Skip to main content

Robust Reinforcement Learning with a Stochastic Value Function

  • Conference paper
  • First Online:
  • 3084 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 10710))

Abstract

The field of reinforcement learning has been significantly advanced by the application of deep learning. The Deep Deterministic Policy Gradient(DDPG), an actor-critic method for continuous control, can derive satisfactory policies by use of a deep neural network. However, in common with other deep neural networks, the DDPG requires a large number of training samples and careful hyperparameter tuning.

In this paper, we propose a Stochastic Value Function (SVF) that treats a value function such as the Q function as a stochastic variable that can be sampled from \(N(\mu _{Q}, \sigma _{Q})\). To learn the appropriate value functions, we use Bayesian regression with KL divergence in place of simple regression with squared errors. We demonstrate that the technique used in Trust Region Policy Optimization (TRPO) can provide efficient learning. We implemented DDPG with SVF (DDPG-SVF) and confirmed (1) that DDPG-SVF converged well, with high sampling efficiency, (2) that DDPG-SVF obtained good results while requiring less hyperparameter tuning, and (3) that the TRPO technique offers an effective way of addressing the hyperparameter tuning problem.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A.A., Veness, J., Bellemare, M.G., Graves, A., Riedmiller, M., Fidjeland, A.K., Ostrovski, G., Petersen, S., Beattie, C., Sadik, A., Antonoglou, I., King, H., Kumaran, D., Wierstra, D., Legg, S., Hassabis, D.: Human-level control through deep reinforcement learning. Nature 518(7540), 529–533 (2015)

    Article  Google Scholar 

  2. Lillicrap, T.P., Hunt, J.J., Pritzel, A., Heess, N., Erez, T., Tassa, Y., Silver, D., Wierstra, D.: Continuous control with deep reinforcement learning. arXiv.org, September 2015

  3. Amari, S.-I.: Natural gradient works efficiently in learning. Neural Comput. 10(2), 251–276 (1998)

    Article  Google Scholar 

  4. Precup, D.: Eligibility traces for off-policy policy evaluation. Computer Science Department Faculty Publication Series, p. 80 (2000)

    Google Scholar 

  5. Watkins, C.J.C.H., Dayan, P.: Q-learning. Mach. Learn. 8(3), 279–292 (1992)

    MATH  Google Scholar 

  6. Sutton, R.S., McAllester, D.A., Singh, S.P., Mansour, Y.: Policy gradient methods for reinforcement learning with function approximation. In: Advances in Neural Information Processing Systems, pp. 1057–1063 (2000)

    Google Scholar 

  7. Silver, D., Lever, G., Heess, N., Degris, T., Wierstra, D., Riedmiller, M.: Deterministic policy gradient algorithms. In: Proceedings of the 31st International Conference on Machine Learning (ICML-2014), pp. 387–395 (2014)

    Google Scholar 

  8. Martens, J., Sutskever, I.: Training deep and recurrent networks with hessian-free optimization. In: Montavon, G., Orr, G.B., Müller, K.-R. (eds.) Neural Networks: Tricks of the Trade. LNCS, vol. 7700, pp. 479–535. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-35289-8_27

    Chapter  Google Scholar 

  9. Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., et al.: Tensorflow: large-scale machine learning on heterogeneous distributed systems. arXiv preprint arXiv:1603.04467 (2016)

  10. Duan, Y., Chen, X., Houthooft, R., Schulman, J., Abbeel, P.: Benchmarking deep reinforcement learning for continuous control. In: International Conference on Machine Learning, pp. 1329–1338 (2016)

    Google Scholar 

  11. Kingma, D.P., Welling, M.: Auto-encoding variational bayes. arXiv.org, December 2013

  12. Schulman, J., Levine, S., Moritz, P., Jordan, M.I., Abbeel, P.: Trust region policy optimization. arXiv.org, February 2015

  13. Brockman, G., Cheung, V., Pettersson, L., Schneider, J., Schulman, J., Tang, J., Zaremba, W.: OpenAI Gym. arXiv preprint arXiv:1606.01540 (2016)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Reiji Hatsugai .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Hatsugai, R., Inaba, M. (2018). Robust Reinforcement Learning with a Stochastic Value Function. In: Nicosia, G., Pardalos, P., Giuffrida, G., Umeton, R. (eds) Machine Learning, Optimization, and Big Data. MOD 2017. Lecture Notes in Computer Science(), vol 10710. Springer, Cham. https://doi.org/10.1007/978-3-319-72926-8_43

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-72926-8_43

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-72925-1

  • Online ISBN: 978-3-319-72926-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics