GeneralIdea...........coooiiiiiiiiiiiiii 220

8.2.3 Representation of the Implementation......................... 222

8.2.4 Evaluation............ccoiiiiiiiiiiiiii 227

9 ConCluSioncoooiii i 235
Appendix A Class InheritanceLL 239
Appendix B An SMT Instance with an Unknown Result 241
Appendix C Contradictory XOR Definitions 243

ReferenCeS 245

Nomenclature

a» [-

B = {true, false}

N={0,1,2,...}

Z=1{..,—-101,2,..}

Symbol for null in OCL

Symbol for invalid in OCL

Variable for the attribute a of the object v in the symbolic representation
A variable indicating if objects of a class c exist or not

Variable for the operation to be executed during the transition from the
system state o to o”.

Definedness of an attribute a of the object v in the symbolic representation
A transformed OCL expression i or a set of OCL expressions /

A set of links

A single link, i.e., an instance of an association r

Variable for possible links of role., of the object v in the symbolic
representation

The set of all enumerations

The set of all variables of all types

The set of all variables with the type ¢

An operation call w = (v, 0)

The set of all operation calls

Inheritance relation between two classes

The Greek letter p is used for a transformed value of a literal or the
result a transformed subexpression—in both cases combined a §-variable
to ensure the pair notation (p, §)

A single system state of a model m

The set of all possible system states of a model m

The underbracket is used in SMT-LIB listing to show that term above must
be replaced by a precise value or number

Attributes of a class

The finite set of classes of a model m

xi

%CVHQ@SA?‘:‘:”"UQQENH-JQ

Nomenclature

A single class ¢ = (A, O, 1)

A finite set of frame conditions of an operation o

Invariants of a class

A (UML/OCL) model m = (C,R)

Operations of a class

A single operation of class 0o = (P, r, <1,>)

A maybe empty set of parameters of an operation o

The finite set of associations between the classes of a model m
A single association » = (role,, : c1, role., : ¢a, (11, u1), (I2, u2))
Return value of an operation o

A variable with identifier v and type t € ¥

A may empty set of preconditions of an operation o

The (infinite) set of all classes

The (infinite) set of all associations also called relations

Type system

A may empty set of postconditions of an operation o

An object instance of a class ¢

A set of object instances

	Preface
	Contents
	Nomenclature

