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Abstract. A multi-objective deterministic hybrid algorithm (MODHA)
is introduced for efficient simulation-based design optimization. The global
exploration capability of multi-objective deterministic particle swarm
optimization (MODPSO) is combined with the local search accuracy
of a derivative-free multi-objective (DFMO) lineasearch method. Six
MODHA formulations are discussed, based on two MODPSO formu-
lations and three DFMO activation criteria. Forty five analytical test
problems are solved, with two/three objectives and one to twelve vari-
ables. The performance is evaluated by two multi-objective metrics. The
most promising formulations are finally applied to the hull-form opti-
mization of a high-speed catamaran in realistic ocean conditions and
compared to MODPSO and DFMO, showing promising results.

Keywords: Hybrid global/local optimization, multi-objective optimiza-
tion, particle swarm optimization, linesearch method, derivative-free op-
timization, deterministic optimization

1 Introduction

Simulation-based design optimization (SBDO) supports the design of complex
engineering systems. The process consists in the evaluation of several numeri-
cal simulations to the aim of exploring and assessing design opportunities with
improved performance for a set of often conflicting objectives. Multi-objective
optimization algorithms drive the search for the best compromise among all de-
sign objectives, which are generally provided in the form of Pareto solutions. In
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this context, objectives may be noisy and/or their derivatives are often not pro-
vided by the simulation tool. Therefore, derivative-free optimization algorithms
are preferred as a viable option for the SBDO.

Global or local optimization algorithms are used, whether a fine search region
is or is not known a priori. Global methods explore the whole design domain,
providing approximate solutions to the decision problem. Local algorithms in-
vestigate accurately a limited domain region, also providing proof of convergence
(generally not available for global methods). Hybrid global/local algorithms com-
bine the global search capability of global methods with the accuracy and conver-
gence properties of local algorithms. Examples of hybrid methods in the context
of multi-objective optimization can be found in [1] and [2].

Among other derivative-free global methods, particle swarm optimization [3]
has been successfully applied in SBDO [4] and extended to hybrid global/local
formulations for both single- [5, 6] and multi-objective [7–13] problems. Most
algorithms are stochastic, requiring extensive numerical campaigns to achieve
statistically significant results. Often this is not attainable in SBDO, especially
if CPU-time expensive simulations provide directly objectives and constraints.
Therefore, deterministic methods have been developed and assessed [4, 14].

The objective of the present work is to introduce and assess a novel multi-
objective deterministic hybrid algorithm (MODHA), which combines the global
exploration capabilities of multi-objective deterministic particle swarm optimiza-
tion (MODPSO [14]) with the local search accuracy of a deterministic derivative-
free multi-objective (DFMO [15]) linesearch method.

Six formulations are proposed, based on two MODPSO formulations [14] and
three DFMO activation criteria. Two of these are based on the particle velocity
and one on the hypervolume metric [16]. A comparative study is performed
using 45 analytical test problems, with a number of objective functions ranging
from two to three and a number of variables from one to twelve. The DFMO
activation criterion is investigated along with the number of function evaluations
assigned to the local search. A full-factorial combination of formulations and
setting parameters is investigated through more than 14,000 optimization runs.
Two multi-objective performance metrics are assessed, namely the number of
solutions found and the hypervolume bounded by the solution set.

The most promising formulations are applied to the reliability-based robust
design optimization (RBRDO) of a high-speed catamaran in realistic ocean en-
vironment, sailing in head waves in the North Pacific Ocean with stochastic sea
state and speed [17]. A comparison with MODPSO and DFMO is provided.
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2 Optimization problem formulation

The multi-objective minimization problem can be formulated as

minimize f(x) = {fm(x)}, with m = 1, . . . , Nof

subject to zi(x) ≤ 0, with i = 1, . . . , I

and to hj(x) = 0, with j = 1, . . . , J

and to l ≤ x ≤ u

(1)

where x ∈ RNdv is the vector collecting the Ndv variables, Nof is the number
of objective functions fm, zi are the inequality constraints, hj are the equality
constraints, and l and u are the lower and upper bound for x, respectively.

Defining the feasible solution set as X = {x ∈ RNdv | [∩Ii zi(x) ≤ 0] ∧
[∩Jj hj(x) = 0 ∧ [l < x < u]}, the solution of Eq. 1 is the locus of non dom-
inated feasible solutions represented in the variable space by the Pareto solution
set PS = {x ∈ X | f(x) ≺ f(y),∀y ∈ X}. In the objective function space,
the locus is represented by the Pareto front PF = {f(x) : x ∈ PS}. In
the following, the approximate solution set S (set of non dominated solutions
represented either in the variable or function space) achieved by the optimizer
at a specific iteration n is indicated by Sn = {(x, s) : s = f(x) ≺ f(y),∀y}.
Similarly, the approximate Pareto front (assessed by numerical experiments
and used as a reference solution set for the performance analysis) is defined
as R = {(x, r) ∈ ∪Ns

i=1Si : r = f(x) ≺ f(y),∀y}, where Ns is the number of
solution sets available, provided by different algorithm formulations/setups.

3 Performance Metrics

The algorithm performance is evaluated in terms of capacity (related to the
number of Pareto solutions S), convergence (related to the distance between S
and R), and diversity (related to how S is wide). Here, the following two metrics
are used. The Ratio of Reference Point Found (C1R, [18])

C1R =
|S ∩ R|
|R|

(2)

is used as capacity metric, whereas and a normalized version of the hypervolume
(HV) [16] is used as a convergence-diversity metric, defined as

NHV =
HV(S,R)

HV(R,R)
, with HV(S,R) = volume

 |S|⋃
i=1

vi

 (3)

where HV(S,R) gives the (hyper) volume dominated by the solution set S,
evaluated using as a reference the anti-ideal point of R [19].

Additionally, the relative variability σ2
r,k [20] is used to assess the impact of

the k-th setting parameter on the algorithm performance.
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4 Hybrid Global/Local Deterministic Algorithm

The selected global and local algorithms are described in the following along
with their hybridization.

4.1 MODPSO

PSO algorithm [3] is based on the social-behavior metaphor of a flock of birds
or a swarm of bees searching for food and belongs to the class of metaheuristic
algorithms for single-objective derivative-free global optimization. Pinto et al.
[21] proposed a multi-objective deterministic version of PSO as{

vn+1
i = χ [vni + c1 (pi − xni ) + c2 (gi − xni )]

xn+1
i = xni + vn+1

i

(4)

where vni and xni are the velocity and the position of the i-th particle at the
n-th iteration, χ is a constriction factor, c1 and c2 are the cognitive and social
learning rate, and pi and gi are the cognitive and social attractor.

In this work two MODPSO formulations are selected from [14], namely:

– MODPSO1, where pi is the closest point to the i-th particle of the personal
solution set Snp,i (i.e., the set of all non dominated solutions ever visited by
the i-th particle) and gi is the closest point to the i-th particle of the solution
set Sn;

– MODPSO3, where pi is the personal minimizer of the aggregated objective
function F (xi) =

∑Nof

m=1 fm(xi) and gi is the closest point to the i-th particle
of the solution set Sn.

4.2 DFMO

It is a derivative-free algorithm for constrained (possibly) non-smooth multi-
objective problems [15], representing a so-called “a posteriori” method in the
sense that it is able to approximate the entire PF by producing in output a set
of non dominated points. More in particular, at every iteration, the algorithm
produces (or updates) a set of non dominated points (rather than a single point,
as it is common in the single-objective case). As the iteration count grows, these
sets of points tend to the PF of the problem.

Other relevant features of DFMO are: i) a linesearch approach that takes
into account the presence of multiple objectives; ii) an exact penalty approach
for dealing with the nonlinear constraints. At each iteration, for each point in
S, DFMO starts a linesearch along a suitably generated direction dj . If such a
direction is able to guarantee “sufficient” decrease, then a “sufficiently” large
movement λ along the direction is performed. This allows to (possibly) improve
S. Detail of algorithm formulation and implementation can be found in [15].
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Algorithm 1 MODHA pseudo-code

1: Initialize a swarm of Np particles
2: while (n < Max number of iterations) do . MODPSO begins
3: for i = 1, Np do
4: Evaluate f(xn

i )
5: Compute Sn

p,i

6: end for
7: Compute Sn

8: for i = 1, Np do
9: Identify cognitive attractor pi

10: Identify social attractor gi

11: Update particle velocities vn+1
i

12: Update particle positions xn+1
i

13: end for
14: Evaluate condition for performing DFMO based on hybridization scheme
15: if condition for performing DFMO is true then
16: Define Ndv coordinate directions dj
17: Identify Nl starting points for DFMO based on hybridization scheme
18: for i = 1, Nl do . DFMO begins
19: Set NDFMO to zero
20: for j = 1, Ndv do
21: while NDFMO < max. allowed (depending on α) and λ > λmin do
22: Perform one step equal to λ along dj from the starting point i
23: Evaluate f
24: Set NDFMO to NDFMO + 1
25: if At least one objective function decreases “sufficiently” then
26: Update DFMO solution set
27: go to 20
28: else
29: Reduce λ
30: end if
31: end while
32: end for
33: end for . DFMO ends
34: Update and Sn (and Sn

p,i if required) with DFMO solution set

35: end if
36: end while . MODPSO ends
37: Output Sn

4.3 MODHA

A critical issue when combining MODPSO and DFMO is to define when and
where from the local search starts. Here, three approaches are defined: two are
based on the velocity of the particle and one on the HV metric.

The velocity-based formulation starts a local search if the normalized speed of
the i-th particle drops under a threshold value β, namely when ||vi|| / ||(u− l)|| <
β. The local search starts either from the current particle position (PP) or from
the particle social attractor (SA). The hypervolume-based formulation starts the
local search from each point of the current solution set (SS) if HV(Sn,Sn) <
γHV(Sn−1,Sn). HV(Sn,Sn) is the hypervolume associated to Sn, γ is the
threshold coefficient, and HV(Sn−1,Sn) is the hypervolume associated to Sn−1.

The number of problem evaluations (NDFMO) performed at each call of the
local algorithm is defined as NDFMO = αNdvNof and NDFMO = αNp for velocity-
and hypervolume-based formulations, respectively. Algorithm 1 shows the pseudo
code for the current hybrid formulations.
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4.4 Algorithm Parameters and Setup

The MODPSO1 and MODPSO3 setups are defined as in [14]. The number of
particles Np is set to 8NofNdv, initialized using a Hammersley sequence sampling
[22] over variable domain and boundary. The coefficients are set as proposed by
Clerc [23], with χ = 0.721 and c1 = c2 = 1.655. A semi-elastic wall-type approach
is used for box constraints [4].

Threshold values for local search activation are set to β = {0.1, 1.0, 10} and
γ = {1.0, 1.1, 1.2}. The budget of local search evaluations (for each call) is set by
α = {1, 5, 10}. The linesearch step is reduced by a factor of two until it reaches
a minimum step size λmin = 1E-9, starting from a maximum value equal to the
10% of the design variables space dimension.

The number of problem evaluations (Npeval), where one problem evalua-
tion involves one evaluation of each objective function, is assessed by Npeval =
νNofNdv where ν = 125·2c, c ∈ N[0, 4] thereforeNpeval ranges between 125NofNdv

and 2000NofNdv.

5 Numerical Results

A preliminary study on analytical benchmark problems is used to identify the
most promising MODHA formulation and setup. The MODHA formulations
under analysis are summarized in the following:

– PP1 and PP3 perform αNdvNof local search for each call, starting from the
current particle position xni , and are activated by the velocity threshold β;

– SA1 and SA3 perform αNdvNof local search for each call, starting from the
particle social attractor gi, and are activated by the velocity threshold β;

– SS1 and SS3 perform αNp local search for each call, starting from the current
solution set Sn, and are activated by the HV threshold value γ.

“1” and “3” indicate the MODPSO formulation. The most promising MODHA
formulations are finally applied to the RBRDO of the high-speed catamaran and
compared with MODPSO1, MODPSO3, and DFMO.

5.1 Analytical Benchmark Problems

A number of 45 benchmark problems [14] is used, including convex and non-
convex, continuous and discontinuous Pareto fronts, with Nof = 2, 3 and 1 ≤
Ndv ≤ 12.

In order to provide a proper comparison between different problems with
different codomain size, each solution set S is normalized with the function range,
therefore si ∈ [0, 1] and the reference point HV is {1}Nof

i=1. The computation of
HV is performed with the code provided in [24].

Figure 1 shows the relative variability of C1R and NHV, conditional to the
setup parameters. Considering both metrics, the velocity-based formulations
(PP1, PP3, SA1, and SA3) are mainly affected by the velocity threshold β,
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Fig. 1: Analytical test problems, relative variability σ2
r,k conditional to the for-

mulation parameters
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Fig. 2: Analytical test problems, comparison of MODPSO1, MODPSO3,
DFMO, and most promising setup of MODHA formulations

whereas the hypervolume-based formulation is mainly influenced by the coeffi-
cient α, but SS3.

Figure 2 compares C1R and NHV provided by global, local, and hybrid
global/local algorithms. Although DFMO achieves the highest C1R, hybrid meth-
ods provide significantly larger NHV values. In general, within the same hy-
bridization approach, MODPSO1 and MODPSO3 achieve similar performances.
It is worth noting that the velocity-based hybrid formulation, that start the lo-
cal search from the current particle position (PP1 and PP3), are not able to
outperform the corresponding global algorithms.
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Table 1: Most promising MODHA setup based on budget-averaged NHV

MODHA formulation β γ α C1R NHV

PP1 0.1 – 1 2.981E-3 0.9750
PP3 0.1 – 5 3.764E-3 0.9786
SA1 0.1 – 1 2.920E-3 0.9739
SA3 0.1 – 5 3.700E-3 0.9785
SS1 – 1.0 10 1.633E-2 0.9789
SS3 – 1.0 10 1.632E-2 0.9797
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Fig. 3: Global, local, and hybrid algorithm solution for the Sch1 problem with
2000NofNdv problem evaluations

Table 1 summarizes the most promising setup for each hybrid formulation,
based on budget-averaged NHV. MODHA-SS3 with an activation threshold γ =
1.0 and a coefficient α = 10 for the DFMO problem evaluations is the best
performing overall (on average).

Finally, Fig. 3 shows illustrative examples of the solution achieved by global,
local, and hybrid (SS1 and SS3) algorithms for the Sch1 problem [25] with Nof =
2 and Ndv = 1. The hybrid algorithms show a more accurate approximation of
the Pareto front than local and global algorithms.

5.2 High-speed Catamaran Optimization

A reliability-based robust design optimization of a 100 m high-speed catamaran
is solved for realistic conditions, associated to the North Pacific Ocean including
stochastic sea state and speed [17]. The multi-objective problem aims at the
reduction of the expected value of the mean total resistance in irregular waves
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(ϕ1) and the increase of the ship operability referring to a set of motion-related
constraints (ϕ2). The design optimization problem is formulated as

minimize {ϕ1(x), −ϕ2(x)}T

subject to l ≤ x ≤ u

and to ϕ1 ≤ 0; ϕ2 ≥ 0

(5)

The problem is solved by means of stochastic radial-basis function interpolation
[26] of high-fidelity URANS simulations. The inequalities in Eq. 5 are handled

by a linear penalty function, so that ϕk = ϕk + 100
∑Ndv

j=1 max(xj − uj , 0) +

100
∑Ndv

j=1 |min(lj −xj , 0)| if domain bounds violation occurs and ϕk = 10000ϕk
if ϕ1 > 0 or ϕ2 < 0. Four design variables (Ndv = 4) control global shape
modifications of the catamaran hull, based on the Karhunen-Loève expansion
of the shape modification vector. Details may be found in [17]. A total number
of 16,000 problem evaluations are performed and used to compute the reference
non dominated solution set R.

Figure 4 shows the solution obtained by MODPSO1 and 3, DFMO, and the
hybrid algorithms SS1 and SS3 with the most promising parameter set summa-
rized in Tab. 1. The hybrid algorithms are able to cover the reference solution,
outperforming the global and local algorithms. It is worth noting that the hy-
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Fig. 4: Global, local, and hybrid algorithm solution for the catamaran problem
with 2000NofNdv problem evaluations
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Table 2: Catamaran problem, summary of the optimization results

MODPSO1 MODPSO3 DFMO MODHA-SS1 MODHA-SS3
ν C1R NHV C1R NHV C1R NHV C1R NHV C1R NHV

125 0.000E+0 0.9977 0.000E+0 0.9223 0.000E+0 0.9983 0.000E+0 0.9969 0.000E+0 0.9983
250 1.388E-3 0.9983 0.000E+0 0.9687 6.246E-3 0.9984 3.470E-4 0.9978 4.511E-3 0.9986
500 8.675E-3 0.9984 7.634E-3 0.9826 2.325E-2 0.9984 6.246E-3 0.9980 1.410E-1 0.9986
1000 3.088E-2 0.9994 5.274E-2 0.9873 7.911E-2 0.9984 4.580E-2 0.9988 3.540E-1 0.9999
2000 3.227E-2 0.9995 1.620E-1 0.9889 2.866E-1 0.9984 1.117E-1 0.9999 4.060E-1 0.9999

brid algorithms are able to accurately identify the upper right section of R. The
solution provided by SS3 is more accurate than that provided by SS1.

Table 2 summarizes C1R and NHV percentage values achieved by each algo-
rithm, conditional to the budget parameter ν. Both metrics confirm the results
depicted in Fig. 4. The hybrid algorithms perform better than the global and
local algorithms and provide more dense solutions. In particular, SS3 is found to
be the best formulation, achieving higher values of C1R and NHV and providing
more dense solutions than SS1.

6 Conclusions and Future Work

A multi-objective deterministic hybrid algorithm (MODHA) has been presented,
combing two multi-objective deterministic particle swarm formulations with a
local derivative-free multi-objective linesearch algorithm. Three hybridization
schemes have been studied: two are based on the particle velocity and one on
the hypervolume metric. The velocity-based formulation starts the local search
when the particle velocity drops under a threshold value (β) and use as a starting
point either the current particle position (PP) or the particles social attractor
(SA). The hypervolume-based formulation starts the local search when the HV
associated to the current solution set does not improve sufficiently (by a factor
equal to γ) compared to the previous iteration. In this case, a local search is
performed starting from each point of the current solution set (SS). These hy-
bridization schemes are combined to both MODPSO1 and MODPSO3, resulting
in six MODHA formulations.

A comparative study has been performed using 45 analytical test problems,
with a number of objective functions ranging from two to three and a number
of variables from one to twelve, varying the activation criterion and the num-
ber of problem evaluations for the local search. A full-factorial combination of
formulations and parameters has been investigated through more than 14,000
optimization runs. Two multi-objective performance metrics (C1R and NHV)
have been evaluated and discussed.

Velocity-based formulations depend significantly on the local search activa-
tion threshold, whereas the hypervolume-based formulation is affected mainly
by the coefficient related to the number of evaluations reserved for the local
search. Hybrid formulations based on the hypervolume show the best perfor-
mance. Specifically, MODHA-SS3 with α = 10 and γ = 1.0 is found the most
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promising on average. Hypervolume formulations have been applied to the hull-
form optimization of a high-speed catamaran (aimed at reducing the resistance
and increasing the operability in realistic ocean conditions), showing better re-
sults than global and local algorithms. Also for the catamaran, MODHA-SS3
provides the best performance.

Current results are promising and motivate further investigations of metrics-
based formulations, with focus on the method for the selection of local search
starting points. Future work includes the development and assessment of a hybrid
version of the crowding-distance based MOPSO [27] and the use of the crowding
distance to select the local search starting points. The effects of the local search
stop criterion on the overall performance will be included in the analysis. Finally,
novel strategies for the approximation of the Pareto front (e.g. [28]) will be
considered to enhance the exploration capabilities of the MODHA formulations.
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